Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development

Key Points

  • Artemisinin is an antimalarial drug precursor that is produced by the plant Artemisia annua. The supply and price of artemisinin have fluctuated substantially throughout the past decade, owing to inconsistencies in harvest.

  • Artemisinin-based combination therapies (ACTs) are recommended by the WHO as the first-line treatment for uncomplicated malaria. The Semi-synthetic Artemisinin Project aimed to stabilize the supply and price of artemisinin for the development of artemisinin derivatives for use as part of ACTs.

  • Both Escherichia coli and Saccharomyces cerevisiae were engineered using the tools of synthetic biology to produce 25 g per L and 40 g per L, respectively, of the artemisinin hydrocarbon precursor amorphadiene by fermentation.

  • Owing to problems using E. coli, S. cerevisiae was used as the chassis for the industrial-scale production of 25 g per L artemisinic acid by fermentation, which was followed by a chemical conversion process to synthesize artemisinin.

  • Semi-synthetic artemisinin is now produced at industrial scale and has been approved by the WHO for the preparation of approved pharmaceutical compounds for incorporation into ACTs.

  • Lessons learned from the Semi-synthetic Artemisinin Project that are relevant to the development of other pharmaceutical products using metabolic engineering and synthetic biology are summarized.

Abstract

Recent developments in synthetic biology, combined with continued progress in systems biology and metabolic engineering, have enabled the engineering of microorganisms to produce heterologous molecules in a manner that was previously unfeasible. The successful synthesis and recent entry of semi-synthetic artemisinin into commercial production is the first demonstration of the potential of synthetic biology for the development and production of pharmaceutical agents. In this Review, we describe the metabolic engineering and synthetic biology approaches that were used to develop this important antimalarial drug precursor. This not only demonstrates the incredible potential of the available technologies but also illuminates how lessons learned from this work could be applied to the production of other pharmaceutical agents.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Artemisinin biosynthesis pathway in the plant Artemisia annua.
Figure 2: The main stages involved in the synthesis of semi-synthetic artemisinin.
Figure 3: Engineering approaches required for pathway construction and semi-synthetic artemisinin production.
Figure 4: Molecules amenable to synthetic production using similar principles to those described for semi-synthetic artemisinin.

Similar content being viewed by others

References

  1. Rainsford, K. D. Aspirin and Related Drugs (CRC Press, 2004).

    Google Scholar 

  2. Garavito, R. M. Working Knowledge: aspirin. Sci. Am. 280, 108 (1999).

    Google Scholar 

  3. Gerhardt, C. Untersuchungen über die wasserfreien organischen Säuren. Justus Liebigs Annalen Chemie 87, 57–84 (in German) (1853).

    Google Scholar 

  4. White, N. J. Qinghaosu (artemisinin): the price of success. Science 320, 330–334 (2008). A review of the history and properties of artemisinin.

    CAS  PubMed  Google Scholar 

  5. Li, Y. & Wu, Y. L. How Chinese scientists discovered qinghaosu (artemisinin) and developed its derivatives? What are the future perspectives? Med. Trop. 58, 9–12 (1998).

    CAS  Google Scholar 

  6. World Health Organisation. Guidelines for the treatment of malaria. 2nd edn (WHO, 2010).

  7. World Health Organisation. WHO informal consultation with manufacturers of artemisinin-based pharmaceutical products in use for the treatment of malaria (WHO, 2007).

  8. Hale, V., Keasling, J. D., Renninger, N. & Diagana, T. T. Microbially derived artemisinin: a biotechnology solution to the global problem of access to affordable antimalarial drugs. Am. J. Trop. Med. Hyg. 77, 198–202 (2007).

    PubMed  Google Scholar 

  9. World Health Organisation. World Malaria Report 2012 (WHO, 2012).

  10. Hsu, E. Reflections on the 'discovery' of the antimalarial qinghao. Br. J. Clin. Pharmacol. 61, 666–670 (2006).

    PubMed  PubMed Central  Google Scholar 

  11. Qinghaosu Antimalarial Coordinating Research Group. Antimalaria Studies on Qinghaosu. Chin. Med. J. 12, 811–816 (1979).

