Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Marine microbial community dynamics and their ecological interpretation

Key Points

  • The observation and analysis of marine microbial community dynamics provide insights into how microorganisms are influenced by their environment and other microorganisms.

  • The application of methods that estimate microbial populations and their dynamics over time have revealed patterns that indicate community-level resilience and, often, seasonality. This Review describes the processes that lead to the variability of ocean time series, including the factors that operate over various scales, from hours to decades, with a focus on time series of >5 years.

  • We discuss traditional and newly developed methodological and statistical techniques for analysing microbial community dynamics, including the advantages and shortcomings of each.

  • Emergent properties such as community seasonality, resilience and predictability from several studies are explored, with particular attention to their broader relevance and ecological implications. We hypothesize that what outwardly seems to be a predictable, well-regulated community is the result of numerous underlying natural ecological feedback processes among individual microorganisms, which is similar to Adam Smith's 'invisible hand' metaphor.

  • Several time series have explored pairwise ecological interactions between microorganisms that enable examination of complex ecological network associations; we discuss their possible ecological explanations and implications.

  • We define current technological developments that will help to address timeless questions of the controls and functions of marine microbial community dynamics, including the integration of top-down and bottom-up processes.

Abstract

Recent advances in studying the dynamics of marine microbial communities have shown that the composition of these communities follows predictable patterns and involves complex network interactions, which shed light on the underlying processes regulating these globally important organisms. Such 'holistic' (or organism- and system-based) studies of these communities complement popular reductionist, often culture-based, approaches for understanding organism function one gene or protein at a time. In this Review, we summarize our current understanding of marine microbial community dynamics at various scales, from hours to decades. We also explain how the data illustrate community resilience and seasonality, and reveal interactions among microorganisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Resilience and predictability of community composition.
Figure 2: Translation of community dynamics into a microbial association network.
Figure 3: Network features change dramatically at different timescales and with the inclusion of different microorganisms.

Similar content being viewed by others

References

  1. Ducklow, H. W. in Microbial Ecology of the Oceans (ed. Kirchman, D. L.) 85–120 (Wiley-Liss Inc., 2000).

    Google Scholar 

  2. Suttle, C. A. Marine viruses — major players in the global ecosystem. Nature Rev. Microbiol. 5, 801–812 (2007).

    Article  CAS  Google Scholar 

  3. Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive earth's biogeochemical cycles. Science 320, 1034–1039 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Zehr, J. P. & Kudela, R. M. Nitrogen cycle of the open ocean: from genes to ecosystems. Ann. Rev. Mar. Sci. 3, 197–225 (2011).

    Article  PubMed  Google Scholar 

  5. Azam, F., Fenchel, T., Field, J. G., Gray, J. S. & Thingstad, T. F. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).

    Article  Google Scholar 

  6. Pace, N. R., Stahl, D. A., Lane, D. J. & Olsen, G. J. in Advances in Microbial Ecology (ed. Marshall, K. C.) 1–55 (Springer, 1986).

    Book  Google Scholar 

  7. Sogin, M. L. et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc. Natl Acad. Sci. USA 103, 12115–12120 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fuhrman, J. A. & Hagström, Å. in Microbial Ecology of the Oceans (ed. Kirchman, D. L.) 45–90 (John Wiley & Sons Inc., 2008).

    Book  Google Scholar 

  10. Kuipers, B., van Noort, G. J., Vosjan, J. & Herndl, G. J. Diel periodicity of bacterioplankton in the euphotic zone of the subtropical Atlantic Ocean. Mar. Ecol. Prog. Ser. 201, 13–25 (2000).

    Article  Google Scholar 

  11. Fuhrman, J. A., Eppley, R. W., Hagstrom, A. & Azam, F. Diel variations in bacterioplankton, phytoplankton, and related parameters in the Southern California Bight. Mar. Ecol. Prog. Ser. 27, 9–20 (1985).

    Article  Google Scholar 

  12. Gasol, J. M. et al. Diel variations in bacterial heterotrophic activity and growth in the northwestern Mediterranean Sea. Mar. Ecol. Prog. Ser. 164, 107–124 (1998).

    Article  Google Scholar 

  13. Jacquet, S. et al. Diel patterns of growth and division in marine picoplankton in culture. J. Phycol. 37, 357–369 (2001).

    Article  Google Scholar 

  14. Iluz, D. et al. Short-term variability in primary productivity during a wind-driven diatom bloom in the Gulf of Eilat (Aqaba). Aquat. Microb. Ecol. 56, 205–215 (2009).

    Article  Google Scholar 

  15. Teeling, H. et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 336, 608–611 (2012). This comprehensive study describes the use of classical biological oceanographic research and omics analyses to determine the bacterioplankton response to a phytoplankton bloom in the North Sea.

    Article  CAS  PubMed  Google Scholar 

  16. Klindworth, A. et al. Diversity and activity of marine bacterioplankton during a diatom bloom in the North Sea assessed by total RNA and pyrotag sequencing. Mar. Genomics 18, 185–192 (2014).

