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Abstract | Recent major disease outbreaks, such as severe acute respiratory syndrome and 
foot-and-mouth disease in the UK, coupled with fears of emergence of human-to-human 
transmissible variants of avian influenza, have highlighted the importance of accurate 
quantification of disease threat when relatively few cases have occurred. Traditional approaches 
to mathematical modelling of infectious diseases deal most effectively with large outbreaks in 
large populations. The desire to elucidate the highly variable dynamics of disease spread 
amongst small numbers of individuals has fuelled the development of models that depend more 
directly on surveillance and contact-tracing data. This signals a move towards a closer interplay 
between epidemiological modelling, surveillance and disease-management strategies.

DETERMINISTIC
A process that does not contain 
an element of chance. 
Deterministic models are often 
used to describe the progress of 
an epidemic through large 
populations, in which small 
fluctuations at the individual 
level are assumed not to have an 
important effect on the 
dynamics.

One of the first examples of an epidemiological 
investigation, as would be recognized today, was the 
identification by nineteenth-century physician John 
Snow of the cause of the 1854 London cholera out-
break. By creating a map of cholera deaths and tracing 
the source of water used by victims, he pinpointed the 
origin of infection to a contaminated water pump on 
Broad Street — and in doing so rejected the prevalent 
‘bad air’ theory of cholera transmission1. His approach 
would not be out of place in modern epidemiology. 
Recent dramatic disease outbreaks, such as foot-and-
mouth disease in the UK, and emerging diseases in 
the human population, such as severe acute respira-
tory syndrome (SARS), have highlighted the role of 
a suite of epidemiological tools — molecular typing, 
surveillance, tracing of infectious contacts and math-
ematical modelling — in monitoring disease spread 
and determining appropriate control measures.

What John Snow lacked in his toolkit was the 
modern science of mathematical epidemiology, 
which provides a quantitative framework for describ-
ing the spread of disease. In 1911, another physician, 
Ronald Ross, determined a threshold value for the 
density of the mosquito vectors, below which the 

transmission of malaria could not be sustained2. This 
was an important breakthrough, and heralded the arrival 
of modern epidemiological theory. This threshold value 
was given a solid mathematical footing by Kermack and 
McKendrick3, and arrived, thanks to Macdonald4 and 
Dietz5, in its modern form as the basic reproduction 
ratio, R0 (see REF. 6 for a historical review).

The basic reproduction ratio is the average number 
of secondary infections produced by one infected 
individual when that individual is introduced into 
a previously unexposed population. If R0>1 then, 
on average, the number of new infections will grow, 
whereas if R0<1, new infections will, on average, 
decline and a major outbreak cannot occur.

An extensive and highly successful body of epi-
demiological theory7 that is centred around this idea 
lays claim to key concepts, which include outbreak-
control strategies, herd immunity8, vaccination and 
disease eradication policies9 and the identification of 
‘core’ groups in heterogeneous populations as targets 
for control10. Despite its many successes, it has long 
been known that this DETERMINISTIC theory, which deals 
with the average progress of disease spread through a 
population, does not capture key features of infection 
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STOCHASTIC
A process that incorporates an 
element of chance; every 
realization of the process can 
produce a different outcome. 
Stochastic effects are 
particularly important when the 
numbers involved are small, for 
example, at the start of, or 
during, the ‘tail’ of an epidemic, 
when there are few infectious 
individuals.

COMPARTMENTAL MODEL
A model in which discrete 
subsets of the host population 
are defined according to their 
infection status. Commonly 
used compartments are 
susceptible, latent infected, 
infectious and recovered or 
removed.

METAPOPULATION MODEL
A model comprising a set of 
epidemiologically linked 
subpopulations.

EFFECTIVE REPRODUCTION 
RATIO
The average number of 
secondary infections that is 
produced by one infected 
individual when that individual 
is introduced into a population 
that might have been previously 
exposed to infection, contain 
vaccinated individuals or be 
subject to control measures to 
limit transmission.

GENERATION TIME
The mean time interval 
between an individual 
becoming infected and an 
individual that they infect 
becoming infected.

dynamics that surround disease invasion, persistence 
and extinction11–13. These elements hinge on chance 
STOCHASTIC events in the chain of transmission, which 
influence the spread of infection amongst small num-
bers of individuals14 and can lead to different outbreak 
scenarios.