  12. Klayman, D. L. Qinghaosu (artemisinin): an antimalarial drug from China. Science 228, 1049–1055 (1985).

    CAS  PubMed  Google Scholar 

  13. Dalrymple, D. Artemisia Annua, artemisinin, ACTs & malaria control in Africa. Tradition, science and public policy [online], (2012).

    Google Scholar 

  14. Cui, L. & Su, X. Z. Discovery, mechanisms of action and combination therapy of artemisinin. Expert Rev. Anti-Infective Ther. 7, 999–1013 (2009).

    CAS  Google Scholar 

  15. Barnes, K. I., Chanda, P. & Ab Barnabas, G. Impact of the large-scale deployment of artemether/lumefantrine on the malaria disease burden in Africa: case studies of South Africa, Zambia and Ethiopia. Malar J. 8, S8 (2009).

    PubMed  PubMed Central  Google Scholar 

  16. Cheeseman, I. H. et al. A major genome region underlying artemisinin resistance in Malaria. Science 336, 79–82 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Dondorp, A. M. et al. Artemisinin resistance: current status and scenarios for containment. Nature Rev. Microbiol. 8, 272–280 (2010).

    CAS  Google Scholar 

  18. Fairhurst, R. M. et al. Artemisinin-resistant Malaria: research challenges, opportunities, and public health implications. Am. J. Trop. Med. Hyg. 87, 231–241 (2012).

    PubMed  PubMed Central  Google Scholar 

  19. Takala-Harrison, S. et al. Genetic loci associated with delayed clearance of Plasmodium falciparum following artemisinin treatment in Southeast Asia. Proc. Natl Acad. Sci. 110, 240–245 (2013).

    CAS  PubMed  Google Scholar 

  20. Miotto, O. et al. Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia. Nature Genet. 45, 648–655 (2013).

    CAS  PubMed  Google Scholar 

  21. Ariey, F. et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 505, 50–55 (2014). This paper reports the identification of a molecular marker for artemisinin-resistant malaria, which will be important for the tracking and elimination of artemisinin-resistant parasites.

    PubMed  Google Scholar 

  22. Shretta, R. & Yadav, P. Stabilizing supply of artemisinin and artemisinin-based combination therapy in an era of wide-spread scale-up. Malar J. 11, 399 (2012).

    PubMed  PubMed Central  Google Scholar 

  23. Dahlberg Global Development Advisors. Independent Mid-Term review of the assured Artemisinin Supply System (A2S2) Project. Geneva: UNITAID [online], (2012).

  24. Assured Artemisinin Supply System. Artemisinin imports into India [online], (updated 13 January 2014).

  25. WHO Health Financing. Per capita total expenditure on health at average exchange rate (US $) [online], (2011).

  26. The World Bank. Health expenditure per capita (current US$). [online] (2013).

  27. Bertea, C. M. et al. Identification of intermediates and enzymes involved in the early steps of artemisinin biosynthesis in Artemisia annua. Planta Med. 71, 40–47 (2005).

    CAS  PubMed  Google Scholar 

  28. Brown, G. D. The biosynthesis of artemisinin (Qinghaosu) and the phytochemistry of Artemisia annua L. (Qinghao). Molecules 15, 7603–7698 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bouwmeester, H. J. et al. Amorpha-4,11-diene synthase catalyses the first probable step in artemisinin biosynthesis. Phytochemistry 52, 843–854 (1999).

    CAS  PubMed  Google Scholar 

  30. Covello, P. S., Teoh, K. H., Polichuk, D. R., Reed, D. W. & Nowak, G. Functional genomics and the biosynthesis of artemisinin. Phytochemistry 68, 1864–1871 (2007).

    CAS  PubMed  Google Scholar 

  31. Paddon, C. et al. In Isoprenoid Synthesis in Plants and Microorganisms (eds Bach, T. J. & Rohmer, M.) 91–106 (Springer, 2013).

    Google Scholar 

  32. Zhang, Y. et al. The molecular cloning of artemisinic aldehyde Δ11(13) reductase and its role in glandular trichome-dependent biosynthesis of artemisinin in Artemisia annua. J. Biol. Chem. 283, 21501–21508 (2008).

    CAS  PubMed  Google Scholar 

  33. Zhao, L., Chang, W. C., Xiao, Y., Liu, H. W. & Liu, P. Methylerythritol phosphate pathway of isoprenoid biosynthesis. Annu. Rev. Biochem. 82, 497–530 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Reiling, K. K. et al. Mono and diterpene production in Escherichia coli. Biotechnol. Bioeng. 87, 200–212 (2004).