    Article  PubMed  Google Scholar 

  17. Buchan, A., LeCleir, G. R., Gulvik, C. A. & González, J. M. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nature Rev. Microbiol. 12, 686–698 (2014).

    Article  CAS  Google Scholar 

  18. Rich, V. I., Pham, V. D., Eppley, J., Shi, Y. & DeLong, E. F. Time-series analyses of Monterey Bay coastal microbial picoplankton using a “genome proxy” microarray. Environ. Microbiol. 13, 116–134 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Venrick, E. L., McGowan, J. A., Cayan, D. R. & Hayward, T. L. Climate and chlorophyll a: long-term trends in the central north Pacific Ocean. Science 238, 70–72 (1985).

    Article  Google Scholar 

  20. Hutchins, D. A., Mulholland, M. R. & Feixue, F. Nutrient cycles and marine microbes in a CO2-enriched ocean. Oceanography 22, 128–145 (2009).

    Article  Google Scholar 

  21. Karl, D. M. & Church, M. J. Microbial oceanography and the Hawaii Ocean Time-series programme. Nature Rev. Microbiol. 12, 1–15 (2014).

    Article  CAS  Google Scholar 

  22. Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Hendy, I. L. & Kennett, J. P. Dansgaard–Oeschger cycles and the California Current System: planktonic foraminiferal response to rapid climate change in Santa Barbara Basin, Ocean Drilling Program hole 893A. Paleoceanography 15, 30–42 (2000).

    Article  Google Scholar 

  24. Kennett, J. P. & Venz, K. Late Quaternary climatically related planktonic foraminiferal assemblage changes: Hole 893A, Santa Barbara Basin, California. Proc. ODP Sci. Rep. 146, 281–293 (1995).

    Google Scholar 

  25. Finkel, Z. V., Katz, M. E., Wright, J. D., Schofield, O. M. E. & Falkowski, P. G. Climatically driven macroevolutionary patterns in the size of marine diatoms over the Cenozoic. Proc. Natl Acad. Sci. USA 102, 8927–8932 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Finkel, Z. V. et al. A universal driver of macroevolutionary change in the size of marine phytoplankton over the Cenozoic. Proc. Natl Acad. Sci. USA 104, 20416–20420 (2007).

    Article  PubMed  Google Scholar 

  27. Michaels, A. F. et al. Seasonal patterns of ocean biogeochemistry at the U.S. JGOFS Bermuda Atlantic time-series study site. Deep Sea Res. Part I Oceanogr. Res. Pap. 41, 1013–1038 (1994).

    Article  CAS  Google Scholar 

  28. Morris, R. M. et al. Temporal and spatial response of bacterioplankton lineages to annual convective overturn at the Bermuda Atlantic Time-series Study site. Limnol. Oceanogr. 50, 1687–1696 (2005).

    Article  CAS  Google Scholar 

  29. Treusch, A. H. et al. Seasonality and vertical structure of microbial communities in an ocean gyre. ISME J. 3, 1148–1163 (2009).

    Article  PubMed  Google Scholar 

  30. Morris, R. M., Frazar, C. D. & Carlson, C. A. Basin-scale patterns in the abundance of SAR11 subclades, marine Actinobacteria (OM1), members of the Roseobacter clade and OCS116 in the South Atlantic. Environ. Microbiol. 14, 1133–1144 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Giovannoni, S. J. & Vergin, K. L. Seasonality in ocean microbial communities. Science 335, 671–676 (2012). This thoughtful review examines the dynamics of the predominant phylogentic groups of microorganisms at the major time-series sites of BATS, HOTS and SPOT.

    Article  CAS  PubMed  Google Scholar 

  32. Vergin, K. L. et al. High-resolution SAR11 ecotype dynamics at the Bermuda Atlantic Time-series Study site by phylogenetic placement of pyrosequences. ISME J. 7, 1322–1332 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vergin, K. L., Done, B., Carlson, C. & Giovannoni, S. J. Spatiotemporal distributions of rare bacterioplankton populations indicate adaptive strategies in the oligotrophic ocean. Aquat. Microb. Ecol. 71, 1–13 (2013). A detailed study showing how relatively rare bacterial taxa at BATS have distinctive dynamics, which probably reflects adaptations.

    Article  Google Scholar 

  34. Steinberg, D. K. et al. Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry. Deep Sea Res. Part II 48, 1405–1447 (2001).

    Article  CAS  Google Scholar 

  35. Sverdrup, H. U. On conditions for the vernal blooming of phytoplankton. J. Cons. Int. Explor. Mer. 18, 287–295 (1953).

    Article  Google Scholar 

  36. Ryther, J. H. & Menzel, D. W. Primary production in the southwest Sargasso Sea, January–February 1960. Bull. Mar. Sci. Gulf Caribb. 11, 381–388 (1961).