Conceptually, probabilistic models that take into 
account stochastic pathogen dynamics are not new15,16. 
However, their apparent inscrutability compared with 
their deterministic counterparts, coupled with the 
complexities of fitting these models to data to estimate 
parameters, has limited their widespread use. Recently, 
however, increasing computational power, modern 
statistical methods17–21 and availability of detailed out-
break, tracing and surveillance data are allowing the 
practical implementation of models that better reflect 
the underlying variability in the biological processes.

This article focuses on recent developments in 
this area of mathematical modelling with application 
to specific disease outbreaks. Examples we consider 
include: (i) quantification of the reproduction ratio 
in the early stages of an outbreak (for SARS and 
foot-and-mouth disease); (ii) the distribution of out-
break sizes which allows the monitoring of trends in 
disease epidemiology towards disease emergence or 
re-emergence (for measles and avian influenza); and 
(iii) modelling transmission dynamics within small 
populations (vancomycin-resistant enterococci in a 
hospital setting, Escherichia coli O157 on cattle farms 
and an outbreak of Norovirus in schoolchildren).

SARS, super-spreaders and uncertainty
The global SARS outbreak of 2003 stimulated the 
development of a range of models from classic 
deterministic COMPARTMENTAL MODELS22,23 to a detailed 
stochastic METAPOPULATION MODEL24, all aimed at quanti-
fying the spread of infection and exploring the poten-
tial effectiveness of different control measures. The 
outbreak will be remembered for the dramatic effect 
of super-spreaders — highly infectious individuals 
— who seeded several large clusters of cases25.

Quantifying the impact of these individuals on the 
transmission dynamics was a source of difficulty for 
the models. The possibility that an infection might 
generate a super-spreading event introduces inher-
ent uncertainty in predicting the future course of the 
outbreak. However, it was precisely the heterogeneities 
in the transmission dynamics of SARS that served to 
underline the importance of a model structure that 
captured the possibility of chance or stochastic events 
in the infection process.

A deterministic model produces a single unique 
outcome, whereas the probabilistic nature of a sto-
chastic model means that, for the same underlying 
input parameters, it can produce a tree of possible 
outcomes. Further variability can arise from various 
sources, including differences between individuals 
in risk of acquiring infection26–28, infectiousness once 
infected29 and patterns of contact with other indi-
viduals10. Consequently, of two people infected at the 
Metropole Hotel in Hong Kong, the individual arriving 

in Vancouver produced no further infections30, whereas 
the individual arriving in Toronto infected several fam-
ily members, triggering an outbreak in which ultimately 
hundreds of people were infected31.

In estimating the EFFECTIVE REPRODUCTION RATIO, R, 
for the SARS outbreak, Lipsitch et al.32 took a dual 
approach that spanned both traditional and modern 
methodologies. The standard deterministic approach 
is to express R in terms of parameters that describe 
the average growth rate of infected cases. Here, it is 
assumed that significant depletion of susceptible indi-
viduals has not occurred, so that the number of cases 
grows exponentially, at a rate determined by R and the 
GENERATION TIME. Describing the dynamics in this way 
provides a straightforward estimate for R, with uncer-
tainty in generation-time estimates translating into 
uncertainty in R. Lipsitch and colleagues32 obtained 
estimates for R in the range of 2.2–3.6 for generation 
times ranging from 8 to 12 days.

However, this approach did not capture either the 
heterogeneities underlying the spread of infection 
or the variability generated by the stochastic nature 
of the process. If distributions that capture the het-
erogeneities are known, simulating the tree of possible 
outcomes can be relatively straightforward33. The real 
challenge lies in reversing this process to estimate 
unknown parameters from an observed rate of spread. 
The last decade has seen important advances in this 
area, with increased computing power allowing the 
practical implementation of likelihood and Bayesian 
methods18–20,34, which explore the tree of possible epi-
demic paths, and in doing so identify probable ranges 
for parameter values.

The essence of the Bayesian approach is that it 
provides a means of incorporating prior knowledge 
about a system (for example, on the range or prob-
able distribution for a parameter) into subsequent 
data analysis or model fitting. Lipsitch et al.32 used 
such a technique to derive estimates for R in the early 
phase of the SARS outbreak in Hong Kong. Key to 
their analysis was the availability of detailed clinical 
and contact-tracing data for the first 205 cases in 
Singapore. These data enabled them to produce, as 
input for the model, prior distributions that charac-
terize, without specifying them exactly, the person-to-
person variability in infectious period, and the highly 
skewed distribution of secondary cases produced by 
an infected individual. The estimates they obtained 
for R contained considerable uncertainty — a mean 
of 3.5 with a range of 1.5–7.7 — which reflected the 
striking heterogeneity in transmission dynamics 
generated by the super-spreaders. The super-spread-
ers dramatically increase the variance in the prior 
distribution for secondary cases, which broadens the 
spectrum of possible simulated outcomes and conse-
quently increases uncertainty in estimates for R.

The SARS outbreak highlighted the vital role of 
tracing data in identifying heterogeneities in the 
number of secondary infections generated by an 
infected case. In this outbreak, contact tracing was 
carried out by reconstructing the detailed movements 
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MICROSIMULATION MODEL
A stochastic model in which 
each individual in the 
population is represented 
explicitly, as opposed to 
tracking the number of 
individuals in each of a set of 
compartments. 

CASE REPRODUCTION RATIO
The average number of 
secondary infections that is 
produced by a single individual 
infected at time t. It is typically 
smaller than the basic 
reproduction ratio, as factors 
such as depletion of susceptible 
individuals or implementation 
of control measures will reduce 
the number of secondary cases 
generated.

of infected individuals. However, additional means 
of contact tracing are offered by molecular typing of 
isolates. RNA viruses, such as the SARS coronavirus, 
are characterized by high mutation rates, so tracking 
the evolution of the virus through a population is one 
method of identifying sources of infection. Whereas 
molecular typing of isolates was not a practical tool for 
contact tracing during the SARS outbreak, a microarray 
has recently been developed for resequencing isolates of 
the SARS virus35. This type of technical advance might 
be useful as a practical tool for tracking the spread of 
pathogens (SARS or other small-genome pathogens) at 
the individual level in future outbreaks.

Molecular typing could therefore make direct 
reconstructions of the epidemic tree (of the sort we 
discuss later for foot-and-mouth disease) a realistic 
possibility. That said, this form of contact tracing 
would not replace the tracing of social contacts, as the 
identification and pre-emptive isolation of potentially 
infective individuals is, in its own right, an important 
public-health control measure36–40.

Modelling the UK foot-and-mouth outbreak
The exceptionally close monitoring of the UK foot-
and-mouth outbreak in 2001 allowed the develop-
ment of detailed models that aimed to capture both 
the temporal and spatial spread of infection41–43. These 
models varied from the MICROSIMULATION MODEL of 
Keeling et al.42, which was based on known locations 
of farms, to the more mathematically abstract rep-
resentation of the spatial clustering of cases adopted 
by Ferguson et al.41 Although they provide valuable 
insight into transmission dynamics, the construction 
of such models often requires simplifying assump-
tions about important epidemiological processes such 
as contact structure, infectiousness distribution and 
susceptibility to infection. Additionally, the models 
might be difficult to fit to data to obtain estimates for 
unknown parameters.

If what is required is a retrospective estimate for 
R, instead of a prediction of the future course of 
the outbreak41,42, then an alternative is offered by a 
novel parameter-free method developed by Haydon 
et al.44 This approach uses the detailed surveillance 
data to reconstruct the epidemic tree on a case by 
case basis. This was done by assigning a ‘parent’ to 
each ‘daughter’ case, either from known infectious 
contacts identified by contact tracing or selected 
from the premises that were known to have been 
infectious when the case became infected. This 
approach is appealing for several reasons: the method 
is straightforward and transparent; and by using the 
data directly, it naturally encompasses case-to-case 
variability (for example, in infectious period), which 
allows the modelling of a complex spatio-temporal 
process with minimal assumptions.

Foot-and-mouth disease arose in the UK in early 
February of 2001, with the first case confirmed on 
20 February. A national movement ban was imposed 
on livestock 3 days later. A retrospective outbreak 
investigation by the Department for Environment, 
Food and Rural Affairs (DEFRA, formerly the Ministry 
for Agriculture Food and Fisheries) estimated that 
78 livestock premises across the UK were infected by 
this time. Prior to the ban, the outbreak was charac-
terized by widespread dissemination of infection on 
a national scale through animal movements between 
farms and livestock markets.

Applying the methodology of Haydon et al.44 to the 
spread of foot-and-mouth prior to the movement ban 
reveals a highly skewed distribution of secondary cases 
produced per infected case FIG. 1. Reconstruction of 
the outbreak prior to the ban produces an estimate for 
R0 of 2.99 (95% confidence interval (CI) 1.15–5.23)45, 
but when infections linked to markets are removed the 
estimate falls to 1.95 (95% CI 0.95-3.46). This reveals 
the substantial effect of the markets in disseminating 
infection. Over a third of infections arising during this 
period were attributed to markets, indicating that, in 
the context of foot-and-mouth infection, they were 
acting as ‘super-spreaders’.

After implementation of the ban, transmission of 
foot-and-mouth was predominantly local, with esti-
mates for the CASE REPRODUCTION RATIO, Rt, falling shortly 
after to about 1.5 REF. 46. An epidemic is only consid-
ered to be under control when the Rt is less than one. 
The method of Haydon et al.44 was used to monitor 
the Rt on a week-by-week basis to assess the efficacy of 
implemented control measures.

Though this approach is ostensibly a means of 
reconstructing the observed epidemic using tracing 
data as input, it also provides a flexible environ-
ment for examining ‘what if ’ scenarios by ‘prun-
ing’ branches that depend on the existence of links 
between particular parents and daughters. This type 
of analysis indicates that, if the national movement 
ban had been imposed two days earlier, the final size 
of the epidemic would have been reduced to 48% 
(95% CI 39–63%) of its observed size. Output from 
this model also provides a distribution of Rt values that 

Figure 1 | Number of secondary cases of foot-and-mouth disease generated prior to 
the national movement ban (NMB). The distribution of the number of secondary cases 
produced by the 78 cases, which were deemed through subsequent outbreak investigation by 
the Department for Environment, Food and Rural Affairs to have been infected by the time of 
imposition of the NMB.
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captures the underlying heterogeneity in the number 
of secondary cases produced by an infected premises. 
Coupled with information about the generation time 
of the pathogen, this can be used to make accurate 
short-term predictions BOX 1.

The foot-and-mouth and SARS examples highlight 
the benefits of data-driven approaches in epidemio-
logical modelling. In the case of SARS, the method 
is parametric: a subset of the data is used to provide 
prior distributions for relevant parameters, and esti-
mates are obtained by fitting to the total outbreak 
data. By contrast, the approach for the foot-and-
mouth outbreak is non-parametric: distributions are 
taken directly from the data and used to reconstruct 
the epidemic tree. In both cases, heterogeneities in 
the number of secondary infections generated by an 
infected case (exemplified by the super-spreaders of 
the SARS outbreak), mean that contact-tracing data 
is essential for proper quantification of uncertainty in 
the reproduction ratio.

Assessing the potential threat of avian influenza
Awareness of the potential threat to public health that 
would be posed by the adaptation of the avian influenza 
virus to generate a human-to-human transmissible 
strain has focused attention on surveillance measures 
to assess whether any such strain has emerged47. The 
2003–2004 outbreak of avian influenza in South-East 
Asia resulted in relatively few human cases, but mortal-
ity rates were extremely high — almost 70% of cases 
were fatal48—a statistic that compares starkly with 
the 2–3% fatality rate of the Spanish flu pandemic 

of 1918 REF. 49 and the 13% fatality rate of the SARS 
outbreak37. Therefore, it is vital to identify unusually 
large clusters of influenza cases as early as possible, as 
this might signal that a human-to-human transmissible 
influenza virus has emerged.

Ferguson et al.50 investigated the power of a 
quantitative approach to detect the occurrence of 
an un usually large cluster of infection. Owing to the 
highly stochastic nature of disease transmission among 
small numbers of individuals, data on a single small 
cluster of cases is unlikely to be informative, but the 
distribution of cluster sizes follows a predictable pat-
tern that is dependent on R0 REFS 51,52. The method of 
Ferguson et al.50 is to fit the observed data (excluding 
the largest cluster to date) to the theoretical distribu-
tion. If the largest cluster of avian influenza cases to 
date is indeed an anomaly, then on fitting of the full 
data set to the theoretical distribution, this would 
register as a decrease in goodness-of-fit.

Importantly, the method does not require the larg-
est cluster to have been fully observed — once a certain 
number of cases has been reached, the goodness-of-fit 
statistic will drop below a threshold value and trig-
ger public-health alarm bells. Because this technique 
needs to detect potentially small increases in out-
break sizes, an awareness of the impact of imperfect 
surveillance is important. In this instance, unbiased 
under-reporting of cases tends to reduce estimates 
for R0, but counter-intuitively, under-reporting com-
bined with contact tracing of reported cases can lead 
to an over-estimate for R0, as small clusters can be 
disproportionately missed. Nonetheless, this method 
of estimating R0 can be a useful additional tool as part 
of an early-warning system that comprises outbreak 
surveillance, contact tracing to identify cases that 
cannot be linked to an animal reservoir, and molecu-
lar typing to detect the emergence of ‘unusual’ viral 
strains. An illustration of these methods, applied to 
the distribution of outbreak sizes for foot-and-mouth 
disease in the UK, is given in BOX 2.

Re-emergence of measles in the UK?
The distribution of outbreak sizes used by Ferguson 
et al.50 to describe clusters of avian influenza cases relies 
on the theory of branching processes53, which describes 
the patterns of disease extinction and sizes of small 
outbreaks well when R0 or R are below 1. However, 
it is only recently that these methods have been used 
as a surveillance tool to detect unusual patterns and 
assess trends in underlying epidemiology51,52,54. Specific 
applications include assessment of the efficacy of vac-
cination programmes for childhood diseases, in which 
the aim is to achieve a sufficient level of coverage to 
maintain R below 1 REFS 7,9. Using the distribution 
of small outbreak sizes in vaccinated populations to 
calculate R can identify potential failures of vaccination 
control programmes.

Concerns about the potential side effects of the 
measles, mumps and rubella (MMR) triple vaccine in 
the UK led to a decline in uptake of the MMR vaccine 
from 1998 onwards. In parallel, an apparent increase 

Box 1 | Short-term forecasts in the UK foot-and-mouth outbreak

By 15 March 2001, 3 weeks after imposition of the movement ban, 280 cases of foot-
and-mouth disease had been reported, and subsequent outbreak investigations 
estimated that 547 livestock premises had been infected. The national movement ban 
and ‘rapid’ culling of livestock on infected farms were the only control measures in 
place on this date, but analysis of the epidemic curve indicates that the outbreak 
remained out of control. In such cases, accurate short-term predictions of the spread 
of infection could assist in alerting policy makers to the potential scale of the problem.

Predicting the expected number of case reports requires several inputs: the existing 
number of infections; the reproduction ratio; the interval between becoming 
infected and passing on infection to another holding (referred to as the generation 
time); and the infection-to-reporting interval. Reconstruction of the outbreak using 
the method of Haydon et al.44 provided arithmetic means and distributions for these 
parameters for the first 2 weeks of the outbreak following the movement ban.

A stochastic individual (farm)-based model used these distributions to simulate 
outbreak scenarios from 15 March onwards. Repeated simulations were 

conducted to produce 
upper and lower 
confidence limits on the 
estimated number of 
future reports. Our 
simulated scenarios 
predicted that the number 
of reported cases would 
double within 8–9 days, a 
forecast that was borne 
out by subsequent case 
report data (see Figure).
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in the frequency and size of measles outbreaks was 
observed52. By comparing estimates of R for the periods 
1995–1998 and 1998–2002, Jansen et al.52 showed that 
the observed trends reflected a significant increase in 
R — from 0.47 to 0.82 — which corresponded with 
the declining levels of immunity. Reassuringly, their 
upper confidence limits indicate that R is still below 
the critical value of 1; however, if R rises above 1, the 
re-emergence of measles as an endemic disease in the 
UK is possible.

Here, combining statistical analyses of surveillance 
data with dynamic epidemiological models makes 

it possible to identify whether trends in the data 
reflect genuine changes in underlying epidemiology. 
Moreover, this allows predictions to be made — for 
example, of probable sizes of clusters should vaccine 
coverage continue to fall — which, owing to the non-
linear dependence of mean outbreak sizes on R, could 
not readily be made directly from surveillance data.

Super-spreading of E. coli O157 in cattle
Epidemiological data can be expensive and difficult to 
collect. In practice, data might be limited to a snapshot 
of the prevalence of infection in different locations or 
across multiple populations. However, even in the 
absence of explicit information on the time-course of 
infected cases, it is still possible to extract information 
on the underlying dynamics55,56. This is done by iden-
tifying global patterns that the observed data represent. 
For example, the size of any one measles outbreak is 
unpredictable, but the distribution of outbreak sizes 
arising from multiple introductions of infection follows 
a predictable pattern51,52.

Snapshot data collected from Scottish cattle farms 
showed that the distribution of cattle shedding the 
zoonotic pathogen E. coli O157 across farms was highly 
skewed: at the time of sampling, most farms had no 
shedding animals, some had intermediate numbers of 
shedding animals and a small percentage of farms had 
high numbers of shedding animals. Standard theory7 
suggests that, for infections that lead neither to death 
nor long-term immunity, one would expect an equi-
librium prevalence of infection in a population that 
reflects the balance between transmission and recov-
ery. However, in small groups of animals, stochasticity 
in the dynamics can prevail, leading both to occasional 
high prevalences and frequent extinctions of infection 
from the group.

Globally, we expect to find an equilibrium distri-
bution of prevalences across groups that reflects the 
balance between introduction of infection (either from 
an environmental reservoir or from another farm), 
within-group transmission and stochastic extinction. 
Matching this theoretical distribution to the observed 
distribution of prevalences can provide estimates for 
the within-group R0. Therefore, by examining the 
global pattern of prevalence, we can draw conclu-
sions about local transmission dynamics. Moreover, 
investigating departures of the data from the expected 
distribution can identify important heterogeneities in 
transmission dynamics.

Closer inspection of the observed prevalences of 
E. coli O157 and theoretical distributions reveals a 
discrepancy — the theoretical distribution fails to 
accurately reproduce the numbers of farms with high 
numbers of shedding animals. One proposed explana-
tion for this divergence between theory and observa-
tion is that the high levels of infection are generated 
by a small number of cattle that are highly infectious 
super-spreaders of E. coli O157 REF. 56. Incorporating 
this possibility into the model and estimating the dif-
ferent contributions to R0 made by super-spreading 
and normal animals indicates that more than 80% of 

Box 2 | Estimating R for foot-and-mouth outbreaks from 1954 to 1967

Between 1954 and 1967, 180 typically small foot-and-mouth disease outbreaks were 
recorded in the UK71. Only 4 generated more than 50 cases — of size 61, 67, 243 and 
2,364 — the largest being the well-known epidemic of 1967–1968.

We illustrate the approach of Ferguson et al.50 by using it to determine the effective 
reproduction ratio, R, for these outbreaks and assess whether the 1967–1968 epidemic 
was unusually large or within probable ranges given our estimate for R. The probability 
(P(n)) for the number of cases (n) generated in an outbreak with R<1 is given by51,52:

(1)

Excluding the largest outbreak (of 2,364 cases) and fitting this distribution to the 
remaining 179 outbreaks provides an estimate for R of 0.83 (95% confidence interval 
(CI) 0.75–0.9) and an acceptable fit (P>0.3, evaluated by simulation following Ferguson 
et al.50) to the data (see Figure part a, which shows the observed and theoretical 
distribution of numbers of secondary cases for 179 outbreaks of foot-and-mouth 
disease arising between 1954 and 1966). Comparison with the full data set of 180 
outbreaks reveals a highly significant reduction in goodness-of-fit (P<0.0001), 
indicating that the 1967–1968 outbreak was unusually large given prior estimates for R.

The point at which the goodness-of-fit statistic reaches a critical value determines a 
crucial size above which an outbreak can be regarded as epidemiologically distinct 
from preceding ones. Part b of the figure shows how the critical outbreak size 
depends on the level of confidence required in this assessment (quantified by the 
P value). Here, to be 95% confident that the largest outbreak in question is unusually 
large, its size should exceed approximately 500. An outbreak below this threshold, 
though constituting an important incident for the livestock industry, should not 
automatically be regarded as a failure of implemented control policies.

More detailed analyses 
of the 1967–1968 
outbreak have confirmed 
that it was indeed 
epidemiologically 
distinct from previous 
outbreaks; in particular, 
it was characterized by 
unusual atmospheric 
conditions that led to 
high levels of wind-
borne virus transmission 
in the early stages72. 
This resulted in high 
values for R that 
subsequently fell to 
about 2.0 REF. 73 — 
a value significantly 
higher than our estimate 
for the preceding 179 
outbreaks.
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PARAMETER SPACE
The range of biologically 
plausible values that can be taken 
by the parameters of a model.

transmission might be derived from fewer than 20% of 
animals — making these highly infectious individuals 
obvious targets for control57.

This example shows how snapshot data can shed 
light on transmission dynamics. By examining infec-
tion prevalences in small groups of individuals at dif-
ferent stages in the cycle of invasion, transmission and 
extinction, it is possible to obtain estimates for rela-
tive rates of introduction, transmission and recovery 
from infection. If data are only available from a single 
population (see below for the example of a hospital 
intensive-care unit), a similar approach can be used 
that captures the processes of invasion, transmission 
and extinction, but in this case it is necessary to have 
time-series data on the number of infected cases to 
quantify the transmission dynamics.

Stochastic dynamics of nosocomial infections
The emergence of antibiotic-resistant nosocomial 
infections58 has triggered efforts to identify routes 
of transmission and potential control strategies in 
the hospital environment. Effective intervention to 
prevent antibiotic-resistant infections requires an 
understanding of the most important route of acquisi-
tion — whether that is cross-colonization from other 
patients or de novo acquisition owing to selective pres-
sure of antibiotic use. Surveillance data typically reveal 
striking variability in the prevalence of infection — for 
example, 0–80% over several months for vancomycin-
resistant enterococci (VRE) in an intensive-care unit in 
Cook County hospital59. This apparent unpredictability 
makes it difficult, using standard statistical analyses, to 
identify routes of colonization unless extensive (and 
expensive) genotyping information is also obtained.

To analyse data on the prevalence of VRE in an 
intensive-care unit, an approach conceptually similar 
to that described above to analyse the E. coli O157 data 
was used60. A stochastic individual (patient)-based 
model is used to describe how the distribution of the 
number of infected patients evolves through time. This 
model incorporates patient-to-patient transmission 
of VRE infection, exogenous generation of resistance 
(equivalent to the infection-introduction term of the 
E. coli O157 model) and recovery or removal of patients. 
Parameter estimates are obtained by matching the prev-
alence data to this distribution at successive observation 
times using maximum-likelihood methods.

When dealing with small numbers of individuals, 
such as found in hospital settings, a stochastic model 
framework is a valuable aid for interpreting outbreak 
dynamics59,61,62. The power of the distributional 
approach taken by Pelupessy et al.60 is that it provides 
a tool for the estimation of key parameters: it allows 
quantification of the relative importance of cross-colo-
nization and spontaneous acquisition. These analyses 
showed that cross-colonization is at least as important 
as a route of transmission as spontaneous acquisition. 
However, R (given existing control measures such as 
hand-washing) is approximately 0.7, indicating that 
cross-colonization alone cannot support endemicity 
in the unit.

In this instance, extensive genotyping data were 
available. The consistency revealed by comparing 
model-based estimates with those obtained directly 
from the genotyping data highlights this approach 
(and more recent extensions of the approach to allow 
for imperfect knowledge of the infection status of 
patients63) as a valuable epidemiological tool when 
such data are scarce.

Risk factors for Norovirus infection
It is in the integration of surveillance data with 
epidemiological modelling that Markov chain Monte 
Carlo64 (MCMC)  methods are especially useful. 
These are state-of-the-art statistical techniques that 
have been specifically designed to navigate efficiently 
through PARAMETER SPACE, assessing the likelihood of 
different reconstructions of the outbreak and identi-
fying the most probable ranges for parameter values. 
The key feature of this methodology is the ability to 
handle distributions in high-dimensional parameter 
space, allowing both the representation of biologically 
detailed models and a ready means of handling missing 
data (which can be represented as unknown param-
eters). The last decade has seen considerable advances 
in the application of these methods to epidemiological 
data17,18,20.

The explicitness with which these methods allow 
the infection process to be described means that 
models can better reflect the way the data was gener-
ated. This procedure allowed detailed modelling of an 
outbreak among schoolchildren of Norovirus65, which 
until recently was generally assumed to be transmit-
ted through the faecal–oral route66,67. However, illness 
was frequently associated with the onset of projectile 
vomiting, raising the question of whether these epi-
sodes, and subsequent aerosol transmission, increased 
the risk of infection to other children. Following 
detailed recording of the outbreak, the model incor-
porated detailed information for each child, includ-
ing absences from school, when they reported feeling 
unwell, when they were exposed in the classroom to 
other infectious children and when they were exposed 
to a vomiting episode.

By using MCMC to explore parameter space, 
the relative risks of infection following different 
forms of exposure, which optimise the probability of 
observing the time-course of cases, can be assessed. 
The estimated parameters showed an increased risk 
of infection of approximately 20-fold after exposure 
to vomit, indicating that during these episodes 
infected children are highly infectious super-spread-
ers of the virus. In this instance, the result confirms 
the conclusions of a more standard statistical analy-
sis67. However, in less clear-cut cases, the need to 
include multiple factors in the model, for example 
within- and between-class mixing and exposure 
patterns, a time-varying force-of-infection and 
differing exposure times of the children, requires 
the framework of MCMC, which has the flexibil-
ity to combine dynamic processes, risk factors and 
surveillance data.
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Model

Transmission biology
Routes of transmission,
duration of infectiousness

Pathogenesis
Latent period, incubation period,
time to death or recovery

Host range
Knowledge of alternative
or reservoir hosts

Contact tracing
Investigation of social
contacts or use of
molecular-typing data

Diagnostic tests
Test performance in
the field; sensitivity
and specificity

Risk factors
Risks of acquiring and
of transmitting infection

Notification
As rapid as possible, with
awareness of undetected or
undetectable infections
contributing to transmission

Fates of cases
Whether cases recovered, died,
were cured, quarantined or culled 

Control measures
Implementation of measures:
where? When? How effective?

Population status
Examples include host immunity
due to prophylactic vaccination
or previous outbreaks and
genetic variation in susceptibility

Contact structure
Rates of movement
and/or contact between
individuals or
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These methods highlight the way in which current 
techniques differ from traditional modelling approaches: 
by combining simulation of the epidemic process with 
parameter estimation, the models are driven by the data 
to a greater extent, allowing a more accurate representa-
tion of underlying heterogeneities and better estimates 
of uncertainty in transmission dynamics.

Future directions
In the past few years there have been tremendous 
advances in statistical, mathematical and compu-
tational techniques that are available for analysis of 
outbreak data. These advances have greatly increased 
our capacity to generate meaningful epidemiological 
information from relatively small numbers of cases 
by better representation of the stochastic nature of 
outbreak events and improved methods for estimat-
ing parameters from such data. The successful applica-
tion of these techniques depends on the availability of 

required input data (FIG. 2), which itself has benefited 
from advances in areas such as rapid diagnosis and 
strain typing, the design of surveillance systems and 
information technology.

Several of the examples discussed here (foot-and-
mouth disease, measles and SARS) illustrate that the 
combination of rapid collection and dissemination of 
clinical and surveillance data with the application of 
these new analytical approaches can be an invaluable 
aid to public health or veterinary services that have to 
make policy decisions in real time. The most obvious 
contributions are as an early-warning system for situ-
ations in which there is potential for a major epidemic, 
failure of control measures to bring an outbreak under 
control BOX 1 or trends that increase the likelihood of 
a major epidemic in the immediate future BOX 2.

Analysis of infectious-disease data will probably 
advance rapidly in the immediate future by better 
integration of disease data with demographic and 
environmental information for the host population. 
This might include maps of host distributions (in 
some instances now available at fine scales from cen-
sus data), information on rates of travel (for example, 
air traffic between big cities68) or movements of live-
stock, data on contact patterns for people in cities69, 
and knowledge of land use and other environmental 
variables from satellite imagery. Such data will allow 
more rapid and accurate assessment of probable 
patterns of spread of an infectious disease from the 
earliest stages of an outbreak.

Progress in infection modelling should provide 
considerable benefits for public health and animal 
health. The rapid detection, identification and assess-
ment of an infectious-disease threat is vital, because 
the speed with which effective control measures 
are implemented is usually an important, if not the 
most important, factor in the size of an outbreak70. 
Progress in this area requires, as a crucial first step, 
greater familiarity of public-health and animal-
health scientists with mathematical modelling, and 
a greater familiarity of mathematical modellers with 
the requirements and expertise of public health and 
veterinary sciences.

Figure 2 | From surveillance to modelling. The schematic shown summarizes the inputs 
required for construction of a useful model. 
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Online summary
• The last decade has seen considerable advances in statistical, math-

ematical and computational techniques that are available for the 
analysis of outbreak data. These advances have greatly increased our 
capacity to generate meaningful epidemiological information from 
relatively small numbers of cases of an infection by better representa-
tion of the stochastic nature of the outbreak events and improved 
methods for estimating parameters from such data.

• This review focuses on the application of such models, which cap-
ture the highly variable dynamics of infection spread amongst small 
numbers of individuals, in the following areas: quantifying the basic 
reproduction ratio R0 in the early stages of an outbreak (for foot-
and-mouth disease and severe acute respiratory syndrome (SARS)); 
short-term predictions of outbreak progress (foot-and-mouth dis-
ease); trends towards disease emergence or re-emergence (measles 
in the UK); as an early warning system when there is the threat 
of a major outbreak (avian influenza); and capturing transmission 
dynamics within small populations (antibiotic-resistant nosocomial 
infections).

• An important development is the integration of clinical, surveillance 
and contact-tracing data into the modelling process. This leads to 
models that are better able to capture the underlying variability in 
the transmission dynamics and can do so with minimal assumptions. 
In particular, heterogeneities in the number of secondary infections 
generated by an infected case (as exemplified by the super-spreaders 
of the SARS outbreak) mean that contact tracing is essential for a 
proper quantification of uncertainty in the reproduction ratio.

• Advances in the analysis of outbreak data in the near future will 
probably come from the further development of molecular tech-
niques (to assist contact tracing) and from the better integration of 
disease data with demographic and environmental information. 
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