    CAS  PubMed  Google Scholar 

  35. Martin, V. J., Pitera, D. J., Withers, S. T., Newman, J. D. & Keasling, J. D. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nature Biotech. 21, 796–802 (2003). This paper provides a description of the initial amorphadiene production pathway in E. coli.

    CAS  Google Scholar 

  36. Martin, V. J., Yoshikuni, Y. & Keasling, J. D. The in vivo synthesis of plant sesquiterpenes by Escherichia coli. Biotechnol. Bioeng. 75, 497–503 (2001).

    CAS  PubMed  Google Scholar 

  37. Newman, J. D. et al. High-level production of amorpha-4,11-diene in a two-phase partitioning bioreactor of metabolically engineered Escherichia coli. Biotechnol. Bioeng. 95, 684–691 (2006).

    CAS  PubMed  Google Scholar 

  38. Pitera, D. J., Paddon, C. J., Newman, J. D. & Keasling, J. D. Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metab. Eng. 9, 193–207 (2007).

    CAS  PubMed  Google Scholar 

  39. Pfleger, B. F., Pitera, D. J., Smolke, C. D. & Keasling, J. D. Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nature Biotech. 24, 1027–1032 (2006).

    CAS  Google Scholar 

  40. Pfleger, B. F., Pitera, D. J., Newman, J. D., Martin, V. J. & Keasling, J. D. Microbial sensors for small molecules: development of a mevalonate biosensor. Metab. Eng. 9, 30–38 (2007).

    CAS  PubMed  Google Scholar 

  41. Kizer, L., Pitera, D. J., Pfleger, B. F. & Keasling, J. D. Application of functional genomics to pathway optimization for increased isoprenoid production. Appl. Environ. Microbiol. 74, 3229–3241 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Tabata, K. & Hashimoto, S. Production of mevalonate by a metabolically-engineered Escherichia coli. Biotechnol. Lett. 26, 1487–1491 (2004).

    CAS  PubMed  Google Scholar 

  43. Hedl, M., Tabernero, L., Stauffacher, C. V. & Rodwell, V. W. Class II 3-hydroxy-3-methylglutaryl coenzyme A reductases. J. Bacteriol. 186, 1927–1932 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Tsuruta, H. et al. High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli. PLoS ONE 4, e4489 (2009). This study reports strain engineering and fermentation development, which culminated in the production of 25 g per L amorphadiene in E. coli.

    PubMed  PubMed Central  Google Scholar 

  45. Roth, R. J. & Acton, N. A simple conversion of artemisinic acid into artemisinin. J. Nature Prod. 52, 1183–1185 (1989).

    CAS  Google Scholar 

  46. Roth, R. J. & Roth, N. A. Simple conversion of artemisinic acid into artemisinin. US Patent 4992561 (1991).

    Google Scholar 

  47. Ro, D. K. et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440, 940–943 (2006). This paper describes the isolation of CYP71AV1 — the cytochrome P450 enzyme that oxidizes amorphadiene — and provides the first demonstration of artemisinic acid production in S. cerevisiae.

    CAS  PubMed  Google Scholar 

  48. Chang, M. C., Eachus, R. A., Trieu, W., Ro, D. K. & Keasling, J. D. Engineering Escherichia coli for production of functionalized terpenoids using plant P450s. Nature Chem. Biol. 3, 274–277 (2007).

    CAS  Google Scholar 

  49. Lenihan, J. R., Tsuruta, H., Diola, D., Renninger, N. S. & Regentin, R. Developing an industrial artemisinic acid fermentation process to support the cost-effective production of antimalarial artemisinin-based combination therapies. Biotechnol. Prog. 24, 1026–1032 (2008).

    CAS  PubMed  Google Scholar 

  50. Mortimer, R. K. & Johnston, J. R. Genealogy of principal strains of the yeast genetic stock center. Genetics 113, 35–43 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Goffeau, A. et al. Life with 6000 genes. Science 274, 563–567 (1996).

    Google Scholar 

  52. Ben-Ari, G. et al. Four linked genes participate in controlling sporulation efficiency in budding yeast. PLoS Genet. 2, e195 (2006).

    PubMed  PubMed Central  Google Scholar 

  53. van Dijken, J. P. et al. An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. Enzyme Microb. Technol. 26, 706–714 (2000).

    CAS  PubMed  Google Scholar 

  54. Westfall, P. J. et al. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc. Natl Acad. Sci. USA 109, E111–E118 (2012). This paper describes strain engineering and fermentation development, which enabled the production of 40 g per L amorphadiene in S. cerevisiae , followed by the chemical conversion of amorphadiene to dihydroartemisinic acid.

    CAS  PubMed  Google Scholar 

  55. Paddon, C. J. et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496, 528–532 (2013). This paper describes strain engineering and fermentation development — which enabled the production of 25 g per L artemisinic acid in S. cerevisiae — and an efficient, non-photochemical conversion to artemisinin.

    CAS  PubMed  Google Scholar 

  56. Ro, D. K. et al. Induction of multiple pleiotropic drug resistance genes in yeast engineered to produce an increased level of anti-malarial drug precursor, artemisinic acid. BMC Biotechnol. 8, 83 (2008).

    PubMed  PubMed Central  Google Scholar 

  57. Zangar, R. C., Davydov, D. R. & Verma, S. Mechanisms that regulate production of reactive oxygen species by cytochrome P450. Toxicol. Appl. Pharmacol. 199, 316–331 (2004).

    CAS  PubMed  Google Scholar 

  58. Peterson, J. A., Ebel, R. E., O'Keeffe, D. H., Matsubara, T. & Estabrook, R. W. Temperature dependence of cytochrome P-450 reduction. A model for NADPH-cytochrome P-450 reductase:cytochrome P-450 interaction. J. Biol. Chem. 251, 4010–4016 (1976).

    CAS  PubMed  Google Scholar 

  59. Schenkman, J. B. & Jansson, I. The many roles of cytochrome b5 . Pharmacol. Ther. 97, 139–152 (2003).

    CAS  PubMed  Google Scholar 

  60. Zhang, H., Im, S. C. & Waskell, L. Cytochrome b5 increases the rate of product formation by cytochrome P450 2B4 and competes with cytochrome P450 reductase for a binding site on cytochrome P450 2B4. J. Biol. Chem. 282, 29766–29776 (2007).

    CAS  PubMed  Google Scholar 

  61. Teoh, K. H., Polichuk, D. R., Reed, D. W. & Covello, P. S. Molecular cloning of an aldehyde dehydrogenase implicated in artemisinin biosynthesis in Artemisia annua. Botany 87, 635–642 (2009). This study reports the identification of the A. annua aldehyde dehydrogenase, which is required for high-level production of artemisinic acid in S. cerevisiae.

    CAS  Google Scholar 

  62. Sanofi. Prix Potier 2012 (in French) [online], (2012).

  63. WHO Prequalificaion of Medicines Programme. Acceptance of non-plant-derived-artemisinin offers potential to increase access to malaria treatment [online], (2013).

  64. Ajikumar, P. K. et al. Isoprenoid pathway optimization for taxol precursor overproduction in E. coli. Science 330, 70–74 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Engels, B., Dahm, P. & Jennewein, S. Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production. Metab. Eng. 10, 201–206 (2008).

    CAS  PubMed  Google Scholar 

  66. Hawkins, K. M. & Smolke, C. D. Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae. Nature Chem. Biol. 4, 564–573 (2008).

    CAS  Google Scholar 

  67. Minami, H. et al. Microbial production of plant benzylisoquinoline alkaloids. Proc. Natl Acad. Sci. USA 105, 7393–7398 (2008).

    CAS  PubMed  Google Scholar 

  68. Glenn, W., Runguphan, W. & O'Connor, S. Recent progress in the metabolic engineering of alkaloids in plant systems. Curr. Opin. Biotechnol. 24, 354–365 (2013).

    CAS  PubMed  Google Scholar 

  69. Nakagawa, A. et al. A bacterial platform for fermentative production of plant alkaloids. Nature Commun. 2, 326 (2011).

    Google Scholar 

  70. DiCarlo, J. E. et al. Genome engineering in Saccharomyces cerevisiae using CRISPR–Cas systems. Nucleic Acids Res. 41, 4336–4343 (2013). This paper reports the use of the CRISPR–Cas system in yeast, which has the potential to markedly advance genome engineering in this organism.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L. A. RNA-guided editing of bacterial genomes using CRISPR–Cas systems. Nature Biotech. 31, 233–239 (2013).

    CAS  Google Scholar 

  72. Wang, H. H. et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature 460, 894–898 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Dicarlo, J. E. et al. Yeast oligo-mediated genome engineering (YOGE). ACS Synth. Biol. 2, 741–749 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Lo, H. C. et al. Two separate gene clusters encode the biosynthetic pathway for the meroterpenoids austinol and dehydroaustinol in Aspergillus nidulans. J. Am. Chem. Soc. 134, 4709–4720 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Ahuja, M. et al. Illuminating the diversity of aromatic polyketide synthases in Aspergillus nidulans. J. Am. Chem. Soc. 134, 8212–8221 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Ma, H., Kunes, S., Schatz, P. J. & Botstein, D. Plasmid construction by homologous recombination in yeast. Gene 58, 201–216 (1987).

    CAS  PubMed  Google Scholar 

  77. Oldenburg, K. R., Vo, K. T., Michaelis, S. & Paddon, C. Recombination-mediated PCR-directed plasmid construction in vivo in yeast. Nucleic Acids Res. 25, 451–452 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Shao, Z. & Zhao, H. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res. 37, e16 (2009).

    PubMed  Google Scholar 

  79. Luo, Y. et al. Activation and characterization of a cryptic polycyclic tetramate macrolactam biosynthetic gene cluster. Nature Commun. 4, 2894 (2013).

    Google Scholar 

  80. Kuijpers, N. et al. A versatile, efficient strategy for assembly of multi-fragment expression vectors in Saccharomyces cerevisiae using 60-bp synthetic recombination sequences. Microb. Cell Factories 12, 47 (2013).

    CAS  Google Scholar 

  81. Pachuk, C. J. et al. Chain reaction cloning: a one-step method for directional ligation of multiple DNA fragments. Gene 243, 19–25 (2000).

    CAS  PubMed  Google Scholar 

  82. Quan, J. & Tian, J. Circular polymerase extension cloning of complex gene libraries and pathways. PLoS ONE 4, e6441 (2009).

    PubMed  PubMed Central  Google Scholar 

  83. Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods 6, 343–345 (2009).

    CAS  PubMed  Google Scholar 

  84. de Kok, S. et al. Rapid and reliable DNA assembly via ligase cycling reaction. ACS Synthet. Biol. 3, 97–106 (2014).

    CAS  Google Scholar 

  85. Leguia, M., Brophy, J., Densmore, D. & Anderson, J. C. Automated assembly of standard biological parts. Methods Enzymol. 498, 363–397 (2011).

    CAS  PubMed  Google Scholar 

  86. Nielsen, J. & Keasling, J. D. Synergies between synthetic biology and metabolic engineering. Nature Biotech. 29, 693–695 (2011).

    CAS  Google Scholar 

  87. Bailey, J. E. Toward a science of metabolic engineering. Science 252, 1668–1675 (1991). This paper provides an early description and vision of metabolic engineering.

    CAS  PubMed  Google Scholar 

  88. Woolston, B. M., Edgar, S. & Stephanopoulos, G. Metabolic engineering: past and future. Annu. Rev. Chem. Biomol. Eng. 4, 259–288 (2013).

    CAS  PubMed  Google Scholar 

  89. Nakamura, C. E. & Whited, G. M. Metabolic engineering for the microbial production of 1,3-propanediol. Curr. Opin. Biotechnol. 14, 454–459 (2003).

    CAS  PubMed  Google Scholar 

  90. Chen, J., Densmore, D., Ham, T. S., Keasling, J. D. & Hillson, N. J. DeviceEditor visual biological CAD canvas. J. Biol. Eng. 6, 1 (2012).

    PubMed  PubMed Central  Google Scholar 

  91. Hillson, N. J., Rosengarten, R. D. & Keasling, J. D. j5 DNA assembly design automation software. ACS Synth. Biol. 1, 14–21 (2012).

    CAS  PubMed  Google Scholar 

  92. Ham, T. S. et al. Design, implementation and practice of JBEI-ICE: an open source biological part registry platform and tools. Nucleic Acids Res. 40, e141 (2012).

    PubMed  PubMed Central  Google Scholar 

  93. Linshiz, G. et al. PaR–PaR laboratory automation platform. ACS Synth. Biol. 2, 216–222 (2013).

    CAS  PubMed  Google Scholar 

  94. Mutalik, V. K. et al. Quantitative estimation of activity and quality for collections of functional genetic elements. Nature Methods 10, 347–353 (2013).

    CAS  PubMed  Google Scholar 

  95. Endy, D. Foundations for engineering biology. Nature 438, 449–453 (2005).

    CAS  PubMed  Google Scholar 

  96. Gardner, T. S. Synthetic biology: from hype to impact. Trends Biotechnol. 31, 123–125 (2013).

    CAS  PubMed  Google Scholar 

  97. Andrianantoandro, E., Basu, S., Karig, D. K. & Weiss, R. Synthetic biology: new engineering rules for an emerging discipline. Mol. Syst. Biol. 2, 2006.0028 (2006).

    PubMed  PubMed Central  Google Scholar 

  98. Stephanopoulos, G. Synthetic biology and metabolic engineering. ACS Synth. Biol. 1, 514–525 (2012).

    CAS  PubMed  Google Scholar 

  99. Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000).

    CAS  PubMed  Google Scholar 

  100. Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000). References 99 and 100 are two of the earliest publications on synthetic biology and demonstrate the potential to apply engineering principles to biology.

    CAS  PubMed  Google Scholar 

  101. Stemmer, W. P. C., Crameri, A., Ha, K. D., Brennan, T. M. & Heyneker, H. L. Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. Gene 164, 49–53 (1995).

    CAS  PubMed  Google Scholar 

  102. Mutalik, V. K. et al. Precise and reliable gene expression via standard transcription and translation initiation elements. Nature Methods 10, 354–360 (2013).

    CAS  PubMed  Google Scholar 

  103. Bonnet, J., Subsoontorn, P. & Endy, D. Rewritable digital data storage in live cells via engineered control of recombination directionality. Proc. Natl Acad. Sci. 109, 8884–8889 (2012).

    CAS  PubMed  Google Scholar 

  104. Bonnet, J., Yin, P., Ortiz, M. E., Subsoontorn, P. & Endy, D. Amplifying genetic logic gates. Science 340, 599–603 (2013).

    CAS  PubMed  Google Scholar 

  105. Ajikumar, P. K. et al. Terpenoids: opportunities for biosynthesis of natural product drugs using engineered microorganisms. Mol. Pharm. 5, 167–190 (2008).

    CAS  PubMed  Google Scholar 

  106. Paltauf, F., Kohlwein, S. D. & Henry, S. A. in The Molecular and Cellular Biology of the Yeast Saccharomyces (eds Jones, E. W., Pringle, J. R. & Broach, J. R.) 425–500 (Cold Spring Harbor Laboratory Press, 1992).

    Google Scholar 

  107. Shiba, Y., Paradise, E. M., Kirby, J., Ro, D. K. & Keasling, J. D. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metab. Eng. 9, 160–168 (2006).

    PubMed  Google Scholar 

  108. Eisenreich, W., Bacher, A., Arigoni, D. & Rohdich, F. Biosynthesis of isoprenoids via the non-mevalonate pathway. Cell. Mol. Life Sci. 61, 1401–1426 (2004).

    CAS  PubMed  Google Scholar 

  109. Putra, S. R., Disch, A., Bravo, J. M. & Rohmer, M. Distribution of mevalonate and glyceraldehyde 3-phosphate/pyruvate routes for isoprenoid biosynthesis in some Gram-negative bacteria and mycobacteria. FEMS Microbiol. Lett. 164, 169–175 (1998).

    CAS  PubMed  Google Scholar 

  110. Lichtenthaler, H. K. The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 47–65 (1999).

    CAS  PubMed  Google Scholar 

  111. Carlsen, S. et al. Heterologous expression and characterization of bacterial 2-C-methyl-D-erythritol-4-phosphate pathway in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 97, 5753–5769 (2013).

    CAS  PubMed  Google Scholar 

  112. Lill, R. & Muhlenhoff, U. Maturation of iron–sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases. Annu. Rev. Biochem. 77, 669–700 (2008).

    CAS  PubMed  Google Scholar 

  113. Paradise, E. M., Kirby, J., Chan, R. & Keasling, J. D. Redirection of flux through the FPP branch-point in Saccharomyces cerevisiae by down-regulating squalene synthase. Biotechnol. Bioeng. 100, 371–378 (2008).

    CAS  PubMed  Google Scholar 

  114. Asadollahi, M. A. et al. Production of plant sesquiterpenes in Saccharomyces cerevisiae: effect of ERG9 repression on sesquiterpene biosynthesis. Biotechnol. Bioeng. 99, 666–677 (2008).

    CAS  PubMed  Google Scholar 

  115. Noble, M. A. et al. Roles of key active-site residues in flavocytochrome P450 BM3. Biochem. J. 339, 371–379 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Glieder, A., Farinas, E. T. & Arnold, F. H. Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase. Nature Biotech. 20, 1135–1139 (2002).

    CAS  Google Scholar 

  117. Dietrich, J. A. et al. A novel semi-biosynthetic route for artemisinin production using engineered substrate-promiscuous P450(BM3). ACS Chem. Biol. 4, 261–267 (2009). This paper describes the adaptation of a high-activity bacterial cytochrome P450 enzyme for the production of an oxidized artemisinin precursor.

    CAS  PubMed  Google Scholar 

  118. Ting, H. M. et al. The metabolite chemotype of Nicotiana benthamiana transiently expressing artemisinin biosynthetic pathway genes is a function of CYP71AV1 type and relative gene dosage. New Phytol. 199, 352–366 (2013).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Bill and Melinda Gates Foundation for their generous support of this project. They also thank their many colleagues at the University of California Berkeley, Amyris, Sanofi, National Research Council of Canada (NRC) and PATH Drug Solutions for their unstinting efforts that made this work a success.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chris J. Paddon or Jay D. Keasling.

Ethics declarations

Competing interests

C.J.P. and J.D.K. hold stock options and shares in Amyris Inc. (California, USA).

Related links

PowerPoint slides

Glossary

Chassis organism

The host microorganism that is used for the production of a desired product; it is typically subjected to genetic manipulation using the tools of synthetic biology.

Tunable intergenic regions

(TIGRs). Stretches of DNA that are located between genes and that can be modified (for example, by the insertion of hairpins and cleavage sites) to enable each gene in an operon to be varied independently of all others in a random manner.

Fed-batch fermentation process

A batch culture that is fed continuously with nutrient medium. It differs from continuous culture owing to the variation in culture volume from beginning to end.

Cytochrome P450 enzyme

A member of a superfamily of monooxygenase enzymes that catalyse the oxidation of organic substrates. Plant microsomal cytochrome P450 enzymes require a reductase enzyme (CPR) to transfer electrons from NADPH and may also require cytochrome b5 to supply electrons.

Trichomes

Hair-like or glandular structures on the surface of plants. Glandular trichomes are the major biosynthetic site of many natural plant products, including artemisinin.

Hock fragmentation

A reaction of hydroperoxides connected to an unsaturated system, leading to cleavage of the C–C bond and the formation of two carbonyl compounds.

Photochemical conversion

A chemical reaction that is initiated by the absorption of energy in the form of visible, ultraviolet or infrared light.

Alkaloids

Nitrogen-containing natural products, many of which have pharmacological properties. Examples include cocaine, caffeine and the antimalarial drug quinine.

Chemotypes

Plants that are morphologically similar or identical but that are distinguished by differences in the production of secondary metabolites.

Yeast homologous recombination

A method to assemble DNA fragments with overlapping homology regions by transforming yeast and using its innate homologous recombination ability to correctly assemble the fragments.

Ligase chain reaction

(LCR). A method to assemble DNA fragments using bridging oligonucleotides, a thermostable DNA polymerase and multiple denaturation–annealing–ligation temperature cycles.

Circular polymerase extension cloning

(CPEC). A polymerase chain reaction (PCR)-based method for the assembly of multiple DNA fragments.

Gibson isothermal assembly

A single-temperature enzymatic method of assembling multiple DNA fragments.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paddon, C., Keasling, J. Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat Rev Microbiol 12, 355–367 (2014). https://doi.org/10.1038/nrmicro3240

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3240

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research