    Google Scholar 

  37. Menzel, D. W. & Ryther, J. H. Annual variations in primary production of the Sargasso Sea off Bermuda. Deep Sea Res. 7, 282–288 (1961).

    Article  Google Scholar 

  38. DuRand, M. D., Olson, R. J. & Chisholm, S. W. Phytoplankton population dynamics at the Bermuda Atlantic Time-series station in the Sargasso Sea. Deep Sea Res. Part II 48, 1983–2003 (2001).

    Article  Google Scholar 

  39. Parsons, R. J., Breitbart, M., Lomas, M. W. & Carlson, C. A. Ocean time-series reveals recurring seasonal patterns of virioplankton dynamics in the northwestern Sargasso Sea. ISME J. 6, 273–284 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Ewart, C. S., Meyers, M. K., Wallner, E. R., McGillicuddy, D. J. & Carlson, C. A. Microbial dynamics in cyclonic and anticyclonic mode-water eddies in the northwestern Sargasso Sea. Deep Sea Res. Part II 55, 1334–1347 (2008).

    Article  Google Scholar 

  41. Sweeney, E. N., McGillicuddy, D. J. & Buesseler, K. O. Biogeochemical impacts due to mesoscale eddy activity in the Sargasso Sea as measured at the Bermuda Atlantic Time-series Study (BATS). Deep Sea Res. Part II 50, 3017–3039 (2003).

    Article  CAS  Google Scholar 

  42. Nelson, C. E., Carlson, C. A., Ewart, C. S. & Halewood, E. R. Community differentiation and population enrichment of Sargasso Sea bacterioplankton in the euphotic zone of a mesoscale mode-water eddy. Environ. Microbiol. 16, 871–887 (2014).

    Article  PubMed  Google Scholar 

  43. Karl, D. M. & Lukas, R. The Hawaii Ocean Time-series (HOT) program: background, rationale and field implementation. Deep Sea Res. Part II 43, 129–156 (1996).

    Article  CAS  Google Scholar 

  44. Church, M. J., Lomas, M. W. & Muller-Karger, F. Sea change: charting the course for biogeochemical ocean time-series research in a new millennium. Deep Sea Res. Part II 93, 2–15 (2013).

    Article  CAS  Google Scholar 

  45. Eiler, A., Hayakawa, D. H. & Rappé, M. S. Non-random assembly of bacterioplankton communities in the subtropical north pacific ocean. Front. Microbiol. 43, 129–156 (2011).

    Google Scholar 

  46. Chow, C.-E. T. et al. Temporal variability and coherence of euphotic zone bacterial communities over a decade in the Southern California Bight. ISME J. 7, 2259–2273 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hickey, B. M. Circulation over the Santa Monica-San Pedro Basin and Shelf. Prog. Oceanogr. 30, 37–115 (1992).

    Article  Google Scholar 

  48. Fuhrman, J. A. et al. Annually reoccurring bacterial communities are predictable from ocean conditions. Proc. Natl Acad. Sci. USA 103, 13104–13109 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Fuhrman, J. A. & Steele, J. A. Community structure of marine bacterioplankton: patterns, networks, and relationships to function. Aquat. Microb. Ecol. 53, 69–81 (2008).

    Article  Google Scholar 

  50. Hatosy, S. M. et al. Beta diversity of marine bacteria depends on temporal scale. Ecology 94, 1898–1904 (2013). This meta-analysis uses data from SPOT and the western English Channel to examine the determinants, rate and scales of temporal variation of microbial communities at these sites.

    Article  PubMed  Google Scholar 

  51. Filée, J., Tetart, F., Suttle, C. A. & Krisch, H. M. Marine T4-type bacteriophages, a ubiquitous component of the dark matter of the biosphere. Proc. Natl Acad. Sci. USA 102, 12471–12476 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Chow, C.-E. T. & Fuhrman, J. A. Seasonality and monthly dynamics of marine myovirus communities. Environ. Microbiol. 14, 2171–2183 (2012).

    Article  PubMed  Google Scholar 

  53. Chow, C.-E. T., Kim, D. Y., Sachdeva, R., Caron, D. A. & Fuhrman, J. A. Top-down controls on bacterial community structure: microbial network analysis of bacteria, T4-like viruses and protists. ISME J. 8, 816–829 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Needham, D. M. et al. Short-term observations of marine bacterial and viral communities: patterns, connections and resilience. ISME J. 7, 1274–1285 (2013). Through daily sampling and molecular genetic analysis of surface waters near SPOT, this study reveals that most bacteria and viral taxa vary around a mean community composition over weeks to months, with many correlations among taxa, whereas modest changes occur on a daily scale.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Beman, J. M., Sachdeva, R. & Fuhrman, J. A. Population ecology of nitrifying archaea and bacteria in the Southern California Bight. Environ. Microbiol. 12, 1282–1292 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Cram, J. A. et al. Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. ISME J. http://dx.doi.org/10.1038/ismej.2014.153 (2014). This study examines five depths at SPOT and shows that, similar to the surface waters, the deepest waters exhibit seasonal changes.

  57. Hewson, I., Steele, J. A., Capone, D. G. & Fuhrman, J. A. Remarkable heterogeneity in meso- and bathypelagic bacterioplankton assemblage composition. Limnol. Oceanogr. 51, 1274–1283 (2006).

    Article  Google Scholar 

  58. Beman, J. M., Steele, J. A. & Fuhrman, J. A. Co-occurrence patterns for abundant marine archaeal and bacterial lineages in the deep chlorophyll maximum of coastal California. ISME J. 5, 1077–1085 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pingree, R. D. & Griffiths, D. K. Tidal fronts on the shelf seas around the British Isles. J. Geophys. Res. 83, 4615–4622 (1978).

    Article  Google Scholar 

  60. Southward, A. J. et al. Long-term oceanographic and ecological research in the Western English Channel. Adv. Mar. Biol. 47, 1–105 (2005).

    PubMed  Google Scholar 

  61. Gilbert, J. A. et al. Defining seasonal marine microbial community dynamics. ISME J. 6, 298–308 (2012). This 10-year study of the western English Channel shows the strongest seasonality of any of the long-term time series (>5 years), and shows that seasonal changes, not trophic interactions, can explain most of the variation that occurs.

    Article  CAS  PubMed  Google Scholar 

  62. Gilbert, J. A. et al. The seasonal structure of microbial communities in the Western English Channel. Environ. Microbiol. 11, 3132–3139 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Duarte, C. M., Agustí, S., Kennedy, H. & Vaqué, D. The Mediterranean climate as a template for Mediterranean marine ecosystems: the example of the northeast Spanish littoral. Prog. Oceanogr. 44, 245–270 (1999).

    Article  Google Scholar 

  64. D'Ortenzio, F. et al. Seasonal variability of the mixed layer depth in the Mediterranean Sea as derived from in situ profiles. Geophys. Res. Lett. 32, 1–4 (2005).

    Article  Google Scholar 

  65. Schauer, M., Balagué, V., Pedrós-Alió, C. & Massana, R. Seasonal changes in the taxonomic composition of bacterioplankton in a coastal oligotrophic system. Aquat. Microb. Ecol. 31, 163–174 (2003).

    Article  Google Scholar 

  66. Alonso-Sáez, L. et al. Seasonality in bacterial diversity in north-west Mediterranean coastal waters: assessment through clone libraries, fingerprinting and FISH. FEMS Microbiol. Ecol. 60, 98–112 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Galand, P. E., Gutiérrez-Provecho, C., Massana, R., Gasol, J. M. & Casamayor, E. O. Inter-annual recurrence of archaeal assemblages in the coastal NW Mediterranean Sea (Blanes Bay Microbial Observatory). Limnol. Oceanogr. 55, 2117–2125 (2010).

    Article  Google Scholar 

  68. Hugoni, M. et al. Structure of the rare archaeal biosphere and seasonal dynamics of active ecotypes in surface coastal waters. Proc. Natl Acad. Sci. USA 110, 6004–6009 (2013). One of the few studies that examines the dynamics of marine archaeal communities, using both genomics and tanscriptomics.

    Article  CAS  PubMed  Google Scholar 

  69. Avrani, S., Wurtzel, O., Sharon, I., Sorek, R. & Lindell, D. Genomic island variability facilitates Prochlorococcus–virus coexistence. Nature 474, 604–608 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Marston, M. F. et al. Rapid diversification of coevolving marine Synechococcus and a virus. Proc. Natl Acad. Sci. USA 109, 4544–4549 (2012).

    Article  PubMed  Google Scholar 

  71. Sullivan, M. B., Waterbury, J. B. & Chisholm, S. W. Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature 424, 1047–1052 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Morris, J. J., Lenski, R. E. & Zinser, E. R. The Black Queen Hypothesis: evolution of dependencies through adaptive gene loss. mBio 3, e00036-12 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Morris, J. J., Johnson, Z. I., Szul, M. J., Keller, M. & Zinser, E. R. Dependence of the cyanobacterium Prochlorococcus on hydrogen peroxide scavenging microbes for growth at the ocean's surface. PLoS ONE 6, e16805 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Morris, J. J., Papoulis, S. E. & Lenski, R. E. Coexistence of evolving bacteria stabilized by a shared black queen function. Evolution 68, 2960–2971 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bartram, A. K., Lynch, M. D. J., Stearns, J. C., Moreno-Hagelsieb, G. & Neufeld, J. D. Generation of multimillion-sequence 16S rRNA gene libraries from complex microbial communities by assembling paired-end illumina reads. Appl. Environ. Microbiol. 77, 3846–3852 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fuhrman, J. A. Microbial community structure and its functional implications. Nature 459, 193–199 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Morris, B. E. L., Henneberger, R., Huber, H. & Moissl-Eichinger, C. Microbial syntrophy: interaction for the common good. FEMS Microbiol. Rev. 37, 384–406 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Petanidou, T., Kallimanis, A. S., Tzanopoulos, J., Sgardelis, S. P. & Pantis, J. D. Long-term observation of a pollination network: fluctuation in species and interactions, relative invariance of network structure and implications for estimates of specialization. Ecol. Lett. 11, 564–575 (2008).

    Article  PubMed  Google Scholar 

  80. Kara, E. L., Hanson, P. C., Hu, Y. H., Winslow, L. & McMahon, K. D. A decade of seasonal dynamics and co-occurrences within freshwater bacterioplankton communities from eutrophic Lake Mendota, Wisconsin, USA. ISME J. 7, 680–684 (2013).

    Article  PubMed  Google Scholar 

  81. Barberán, A., Bates, S. T., Casamayor, E. O. & Fierer, N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 6, 343–351 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. De Menezes, A. B. et al. Network analysis reveals that bacteria and fungi form modules that correlate independently with soil parameters. Environ. Microbiol. http://dx.doi.org/10.1111/1462-2920.12559 (2014).

  83. Lupatini, M. et al. Network topology reveals high connectance levels and few key microbial genera within soils. Front. Environ. Sci. 2, 10 (2014).

    Article  Google Scholar 

  84. Ruan, Q. et al. Local similarity analysis reveals unique associations among marine bacterioplankton species and environmental factors. Bioinformatics 22, 2532–2538 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Xia, L. C. et al. Extended local similarity analysis (eLSA) of microbial community and other time series data with replicates. BMC Syst. Biol. 5 (Suppl. 2), S15 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Xia, L. C., Ai, D., Cram, J. A., Fuhrman, J. A. & Sun, F. Efficient statistical significance approximation for local similarity analysis of high-throughput time series data. Bioinformatics 29, 230–237 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Durno, W. E., Hanson, N. W., Konwar, K. M. & Hallam, S. J. Expanding the boundaries of local similarity analysis. BMC Genomics 14 (Suppl. 1), S3 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Faust, K. & Raes, J. Microbial interactions: from networks to models. Nature Rev. Microbiol. 10, 538–550 (2012).

    Article  CAS  Google Scholar 

  89. Cram, J. A., Sun, F. & Fuhrman, J. A. Marine bacterial, archaeal, and protistan association networks Encyclopedia of Metagenomics http://dx.doi.org/10.1007/978-1-4614-6418-1_721-3 (2014).

    Google Scholar 

  90. Steele, J. A. et al. Marine bacterial, archaeal and protistan association networks reveal ecological linkages. ISME J. 5, 1414–1425 (2011). The first example of a three-domain microbial association network study, which shows multiple associations (presumably including trophic interactions) and network properties both within and between the domain members.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Grant, P. R. Ecology and Evolution of Darwin's Finches (Princeton Univ. Press, 1986).

    Google Scholar 

  92. Johnson, Z. I. et al. Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311, 1737–1740 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Kashtan, N. et al. Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science 344, 416–420 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Yoon, H. S. et al. Single-cell genomics reveals organismal interactions in uncultivated marine protists. Science 332, 714–717 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Deng, L. et al. Viral tagging reveals discrete populations in Synechococcus viral genome sequence space. Nature 513, 242–245 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Scholin, C. A. What are “ecogenomic sensors”? A review and thoughts for the future. Ocean Sci. 6, 51–60 (2010).

    Article  CAS  Google Scholar 

  97. Ottesen, E. A. et al. Multispecies diel transcriptional oscillations in open ocean heterotrophic bacterial assemblages. Science 345, 207–212 (2014).

    Article  CAS  PubMed  Google Scholar 

  98. Ottesen, E. A. et al. Pattern and synchrony of gene expression among sympatric marine microbial populations. Proc. Natl Acad. Sci. USA 110, E488–E497 (2013).

    Article  PubMed  Google Scholar 

  99. Robidart, J. C. et al. Seasonal Synechococcus and Thaumarchaeal population dynamics examined with high resolution with remote in situ instrumentation. ISME J. 6, 513–523 (2012). This field study used an autonomous in situ sample collection and processing instrument to show the detailed dynamics of important cyanobacterial and archaeal lineages in Monterey Bay.

    Article  CAS  PubMed  Google Scholar 

  100. Vardi, A. et al. Viral glycosphingolipids induce lytic infection and cell death in marine phytoplankton. Science 326, 861–865 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Webb, E. A., Moffett, J. W. & Waterbury, J. B. Iron stress in open-ocean cyanobacteria (Synechococcus, Trichodesmium, and Crocosphaera) identification of the IdiA protein. Appl. Environ. Microbiol. 67, 5444–5452 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Martínez Martínez, J., Poulton, N. J., Stepanauskas, R., Sieracki, M. E. & Wilson, W. H. Targeted sorting of single virus-infected cells of the coccolithophore Emiliania huxleyi. PLoS ONE 6, e22520 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Albertsen, M. et al. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nature Biotech. 31, 533–538 (2013).

    Article  CAS  Google Scholar 

  104. Howe, A. C. et al. Tackling soil diversity with the assembly of large, complex metagenomes. Proc. Natl Acad. Sci. USA 111, 4904–4909 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. Hewson, I., Steele, J. A., Capone, D. G. & Fuhrman, J. A. Temporal and spatial scales of variation in bacterioplankton assemblages of oligotrophic surface waters. Mar. Ecol. Prog. Ser. 311, 67–77 (2006).

    Article  Google Scholar 

  106. Lie, A. A. Y., Kim, D. Y., Schnetzer, A. & Caron, D. A. Small-scale temporal and spatial variations in protistan community composition at the San Pedro Ocean Time-series station off the coast of southern California. Aquat. Microb. Ecol. 70, 93–110 (2013).

    Article  Google Scholar 

  107. Ramette, A. Multivariate analyses in microbial ecology. FEMS Microbiol. Ecol. 62, 142–160 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Sapp, M., Wichels, A., Wiltshire, K. H. & Gerdts, G. Bacterial community dynamics during the winter-spring transition in the North Sea. FEMS Microbiol. Ecol. 59, 622–637 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Storey, J. D. & Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl Acad. Sci. USA 100, 9440–9445 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Fraser, C., Alm, E. J., Polz, M. F., Spratt, B. G. & Hanage, W. P. The bacterial species challenge: making sense of genetic and ecological diversity. Science 323, 741–746 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Cohan, F. M. & Perry, E. B. A systematics for discovering the fundamental units of bacterial diversity. Curr. Biol. 17, R373–R386 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Shapiro, B. J. & Polz, M. F. Ordering microbial diversity into ecologically and genetically cohesive units. Trends Microbiol. 22, 235–247 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Achtman, M. & Wagner, M. Microbial diversity and the genetic nature of microbial species. Nature Rev. Microbiol. 6, 431–440 (2008).

    Article  CAS  Google Scholar 

  114. Doolittle, W. F. Population genomics: how bacterial species form and why they don't exist. Curr. Biol. 22, R451–R453 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Staley, J. T. The bacterial species dilemma and the genomic–phylogenetic species concept. Philos. Trans. R. Soc. B 361, 1899–1909 (2006).

    Article  Google Scholar 

  116. Hunt, D. E. et al. Resource partitioning and sympatric differentiation among closely related bacterioplankton. Science 320, 1081–1085 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Eren, A. M. et al. Oligotyping: differentiating between closely related microbial taxa using 16S rRNA gene data. Methods Ecol. Evol. 4, 1111–1119 (2013).

    Article  PubMed Central  Google Scholar 

  118. Tikhonov, M., Leach, R. W. & Wingreen, N. S. Interpreting 16S metagenomic data without clustering to achieve sub-OTU resolution. ISME J. 9, 68–80 (2015).

    Article  CAS  PubMed  Google Scholar 

  119. Schwalbach, M. S., Tripp, H. J., Steindler, L., Smith, D. P. & Giovannoni, S. J. The presence of the glycolysis operon in SAR11 genomes is positively correlated with ocean productivity. Environ. Microbiol. 12, 490–500 (2010).

    Article  CAS  PubMed  Google Scholar 

  120. Wilhelm, L. J., Tripp, H. J., Givan, S. A., Smith, D. P. & Giovannoni, S. J. Natural variation in SAR11 marine bacterioplankton genomes inferred from metagenomic data. Biol. Direct 2, 27 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Olson, R. J., Vaulot, D. & Chisolm, S. W. Marine phytoplankton distributions measured using shipboard flow cytometry. Deep Sea Res. 32, 1273–1280 (1985).

    Article  Google Scholar 

  122. Chisolm, S. W. et al. A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature 334, 340–343 (1988).

    Article  Google Scholar 

  123. Paerl, R. W., Turk, K. A., Beinart, R. A., Chavez, F. P. & Zehr, J. P. Seasonal change in the abundance of Synechococcus and multiple distinct phylotypes in Monterey Bay determined by rbcL and narB quantitative PCR. Environ. Microbiol. 14, 580–593 (2012).

    Article  CAS  PubMed  Google Scholar 

  124. Ahlgren, N. A. & Rocap, G. Diversity and distribution of marine Synechococcus: multiple gene phylogenies for consensus classification and development of qPCR assays for sensitive measurement of clades in the ocean. Front. Microbiol. 3, 213 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Tai, V. & Palenik, B. Temporal variation of Synechococcus clades at a coastal Pacific Ocean monitoring site. ISME J. 3, 903–915 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Follows, M. J. & Dutkiewicz, S. Modeling diverse communities of marine microbes. Ann. Rev. Mar. Sci. 3, 427–451 (2011).

    Article  PubMed  Google Scholar 

  127. Partensky, F., Blanchot, J. & Vaulot, D. in Marine Cyanobacteria Vol. 19 (eds Charpy, L. & Larkum, A. W. D.) 457–475 (Institut Océanographique, 1999).

    Google Scholar 

  128. Labiosa, R. G., Arrigo, K. R., Genin, A., Monismith, S. G. & van Dijken, G. The interplay between upwelling and deep convective mixing in determining the seasonal phytoplankton dynamics in the Gulf of Aqaba: evidence from SeaWiFS and MODIS. Limnol. Oceanogr. 48, 2355–2368 (2003).

    Article  Google Scholar 

  129. Lindell, D. & Post, A. F. Ultraphytoplankton succession is triggered by deep winter mixing in the Gulf of Aqaba (Eilat), Red Sea. Limnol. Oceanogr. 40, 1130–1141 (1995).

    Article  Google Scholar 

  130. Al-Najjar, T., Badran, M. I., Richter, C., Meyerhoefer, M. & Sommer, U. Seasonal dynamics of phytoplankton in the Gulf of Aqaba, Red Sea. Hydrobiologia 579, 69–83 (2006).

    Article  Google Scholar 

  131. Malmstrom, R. R. et al. Temporal dynamics of Prochlorococcus ecotypes in the Atlantic and Pacific oceans. ISME J. 4, 1252–1264 (2010). A detailed study of the dynamics of the most abundant clade of marine phytoplankton, which is found in both major ocean basins.

    Article  PubMed  Google Scholar 

  132. Waterbury, J. B. & Valois, F. W. Resistance to co-occurring phages enables marine Synechococcus communities to coexist with cyanophages abundant in seawater. Appl. Environ. Microbiol. 59, 3393–3399 (1993). A classic study of multiple Synechococcus isolates and their phages, which shows that the dominant phage at any given time does not generally infect the Synechococcus strain that is dominant at that time.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Wang, K., Wommack, K. E. & Chen, F. Abundance and distribution of Synechococcus spp. and cyanophages in the Chesapeake Bay. Appl. Environ. Microbiol. 77, 7459–7468 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Chen, F. et al. Diverse and dynamic populations of cyanobacterial podoviruses in the Chesapeake Bay unveiled through DNA polymerase gene sequences. Environ. Microbiol. 11, 2884–2892 (2009).

    Article  PubMed  Google Scholar 

  135. Marston, M. F. & Sallee, J. L. Genetic diversity and temporal variation in the cyanophage community infecting marine Synechococcus species in Rhode Island's coastal waters. Appl. Environ. Microbiol. 69, 4639–4647 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Clasen, J. L. et al. Diversity and temporal dynamics of Southern California coastal marine cyanophage isolates. Aquat. Microb. Ecol. 69, 17–31 (2013).

    Article  Google Scholar 

  137. Post, A. F. et al. Long term seasonal dynamics of Synechococcus population structure in the Gulf of Aqaba, Northern Red Sea. Front. Microbiol. 2, 131 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Mühling, M. et al. Genetic diversity of marine Synechococcus and co-occurring cyanophage communities: evidence for viral control of phytoplankton. Environ. Microbiol. 7, 499–508 (2005).

    Article  PubMed  Google Scholar 

  139. Dekel-Bird, N. P., Sabehi, G., Mosevitzky, B. & Lindell, D. Host-dependent differences in abundance, composition and host range of cyanophages from the Red Sea. Environ. Microbiol. http://dx.doi.org/10.1111/1462-2920.12569 (2014).

  140. Deng, L. et al. Contrasting life strategies of viruses that infect photo- and heterotrophic bacteria, as revealed by viral tagging. mBio 3, e00373-12 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank present and past members of the Fuhrman Lab, especially C. Chow, and three anonymous reviewers. This work was supported by the NSF grants 1031743 and 1136818, and the Gordon and Betty Moore Foundation through Grant GBMF3779 to J.A.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jed A. Fuhrman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Phototrophic

Organisms that can transform light energy into biologically usable (chemical) forms. A photoautotroph obtains its biomass carbon from fully oxidized carbon (that is, carbon dioxide) and a photoheterotroph obtains its biomass carbon from reduced carbon (for example, organic matter).

Chemotrophic

Organisms that can obtain energy from chemical reactions. A chemoautotroph obtains its biomass carbon from carbon dioxide, and a chemoheterotroph obtains its biomass from reduced carbon.

Heterotrophic

Organisms that obtain their biomass from reduced carbon.

Microbial loop

The microbial components of the food web — such as bacteria, archaea, protists and viruses — which together process the recycling and return of dissolved organic matter back into the 'classical' food web (the food web that is more traditionally related to the transfer of particulate organic matter, including organisms).

Fronts

Boundaries in the sea between different water masses, across which environmental conditions (for example, temperature and nutrient concentrations) change abruptly, similar to weather fronts on land where there are abrupt changes in temperature and humidity.

Copiotrophic

Organisms that generally rely on relatively high concentrations of nutrients and have rapid maximum growth rates.

Grazing

In the context of plankton, grazing refers to the removal of organisms by a predatory or herbivorous organism.

Upwelling

The physical upward vertical transport of water from deeper to shallower depths (often caused by seasonal offshore winds near a coast). In the context of this Review, it refers to water and its accompanying nutrients entering the euphotic zone from below.

Allochthonous material

Material that is derived from an external source, as opposed to autochthonous material that is generated internally.

Eddies

Swirls of water motion caused by flow around objects or by instabilities inherent in the motion of density-stratified water on a rotating Earth. Ocean mesoscale eddies are typically 10–500 km in diameter.

Autoregression

Refers to the phenomenon in which samples that are collected closer to each other (in space or time) tend to be more similar to each other than those further separated.

Phytoplankton

(Also known as photosynthetic plankton). Single-cell photosynthetic organisms that form the basis of the marine food web, including cyanobacteria and many kinds of protists (such as diatoms, dinoflagellates, coccolithophores and others).

Allelopathic

An organism is termed allelopathic if it produces biochemicals that influence the growth, behaviour and reproduction of other organisms, with negative allelopathy adversely affecting the target organisms. The chemicals are generally not required for metabolism and include compounds such as antibiotics or repellants.

Stratification

The layering of water by density, which is caused by variations in temperature and salinity. As vertical mixing eliminates stratification, the existence of stratified water indicates that there is no significant vertical mixing over the stratified depth range.

El Niño Southern Oscillation

(ENSO). The effect of long-term variations in sea surface temperatures, primarily in the eastern Pacific Ocean, with anomalies lasting several months. Although the underlying causes are not fully known, it is correlated with pressure variations along the entire Pacific Basin and it affects upwelling, productivity and global weather patterns.

Pacific Decadal Oscillation

A long-term (20–30-year) oscillation of temperatures in the Pacific Ocean north of 20 degrees.

Euphotic zone

The upper layer of an aquatic water column that has sufficient light to support net photosynthesis.

Anticyclonic

A type of motion. In oceanography, it refers to the circulation of water around a region of high pressure. In the Northern Hemisphere, water rotates clockwise when viewed from above.

Mesopelagic

The middle of the ocean water column, below the euphotic zone and above the sea floor and the 'abyssal zone', which is usually defined as the water below average depth of the world ocean (approximately 4,000 m).

Estuarine outflow

Water passing from a river (low salinity) to the sea (normal ocean salinity).

Ephemeral niches

Sites at which specific environmental conditions exist for only a relatively short period of time.

Ecological niches

(Here we use the version of the concept popularized by G. E. Hutchinson). The multidimensional properties of the lifestyle of an organism or population, including the resources it uses, preferred temperatures, pressures, light levels and spectra, salinities, pH, redox state; its competitors, predators, prey, parasites, pathogens, symbionts; its alteration of its own habitat, and any other environmental factors that influence its growth and survival. The concept of an ecological species refers to a species that occupies a particular multidimensional niche that is distinct from others.

Bray–Curtis similarity

A pairwise comparison of two communities, whereby each community composition has been described by the proportions of comprising taxa, and the similarity is calculated as the total of all the shared proportions of all the taxa in both communities. It ranges from 0, when no taxa are shared, to 1, when all taxa are present in the same proportions in both communities.

Automated ribosomal intergenic spacer analysis

(ARISA). A microbial community fingerprinting approach, in which the highly variable intergenic spacer between the 16S and 18S rRNA is amplified by PCR, and the products, which vary from taxon to taxon, are separated and sized by a genetic fragment analyser.

Fingerprinting

A range of molecular genetic approaches that quickly profile the diversity of microbial communities in a sample. Instead of directly identifying individuals by their actual gene sequences, fingerprinting is based on the length of genes or sequence properties (such as the location of a restriction site), and it shows how many variants of a gene are present and in what proportions.

Tag sequencing

A high-throughput method for determining the microbial community composition in a sample via PCR and sequencing of a portion of the rRNA genes (sometimes other genes).

Lotka–Volterra

The most well-known mathematical model of predator–prey interactions, in which predator and prey usually oscillate with a time offset between them.

Ecotypes

Genetically distinct organisms that are adapted to specific environmental conditions. The term is often used in microbiology to avoid the difficulties of formally defining species.

Reverse ecology population genomics

An approach that uses genomic information from metagenomes or isolates to assess gene flow and the nature of populations and ecological units (for example, 'species').

Ecogenomic sensors

Devices that are typically used by autonomous in situ sampling systems to detect genome characteristics to facilitate the identification of organisms or other factors (such as nutrients, temperature and others).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuhrman, J., Cram, J. & Needham, D. Marine microbial community dynamics and their ecological interpretation. Nat Rev Microbiol 13, 133–146 (2015). https://doi.org/10.1038/nrmicro3417

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3417

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology