Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microbial community genomics in the ocean

Key Points

  • Over the past 20 years, molecular approaches, such as ribosomal RNA gene-sequence comparisons, have revolutionized our understanding of microbial diversity and ecology. Similarly, advances in genome sequencing technologies are now beginning to have a major impact on microbial ecology and the environmental sciences, particularly ocean science.

  • Several whole genome sequences for marine microorganisms have been completed and many more marine bacterial, archaeal and protistan genome sequencing projects are underway.

  • In addition to 'simple' genome sequencing, new genomic approaches to analyse natural microbial assemblages have been, and continue to be, developed. These new approaches, which are referred to by various names, including environmental genomics and metagenomics (the subject of this Focus issue), focus on cultivation-independent genomic survey strategies, such as the construction of large-insert bacterial artificial chromosome and fosmid libraries for large DNA inserts and the use of whole-genome shotgun sequencing for small DNA inserts.

  • Three main case studies are discussed in detail: the discovery of bacterial proteorhodopsin using a phylogenetically anchored chromosome walking strategy; the shotgun sequence analysis of the microbial community in the Sargasso Sea; and the reconstruction of methane oxidation pathways in deep-sea archaea by shotgun sequencing of methanotroph-enriched fractions.

  • In the future, comparative community genomic approaches will hopefully begin to yield important, detailed information on microbial distribution, population structure and dynamics in various different environments.

Abstract

Marine microbial communities were among the first microbial communities to be studied using cultivation-independent genomic approaches. Ocean-going genomic studies are now providing a more comprehensive description of the organisms and processes that shape microbial community structure, function and dynamics in the sea. Through the lens of microbial community genomics, a more comprehensive view of uncultivated microbial species, gene and biochemical pathway distributions, and naturally occurring genomic variability is being brought into sharper focus. Besides providing new perspectives on oceanic microbial communities, these new studies are now poised to reveal the fundamental principles that drive microbial ecological and evolutionary processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microbial community DNA sequencing.
Figure 2: Burkholderia and Shewanella gene content in Sargasso Sea samples.
Figure 3: Environmental genomics of deep-sea archaeal methanotrophs.
Figure 4: Apparent taxonomic affiliation of protein-encoding genes from different depths in Monterey Bay.

Similar content being viewed by others

References

  1. Woese, C. R. Bacterial evolution. Microbiol. Rev. 51, 221–271 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Olsen, G. J., Lane, D. J., Giovannoni, S. J., Pace, N. R. & Stahl, D. A. Microbial ecology and evolution: a ribosomal RNA approach. Annu. Rev. Microbiol. 40, 337–365 (1986).

    Article  CAS  PubMed  Google Scholar 

  3. Pace, N. R. A molecular view of microbial diversity and the biosphere. Science 276, 734–740 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Rappe, M. S. & Giovannoni, S. J. The uncultured microbial majority. Annu. Rev. Microbiol. 57, 369–394 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Hugenholtz, P., Goebel, B. M. & Pace, N. R. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180, 4765–4774 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. DeLong, E. F. Microbial seascapes revisited. Curr. Opin. Microbiol. 4, 290–295 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Wright, T. D., Vergin, K. L., Boyd, P. W. & Giovannoni, S. J. A novel δ-subdivision proteobacterial lineage from the lower ocean surface layer. Appl. Environ. Microbiol. 63, 1441–1448 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. DeLong, E. F. Archaea in coastal marine environments. Proc. Natl Acad. Sci. USA 89, 5685–5689 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bult, C. J. et al. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273, 1058–1073 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Dufresne, A. et al. Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome. Proc. Natl Acad. Sci. USA 100, 10020–10025 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rocap, G. et al. Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424, 1042–1047 (2003). This paper reports on the comparative genomic analysis of one of the most abundant photosynthetic organisms in the oceans. The authors report on depth-specific adaptations and genomic differences to gradients of light and nutrients found in the water column.

    Article  CAS  PubMed  Google Scholar 

  12. Palenik, B. et al. The genome of a motile marine Synechococcus. Nature 424, 1037–1042 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Hou, S. et al. Genome sequence of the deep-sea γ-proteobacterium Idiomarina loihiensis reveals amino acid fermentation as a source of carbon and energy. Proc. Natl Acad. Sci. USA 101, 18036–18041 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Moran, M. A. et al. Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment. Nature 432, 910–913 (2004). This paper reports on the genome sequence of a marine bacterium related to Roseobacter spp., an α-proteobacterial group that is abundant in marine surface waters. The authors suggest the presence of specific adaptations to the marine environment with respect to carbon and sulphur metabolism, and test these hypotheses in physiological experiments.

    Article  CAS  PubMed  Google Scholar 

  15. Chen, C. Y. et al. Comparative genome analysis of Vibrio vulnificus, a marine pathogen. Genome Res. 13, 2577–2587 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Makino, K. et al. Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V. cholerae. Lancet 361, 743–749 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Nelson, K. E. et al. Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399, 323–329 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Rabus, R. et al. The genome of Desulfotalea psychrophila, a sulfate-reducing bacterium from permanently cold Arctic sediments. Environ. Microbiol. 6, 887–902 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Glockner, F. O. et al. Complete genome sequence of the marine planctomycete Pirellula sp. strain 1. Proc. Natl Acad. Sci. USA 100, 8298–8303 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Takami, H., Takaki, Y. & Uchiyama, I. Genome sequence of Oceanobacillus iheyensis isolated from the Iheya Ridge and its unexpected adaptive capabilities to extreme environments. Nucleic Acids Res. 30, 3927–3935 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vezzi, A. et al. Life at depth: Photobacterium profundum genome sequence and expression analysis. Science 307, 1459–1461 (2005). This paper reports the first DNA sequence of a piezophilic bacterium adapted to high hydrostatic pressures encountered in the deep sea. The sequence was used in microarray analyses to infer regulatory responses to changing hydrostatic pressure.

    Article  CAS  PubMed  Google Scholar 

  22. Ruby, E. G. et al. Complete genome sequence of Vibrio fischeri: a symbiotic bacterium with pathogenic congeners. Proc. Natl Acad. Sci. USA 102, 3004–3009 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chinen, A., Uchiyama, I. & Kobayashi, I. Comparison between Pyrococcus horikoshii and Pyrococcus abyssi genome sequences reveals linkage of restriction–modification genes with large genome polymorphisms. Gene 259, 109–121 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Galagan, J. E. et al. The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res. 12, 532–542 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hendrickson, E. L. et al. Complete genome sequence of the genetically tractable hydrogenotrophic methanogen Methanococcus maripaludis. J. Bacteriol. 186, 6956–6969 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kawarabayasi, Y. et al. Complete sequence and gene organization of the genome of a hyper-thermophilic archaebacterium, Pyrococcus horikoshii OT3. DNA Res. 5, 55–76 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Kawarabayasi, Y. et al. Complete genome sequence of an aerobic hyper-thermophilic crenarchaeon, Aeropyrum pernix K1. DNA Res. 6, 83–101, 145–152 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Klenk, H. P. et al. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390, 364–370 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Robb, F. T. et al. Genomic sequence of hyperthermophile, Pyrococcus furiosus: implications for physiology and enzymology. Methods Enzymol. 330, 134–157 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Slesarev, A. I. et al. The complete genome of hyperthermophile Methanopyrus kandleri AV19 and monophyly of archaeal methanogens. Proc. Natl Acad. Sci. USA 99, 4644–4649 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Armbrust, E. V. et al. The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306, 79–86 (2004). This report describes the draft sequencing of the 34-Mb genome of marine diatom Thalassiosira pseudonana , which has 24 diploid nuclear chromosomes. Metabolic features inferred from the genome sequence were related to the growth strategies and ecology of this diatom. Evidence for the secondary endosymbioses with a red algal endosymbiont was found in the nuclear genome.

    Article  CAS  PubMed  Google Scholar 

  32. Schmidt, T. M., DeLong, E. F. & Pace, N. R. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J. Bacteriol. 173, 4371–4378 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stein, J. L., Marsh, T. L., Wu, K. Y., Shizuya, H. & DeLong, E. F. Characterization of uncultivated prokaryotes: isolation and analysis of a 40-kilobase-pair genome fragment from a planktonic marine archaeon. J. Bacteriol. 178, 591–599 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Béjà, O. et al. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289, 1902–1906 (2000).

    Article  PubMed  Google Scholar 

  35. Béjà, O. et al. Unsuspected diversity among marine aerobic anoxygenic phototrophs. Nature 415, 630–633 (2002).

    Article  PubMed  Google Scholar 

  36. Breitbart, M. et al. Genomic analysis of uncultured marine viral communities. Proc. Natl Acad. Sci. USA 99, 14250–14255 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Breitbart, M. et al. Diversity and population structure of a near-shore marine-sediment viral community. Proc. Biol. Sci. 271, 565–574 (2004). This report describes the genetic make-up of two viral shotgun libraries from phage populations collected in coastal waters of San Diego. The authors show that double stranded DNA tailed phages and algal phages were well represented in the sample. Additionally, the most abundant viral group detected by shotgun cloning could represent upwards of 3% of the total phage.

    Article  PubMed  PubMed Central  Google Scholar 

  38. de la Torre, J. R. et al. Proteorhodopsin genes are distributed among divergent marine bacterial taxa. Proc. Natl Acad. Sci. USA 100, 12830–12835 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sabehi, G., Beja, O., Suzuki, M. T., Preston, C. M. & DeLong, E. F. Different SAR86 subgroups harbour divergent proteorhodopsins. Environ. Microbiol. 6, 903–910 (2004).

    Article  PubMed  CAS  Google Scholar 

  40. Schleper, C. et al. Genomic analysis reveals chromosomal variation in natural populations of the uncultured psychrophilic archaeon Cenarchaeum symbiosum. J. Bacteriol. 180, 5003–5009 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Vergin, K. L. et al. Screening of a fosmid library of marine environmental genomic DNA fragments reveals four clones related to members of the order Planctomycetales. Appl. Environ. Microbiol. 64, 3075–3078 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Rondon, M. R. et al. Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl. Environ. Microbiol. 66, 2541–2547 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lopez-Garcia, P., Brochier, C., Moreira, D. & Rodriguez-Valera, F. Comparative analysis of a genome fragment of an uncultivated mesopelagic crenarchaeote reveals multiple horizontal gene transfers. Environ. Microbiol. 6, 19–34 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Treusch, A. H. et al. Characterization of large-insert DNA libraries from soil for environmental genomic studies of Archaea. Environ. Microbiol. 6, 970–980 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Moreira, D., Rodriguez-Valera, F. & Lopez-Garcia, P. Analysis of a genome fragment of a deep-sea uncultivated group II euryarchaeote containing 16S rDNA, a spectinomycin-like operon and several energy metabolism genes. Environ. Microbiol. 6, 959–969 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Quaiser, A. et al. Acidobacteria form a coherent but highly diverse group within the bacterial domain: evidence from environmental genomics. Mol. Microbiol. 50, 563–575 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Quaiser, A. et al. First insight into the genome of an uncultivated crenarchaeote from soil. Environ. Microbiol. 4, 603–611 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Schleper, C., Swanson, R. V., Mathur, E. J. & DeLong, E. F. Characterization of a DNA polymerase from the uncultivated psychrophilic archaeon Cenarchaeum symbiosum. J. Bacteriol. 179, 7803–7811 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Preston, C. M., Wu, K. Y., Molinski, T. F. & DeLong, E. F. A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov. Proc. Natl Acad. Sci. USA 93, 6241–6246 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Handelsman, J. Metagenomics: application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 68, 669–685 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Riesenfeld, C. S., Schloss, P. D. & Handelsman, J. Metagenomics: genomic analysis of microbial communities. Annu. Rev. Genet. 38, 525–552 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Stein, J. L., Haygood, M. & Felbeck, H. Nucleotide sequence and expression of a deep-sea ribulose-1,5-bisphosphate carboxylase gene cloned from a chemoautotrophic bacterial endosymbiont. Proc. Natl Acad. Sci. USA 87, 8850–8854 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cottrell, M. T., Moore, J. A. & Kirchman, D. L. Chitinases from uncultured marine microorganisms. Appl. Environ. Microbiol. 65, 2553–2557 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Hallam, S. J. et al. Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305, 1457–1462 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Tringe, S. G. et al. Comparative metagenomics of microbial communities. Science 308, 554–557 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. DeLong, E. F. in Microbial Genomics (eds Fraser, C. M., Nelson., K. E. & Read, T. D.) 419–442 (Human Press Inc., Totowa, New Jersey, 2004).

    Google Scholar 

  57. DeLong, E. F. Microbial population genomics and ecology. Curr. Opin. Microbiol. 5, 520–524 (2002).

    Article  PubMed  Google Scholar 

  58. DeLong, E. F. Towards microbial systems science: integrating microbial perspective, from genomes to biomes. Environ. Microbiol. 4, 9–10 (2002).

    Article  PubMed  Google Scholar 

  59. Rodriguez-Valera, F. Approaches to prokaryotic biodiversity: a population genetics perspective. Environ. Microbiol. 4, 628–633 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Rodriguez-Valera, F. Environmental genomics, the big picture? FEMS Microbiol. Lett. 231, 153–158 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Beja, O. To BAC or not to BAC: marine ecogenomics. Curr. Opin. Biotechnol. 15, 187–190 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Doney, S. C., Abbott, M. R., Cullen, J. J., Karl, D. M. & Rothstein, L. From genes to ecosystems: the ocean's new frontier. Frontiers in Ecology and the Environment 2, 457–466 (2004).

    Google Scholar 

  63. Kim, U. -J., Shizuya, H., Dejong, P., Birren, B. & Simon, M. Stable propagation of cosmid sized human DNA inserts in an F-factor based vector. Nucleic Acids Res. 20, 1083–1185 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shizuya, H. et al. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc. Natl Acad. Sci. USA 89, 8794–8797 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Béjà, O. et al. Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage. Environ. Microbiol. 2, 516–529 (2000).

    Article  PubMed  Google Scholar 

  66. Fleischmann, R. D. et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496–512 (1995).

    Article  CAS  PubMed  Google Scholar 

  67. Tamas, I. et al. 50 million years of genomic stasis in endosymbiotic bacteria. Science 296, 2376–2379 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Shigenobu, S., Watanabe, H., Hattori, M., Sakaki, Y. & Ishikawa, H. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407, 81–86 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Tyson, G. W. et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428, 37–43 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Waterston, R. H., Lander, E. S. & Sulston, J. E. On the sequencing of the human genome. Proc. Natl Acad. Sci. USA 99, 3712–3716 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Waterston, R. H., Lander, E. S. & Sulston, J. E. More on the sequencing of the human genome. Proc. Natl Acad. Sci. USA 100, 3022–3024; author reply 3025–3026 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Oz, A., Sabehi, G., Koblizek, M., Massana, R. & Beja, O. Roseobacter-like bacteria in Red and Mediterranean Sea aerobic anoxygenic photosynthetic populations. Appl. Environ. Microbiol. 71, 344–353 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sabehi, G. et al. Novel proteorhodopsin variants from the Mediterranean and Red Seas. Environ. Microbiol. 5, 842–849 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Man, D. et al. Diversification and spectral tuning in marine proteorhodopsins. EMBO J. 22, 1725–1731 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Béjà, O., Spudich, E. N., Spudich, J. L., Leclerc, M. & DeLong, E. F. Proteorhodopsin phototrophy in the ocean. Nature 411, 786–789 (2001).

    Article  PubMed  Google Scholar 

  76. Falkowski, P. G. & de Vargas, C. Shotgun sequencing in the sea: a blast from the past? Science 304, 58–60 (2004).

    Article  PubMed  Google Scholar 

  77. Venter, J. C. et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304, 66–74 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Kruger, M. et al. A conspicuous nickel protein in microbial mats that oxidize methane anaerobically. Nature 426, 878–881 (2003).

    Article  PubMed  CAS  Google Scholar 

  79. Teeling, H., Meyerdierks, A., Bauer, M., Amann, R. & Glockner, F. O. Application of tetranucleotide frequencies for the assignment of genomic fragments. Environ. Microbiol. 6, 938–947 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Bielawski, J. P., Dunn, K. A., Sabehi, G. & Beja, O. Darwinian adaptation of proteorhodopsin to different light intensities in the marine environment. Proc. Natl Acad. Sci. USA 101, 14824–14829 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Krebs, R. A., Alexiev, U., Partha, R., DeVita, A. M. & Braiman, M. S. Detection of fast light-activated H+ release and M intermediate formation from proteorhodopsin. BMC Physiol. 2, 5 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Friedrich, T. et al. Proteorhodopsin is a light-driven proton pump with variable vectoriality. J. Mol. Biol. 321, 821–838 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Varo, G., Brown, L. S., Lakatos, M. & Lanyi, J. K. Characterization of the photochemical reaction cycle of proteorhodopsin. Biophys. J. 84, 1202–1207 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lakatos, M., Lanyi, J. K., Szakacs, J. & Varo, G. The photochemical reaction cycle of proteorhodopsin at low pH. Biophys. J. 84, 3252–3256 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Dioumaev, A. K. et al. Proton transfers in the photochemical reaction cycle of proteorhodopsin. Biochemistry 41, 5348–5358 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Wang, W. W., Sineshchekov, O. A., Spudich, E. N. & Spudich, J. L. Spectroscopic and photochemical characterization of a deep ocean proteorhodopsin. J. Biol. Chem. 278, 33985–33991 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Lakatos, M. & Varo, G. The influence of water on the photochemical reaction cycle of proteorhodopsin at low and high pH. J. Photochem. Photobiol. B 73, 177–182 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Man-Aharonovich, D. et al. Characterization of RS29, a blue-green proteorhodopsin variant from the Red Sea. Photochem. Photobiol. Sci. 3, 459–462 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Bergo, V., Amsden, J. J., Spudich, E. N., Spudich, J. L. & Rothschild, K. J. Structural changes in the photoactive site of proteorhodopsin during the primary photoreaction. Biochemistry 43, 9075–9083 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Imasheva, E. S., Balashov, S. P., Wang, J. M., Dioumaev, A. K. & Lanyi, J. K. Selectivity of retinal photoisomerization in proteorhodopsin is controlled by aspartic acid 227. Biochemistry 43, 1648–1655 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Dioumaev, A. K., Wang, J. M., Balint, Z., Varo, G. & Lanyi, J. K. Proton transport by proteorhodopsin requires that the retinal Schiff base counterion Asp-97 be anionic. Biochemistry 42, 6582–6587 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Kelemen, B. R., Du, M. & Jensen, R. B. Proteorhodopsin in living color: diversity of spectral properties within living bacterial cells. Biochim. Biophys. Acta 1618, 25–32 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Kolber, Z. S., Van Dover, C. L., Niederman, R. A. & Falkowski, P. G. Bacterial photosynthesis in surface waters of the open ocean. Nature 407, 177–179 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Kolber, Z. S. et al. Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science 292, 2492–2495 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Pradella, S. et al. Genome organization and localization of the pufLM genes of the photosynthesis reaction center in phylogenetically diverse marine α-proteobacteria. Appl. Environ. Microbiol. 70, 3360–3369 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Allgaier, M., Uphoff, H., Felske, A. & Wagner-Dobler, I. Aerobic anoxygenic photosynthesis in Roseobacter clade bacteria from diverse marine habitats. Appl. Environ. Microbiol. 69, 5051–5059 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Giovannoni, S. J., Britschgi, T. B., Moyer, C. L. & Field, K. G. Genetic diversity in Sargasso Sea bacterioplankton. Nature 345, 60–63 (1990).

    Article  CAS  PubMed  Google Scholar 

  98. Acinas, S. G. et al. Fine-scale phylogenetic architecture of a complex bacterial community. Nature 430, 551–554 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Moore, L. R., Rocap, G. & Chisholm, S. W. Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 393, 464–467 (1998).

    Article  CAS  PubMed  Google Scholar 

  100. Field, K. G. et al. Diversity and depth-specific distribution of SAR11 cluster rRNA genes from marine planktonic bacteria. Appl. Environ. Microbiol. 63, 63–70 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Béjà, O. et al. Comparative genomic analysis of archaeal genotypic variants in a single population and in two different oceanic provinces. Appl. Environ. Microbiol. 68, 335–345 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Garcia-Martinez, J. & Rodriguez-Valera, F. Microdiversity of uncultured marine prokaryotes: the SAR11 cluster and the marine Archaea of Group I. Mol. Ecol. 9, 935–948 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Klepac-Ceraj, V. et al. High overall diversity and dominance of microdiverse relationships in salt marsh sulphate-reducing bacteria. Environ. Microbiol. 6, 686–698 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Thompson, J. R. et al. Genotypic diversity within a natural coastal bacterioplankton population. Science 307, 1311–1313 (2005). This report examined the diversity of Vibrio splendidus isolates using rRNA and Hsp60 to examine the genetics of a single naturally occurring bacterial species. The extent of sympatric, co-occurring genetic diversity was remarkable, with this Vibrio species showing extensive allelic and genome size variation.

    Article  CAS  PubMed  Google Scholar 

  105. Acinas, S. G., Marcelino, L. A., Klepac-Ceraj, V. & Polz, M. F. Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. J. Bacteriol. 186, 2629–2635 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hinrichs, K. U., Hayes, J. M., Sylva, S. P., Brewer, P. G. & DeLong, E. F. Methane-consuming archaebacteria in marine sediments. Nature 398, 802–805 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Orphan, V. J., House, C. H., Hinrichs, K. U., McKeegan, K. D. & DeLong, E. F. Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proc. Natl Acad. Sci. USA 99, 7663–7668 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Orphan, V. J., House, C. H., Hinrichs, K. U., McKeegan, K. D. & DeLong, E. F. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293, 484–487 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Hallam, S. J., Girguis, P. R., Preston, C. M., Richardson, P. M. & DeLong, E. F. Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing archaea. Appl. Environ. Microbiol. 69, 5483–5491 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Detter, J. C. et al. Isothermal strand-displacement amplification applications for high-throughput genomics. Genomics 80, 691–698 (2002).

    Article  CAS  PubMed  Google Scholar 

  111. Suzuki, M. T. et al. Phylogenetic screening of ribosomal RNA gene-containing clones in bacterial artificial chromosome (BAC) libraries from different depths in Monterey Bay. Microb. Ecol. 48, 473–488 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  PubMed  Google Scholar 

  113. Fitz-Gibbon, S. T. et al. Genome sequence of the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. Proc. Natl Acad. Sci. USA 99, 984–989 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I am indebted to all my students and collaborators, past and present, for their dedication, inspiration and perspiration. Thanks to S. Hallam for providing Fig. 3 and to my oceanographic collaborators and colleagues, especially F. Chavez at the Monterey Bay Aquarium Research Institute and D. Karl at the University of Hawaii, for ongoing collaborative field efforts. The author's work is supported by the National Science Foundation, the Gordon and Betty Moore Foundation, and sequencing support from the Department of Energy (DoE) carried out at the DoE Joint Genome Institute.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez

gi44893855

gi 44893849

Methanocaldococcus jannaschii

Shewanella oneidensis

Synechococcus sp.

FURTHER INFORMATION

Edward F. DeLong's homepage

DoE Joint Genome Institute

The Gordon and Betty Moore Foundation

NSF Microbial Sequencing Program FY 2005

The organism bins assembled from the Sargasso Sea WGS environmental sample dataset

Glossary

EUPHOTIC ZONE

The uppermost stratum of the water column that receives sufficient light for photosynthesis.

BENTHIC

Living in, or on the bottom of, a body of water.

SPECIES RICHNESS

The number of different species in a given habitat, biotope, community or assemblage.

SYMPATRIC

Populations, species or taxa occurring in the same geographical area.

SPECIES EVENNESS

The relative abundance of species in a given habitat, biotope, community or assemblage.

ALLOCHTHONOUS

Non-native. Found somewhere other than the place of origin.

CONTINENTAL MARGIN

Shallow submarine extension of the continents, generally tens of meters deep, that extends seaward to the continental slope and the deep ocean.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeLong, E. Microbial community genomics in the ocean. Nat Rev Microbiol 3, 459–469 (2005). https://doi.org/10.1038/nrmicro1158

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1158

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing