Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular pathogenesis of the obligate intracellular bacterium Coxiella burnetii

Key Points

  • Coxiella burnetii is a Gram-negative obligate intracellular bacterial pathogen that is the aetiological agent of Q fever, which manifests as both acute and chronic infections. The infection is a zoonosis that is most often transmitted by aerosolized dry, contaminated soil or animal products.

  • Genetic differences between C. burnetii isolates from acute and chronic infections have led to the hypothesis that pathotype-specific virulence exists.

  • After inhalation by a host, C. burnetii invades and replicates within alveolar macrophages without alerting the innate immune system and has therefore been described as a stealth pathogen. Inside macrophages, the bacterium replicates within a compartment that is very similar to a phagolysosome, termed the Coxiella-containing vacuole (CCV).

  • C. burnetii has a type IV secretion system that resembles the Dot/Icm (defect in organelle trafficking/intracellular multiplication) system of Legionella pneumophila and is necessary for pathogenesis. C. burnetii encodes homologues for 24 of the 27 L. pneumophila Dot/Icm proteins, and four C. burnetii Dot/Icm genes can actually complement homologous mutations in the L. pneumophila system, lending strength to the conjecture that these systems are structurally and functionally similar.

  • Establishment and maintenance of the CCV is dependent on protein production by C. burnetii. Although the identity of the virulence factors involved are unknown, new evidence suggests that most are effectors secreted by the type IV secretion system.

  • The recent development of axenic media to grow C. burnetii has enabled the development of genetic tools to identify virulence factors. These developments have started a new era of research for C. burnetii, and Koch's postulates can now be tested for the first time.

Abstract

The agent of Q fever, Coxiella burnetii, is an obligate intracellular bacterium that causes acute and chronic infections. The study of C. burnetii pathogenesis has benefited from two recent fundamental advances: improved genetic tools and the ability to grow the bacterium in extracellular media. In this Review, we describe how these recent advances have improved our understanding of C. burnetii invasion and host cell modulation, including the formation of replication-permissive Coxiella-containing vacuoles. Furthermore, we describe the Dot/Icm (defect in organelle trafficking/intracellular multiplication) system, which is used by C. burnetii to secrete a range of effector proteins into the host cell, and we discuss the role of these effectors in remodelling the host cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The intracellular trafficking pathway of Coxiella burnetii.
Figure 2: The type IVB secretion systems of Coxiella burnetii and Legionella pneumophila.
Figure 3: Roles of type IV secretion system effectors during Coxiella burnetii intracellular infection.

Similar content being viewed by others

References

  1. Flannagan, R. S., Jaumouillé, V. & Grinstein, S. The cell biology of phagocytosis. Annu. Rev. Pathol. 7, 61–98 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Flannagan, R. S., Cosio, G. & Grinstein, S. Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. Nature Rev. Microbiol. 7, 355–366 (2009).

    Article  CAS  Google Scholar 

  3. Beron, W., Gutierrez, M. G., Rabinovitch, M. & Colombo, M. I. Coxiella burnetii localizes in a Rab7- labeled compartment with autophagic characteristics. Infect. Immun. 70, 5816–5821 (2002). The first report to show that CCV formation is disrupted by autophagy inhibitors and that LC3 localizes to the CCV.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Howe, D. & Mallavia, L. P. Coxiella burnetii exhibits morphological change and delays phagolysosomal fusion after internalization by J774A.1 cells. Infect. Immun. 68, 3815–3821 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Howe, D., Melnicâakova, J., Barâak, I. & Heinzen, R. A. Fusogenicity of the Coxiella burnetii parasitophorous vacuole. Ann. NY Acad. Sci. 990, 556–562 (2003).

    Article  PubMed  Google Scholar 

  6. Coleman, S. A., Fischer, E. R., Howe, D., Mead, D. J. & Heinzen, R. A. Temporal analysis of Coxiella burnetii morphological differentiation. J. Bacteriol. 186, 7344–7352 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Coleman, S. A. et al. Proteome and antigen profiling of Coxiella burnetii developmental forms. Infect. Immun. 75, 290–298 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Stoker, M. B. P. & Fiset, P. Phase variation of the Nine Mile and other strains of Rickettsia burnetii. Can. J. Microbiol. 2, 310–321 (1956).

    Article  CAS  PubMed  Google Scholar 

  9. Baca, O. G., Klassen, D. A. & Aragon, A. S. Entry of Coxiella burnetii into host cells. Acta Virol. 37, 143–155 (1993).

    CAS  PubMed  Google Scholar 

  10. Tujulin, E., Macellaro, A., Lilliehook, B. & Norlander, L. Effect of endocytosis inhibitors on Coxiella burnetii interaction with host cells. Acta Virol. 42, 125–131 (1998).

    CAS  PubMed  Google Scholar 

  11. Seshadri, R. et al. Complete genome sequence of the Q-fever pathogen Coxiella burnetii. Proc. Natl Acad. Sci. USA 100, 5455–5460 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Beare, P. A. et al. Dot/Icm type IVB secretion system requirements for Coxiella burnetii growth in human macrophages. mBio 2, e00175–11 (2011). Work that determines the essential role of the T4SS and the temporal control of the C. burnetii T4SS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Carey, K. L., Newton, H. J., Luhrmann, A. & Roy, C. R. The Coxiella burnetii Dot/Icm system delivers a unique repertoire of type IV effectors into host cells and is required for intracellular replication. PLoS Pathog. 7, e1002056 (2011). A paper which demonstrates that CCV biogenesis and C. burnetii intracellular replication require a functional T4SS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Capo, C. et al. Subversion of monocyte functions by Coxiella burnetii: impairment of the cross-talk between αvβ3 integrin and CR3. J. Immunol. 163, 6078–6085 (1999).

    CAS  PubMed  Google Scholar 

  15. Dellacasagrande, J. et al. αvβ3 integrin and bacterial lipopolysaccharide are involved in Coxiella burnetii-stimulated production of tumor necrosis factor by human monocytes. Infect. Immun. 68, 5673–5678 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dupuy, A. G. & Caron, E. Integrin-dependent phagocytosis – spreading from microadhesion to new concepts. J. Cell Sci. 121, 1773–1783 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. De Fougerolles, A. R. & Koteliansky, V. E. Regulation of monocyte gene expression by the extracellular matrix and its functional implications. Immunol. Rev. 186, 208–220 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Damjanovich, L., Albelda, S. M., Mette, S. A. & Buck, C. A. Distribution of integrin cell adhesion receptors in normal and malignant lung tissue. Am. J. Respir. Cell Mol. Biol. 6, 197–206 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Russell-Lodrigue, K. E., Zhang, G. Q., McMurray, D. N. & Samuel, J. E. Clinical and pathologic changes in a guinea pig aerosol challenge model of acute Q fever. Infect. Immun. 74, 6085–6091 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Moos, A. & Hackstadt, T. Comparative virulence of intra-and interstrain lipopolysaccharide variants of Coxiella burnetii in the guinea pig model. Infect. Immun. 55, 1144–1150 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Howe, D., Shannon, J. G., Winfree, S., Dorward, D. W. & Heinzen, R. A. Coxiella burnetii phase I and II variants replicate with similar kinetics in degradative phagolysosome-like compartments of human macrophages. Infect. Immun. 78, 3465–3474 (2010). An article showing that phase I and phase II C. burnetii cells replicate within similar vacuoles in human-derived macrophages and THP-1 cells, indicating that differences in virulence are not determined by the terminal compartment that these bacteria reside in.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Romano, P. S., Gutierrez, M. G., Beron, W., Rabinovitch, M. & Colombo, M. I. The autophagic pathway is actively modulated by phase II Coxiella burnetii to efficiently replicate in the host cell. Cell. Microbiol. 9, 891–909 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Fu, Y. & Galan, J. E. A Salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature 401, 293–297 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Subtil, A., Wyplosz, B., Balana, M. E. & Dautry-Varsat, A. Analysis of Chlamydia caviae entry sites and involvement of Cdc42 and Rac activity. J. Cell Sci. 117, 3923–3933 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Meconi, S. et al. Activation of protein tyrosine kinases by Coxiella burnetii: role in actin cytoskeleton reorganization and bacterial phagocytosis. Infect. Immun. 69, 2520–2526 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Meconi, S. et al. Coxiella burnetii induces reorganization of the actin cytoskeleton in human monocytes. Infect. Immun. 66, 5527–5533 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Honstettre, A. et al. Lipopolysaccharide from Coxiella burnetii is involved in bacterial phagocytosis, filamentous actin reorganization, and inflammatory responses through Toll-like receptor 4. J. Immunol. 172, 3695–3703 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Kinchen, J. M. & Ravichandran, K. S. Phagosome maturation: going through the acid test. Nature Rev. Mol. Cell Biol. 9, 781–795 (2008).

    Article  CAS  Google Scholar 

  29. Voth, D. E. & Heinzen, R. A. Lounging in a lysosome: the intracellular lifestyle of Coxiella burnetii. Cell. Microbiol. 9, 829–840 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Howe, D., Melnicâakovâa, J., Barâak, I. & Heinzen, R. A. Maturation of the Coxiella burnetii parasitophorous vacuole requires bacterial protein synthesis but not replication. Cell. Microbiol. 5, 469–480 (2003). The first report indicating that maturation of the CCV is a bacterially driven process.

    Article  CAS  PubMed  Google Scholar 

  31. Levine, B., Mizushima, N. & Virgin, H. W. Autophagy in immunity and inflammation. Nature 469, 323–335 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gutierrez, M. G. et al. Autophagy induction favours the generation and maturation of the Coxiella-replicative vacuoles. Cell. Microbiol. 7, 981–993 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. McDonough, J. A. et al. Host pathways important for Coxiella burnetii infection revealed by genome-wide RNA interference screening. mBio 4, e00606–12 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Roman, M. J., Crissman, H. A., Samsonoff, W. A., Hechemy, K. E. & Baca, O. G. Analysis of Coxiella burnetii isolates in cell culture and the expression of parasite-specific antigens on the host membrane surface. Acta Virol. 35, 503–510 (1991).

    CAS  PubMed  Google Scholar 

  35. Aguilera, M. et al. Actin dynamics and Rho GTPases regulate the size and formation of parasitophorous vacuoles containing Coxiella burnetii. Infect. Immun. 77, 4609–4620 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hussain, S. K., Broederdorf, L. J., Sharma, U. M. & Voth, D. E. Host kinase activity is required for Coxiella burnetii parasitophorous vacuole formation. Front. Microbiol. 1, 137 (2010). The first evidence that host cell kinases are involved in CCV maturation, further defining the host–pathogen interface.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Campoy, E. M., Zoppino, F. C. & Colombo, M. I. The early secretory pathway contributes to the growth of the Coxiella-replicative niche. Infect. Immun. 79, 402–413 (2011). An article demonstrating that the CCV interacts with the ER at late time points during infection.

    Article  CAS  PubMed  Google Scholar 

  38. Howe, D. & Heinzen, R. A. Coxiella burnetii inhabits a cholesterol-rich vacuole and influences cellular cholesterol metabolism. Cell. Microbiol. 8, 496–507 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Howe, D. & Heinzen, R. A. Replication of Coxiella burnetii is inhibited in CHO K-1 cells treated with inhibitors of cholesterol metabolism. Ann. NY Acad. Sci. 1063, 123–129 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Espenshade, P. J. & Hughes, A. L. Regulation of sterol synthesis in eukaryotes. Annu. Rev. Genet. 41, 401–427 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Akporiaye, E. T., Rowatt, J. D., Aragon, A. A. & Baca,O. G. Lysosomal response of a murine macrophage-like cell line persistently infected with Coxiella burnetii. Infect. Immun. 40, 1155–1162 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Voth, D. E., Howe, D. & Heinzen, R. A. Coxiella burnetii inhibits apoptosis in human THP-1 cells and monkey primary alveolar macrophages. Infect. Immun. 75, 4263–4271 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Baca, O. G., Scott, T. O., Akporiaye, E. T., DeBlassie, R. & Crissman, H. A. Cell cycle distribution patterns and generation times of L929 fibroblast cells persistently infected with Coxiella burnetii. Infect. Immun. 47, 366–369 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Luhrmann, A. & Roy, C. R. Coxiella burnetii inhibits activation of host cell apoptosis through a mechanism that involves preventing cytochrome c release from mitochondria. Infect. Immun. 75, 5282–5289 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yang, J. et al. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275, 1129–1132 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Voth, D. E. & Heinzen, R. A. Sustained activation of Akt and Erk1/2 is required for Coxiella burnetii antiapoptotic activity. Infect. Immun. 77, 205–213 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Roman, M. J., Coriz, P. D. & Baca, O. G. A proposed model to explain persistent infection of host cells with Coxiella burnetii. J. Gen. Microbiol. 132, 1415–1422 (1986).

    CAS  PubMed  Google Scholar 

  48. Tigertt, W. D., Benenson, A. S. & Gochenour, W. S. Airborne Q fever. Bacteriol. Rev. 25, 285–293 (1961).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang, Y., Zhang, G., Hendrix, L. R., Tesh, V. L. & Samuel, J. E. Coxiella burnetii induces apoptosis during early stage infection via a caspase-independent pathway in human monocytic THP-1 cells. PLoS ONE 7, e30841 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ashida, H. et al. Cell death and infection: a double-edged sword for host and pathogen survival. J. Cell Biol. 195, 931–942 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Beare, P. A. et al. Comparative genomics reveal extensive transposon-mediated genomic plasticity and diversity among potential effector proteins within the genus Coxiella. Infect. Immun. 77, 642–656 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Peabody, C. R. et al. Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella. Microbiology 149, 3051–3072 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Sexton, J. A. & Vogel, J. P. Type IVB secretion by intracellular pathogens. Traffic 3, 178–185 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Zechner, E. L., Lang, S. & Schildbach, J. F. Assembly and mechanisms of bacterial type IV secretion machines. Phil. Trans. R. Soc. B. 367, 1073–1087 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Alvarez-Martinez, C. E. & Christie, P. J. Biological diversity of prokaryotic type IV secretion systems. Microbiol. Mol. Biol. Rev. 73, 775–808 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Vincent, C. D. et al. Identification of the core transmembrane complex of the Legionella Dot/Icm type IV secretion system. Mol. Microbiol. 62, 1278–1291 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Vincent, C. D., Friedman, J. R., Jeong, K. C., Sutherland, M. C. & Vogel, J. P. Identification of the DotL coupling protein subcomplex of the Legionella Dot/Icm type IV secretion system. Mol. Microbiol. 85, 378–391 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hiroki, N. & Tomoko, K. Type IVB secretion systems of Legionella and other Gram-negative bacteria. Front. Microbiol. 2, 136 (2011).

    Google Scholar 

  59. Zamboni, D. S., McGrath, S., Rabinovitch, M. & Roy, C. R. Coxiella burnetii express type IV secretion system proteins that function similarly to components of the Legionella pneumophila Dot/Icm system. Mol. Microbiol. 49, 965–976 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Voth, D. E. et al. The Coxiella burnetii ankyrin repeat domain-containing protein family is heterogeneous with C-terminal truncations that influence Dot/Icm-mediated secretion. J. Bacteriol. 191, 4232–4242 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen, C. et al. Large-scale identification and translocation of type IV secretion substrates by Coxiella burnetii. Proc. Natl Acad. Sci. USA 107, 21755–21760 (2010). Research establishing a shuttle vector and translocation assays for C. burnetii , leading to the identification of a large number of T4SS effectors and confirming the presence of a functional secretion system in C. burnetii during infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Morgan, J. K., Luedtke, B. E., Thompson, H. A. & Shaw, E. I. Coxiella burnetii type IVB secretion system region I genes are expressed early during the infection of host cells. FEMS Microbiol. Lett. 311, 61–69 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Morgan, J. K., Luedtke, B. E. & Shaw, E. I. Polar localization of the Coxiella burnetii type IVB secretion system. FEMS Microbiol. Lett. 305, 177–183 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Beare, P. A., Larson, C. L., Gilk, S. D. & Heinzen, R. A. Two systems for targeted gene deletion in Coxiella burnetii. Appl. Environ. Microbiol. 78, 4580–4589 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pan, X., Luhrmann, A., Satoh, A., Laskowski-Arce, M. A. & Roy, C. R. Ankyrin repeat proteins comprise a diverse family of bacterial type IV effectors. Science 320, 1651–1654 (2008). A paper that identifies ankyrin repeat proteins as T4SS effectors in C. burnetii and L. pneumophila , indicating that these proteins are conserved 4SS effectors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Voth, D. E. & Heinzen, R. A. Coxiella type IV secretion and cellular microbiology. Curr. Opin. Microbiol. 12, 74–80 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Voth, D. E. et al. The Coxiella burnetii cryptic plasmid is enriched in genes encoding type IV secretion system substrates. J. Bacteriol. 193, 1493–1503 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lifshitz, Z. et al. Computational modeling and experimental validation of the Legionella and Coxiella virulence-related type-IVB secretion signal. Proc. Natl Acad. Sci. USA 110, e707–e715 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  69. de Felipe, K. S. et al. Evidence for acquisition of Legionella type IV secretion substrates via interdomain horizontal gene transfer. J. Bacteriol. 187, 7716–7726 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kubori, T., Shinzawa, N., Kanuka, H. & Nagai, H. Legionella metaeffector exploits host proteasome to temporally regulate cognate effector. PLoS Pathog. 6, e1001216 (2011).

    Article  CAS  Google Scholar 

  71. Newton, H. J., McDonough, J. A. & Roy, C. R. Effector protein translocation by the Coxiella burnetii Dot/Icm type IV secretion system requires endocytic maturation of the pathogen-occupied vacuole. PLoS ONE 8, e54566 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zusman, T. et al. The response regulator PmrA is a major regulator of the icm/dot type IV secretion system in Legionella pneumophila and Coxiella burnetii. Mol. Microbiol. 63, 1508–1523 (2007). A report showing that components of the T4SS and some putative T4SS effectors are co-regulated, implying that there is a link between, and temporal regulation of, the secretion apparatus and its effectors.

    Article  CAS  PubMed  Google Scholar 

  73. McPhee, J. B., Lewenza, S. & Hancock, R. E. Cationic antimicrobial peptides activate a two-component regulatory system, PmrA-PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa. Mol. Microbiol. 50, 205–217 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Sauer, J. D. et al. Specificity of Legionella pneumophila and Coxiella burnetii vacuoles and versatility of Legionella pneumophila revealed by coinfection. Infect. Immun. 73, 4494–4504 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Omsland, A. et al. Isolation from animal tissue and genetic transformation of Coxiella burnetii are facilitated by an improved axenic growth medium. Appl. Environ. Microbiol. 77, 3720–3725 (2011). The first description of the clonal isolation of transformed C. burnetii using axenic media.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Huang, L. et al. The E Block motif is associated with Legionella pneumophila translocated substrates. Cell. Microbiol. 13, 227–245 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Klingenbeck, L., Eckart, R. A., Berens, C. & Luhrmann, A. The Coxiella burnetii type IV secretion system substrate CaeB inhibits intrinsic apoptosis at the mitochondrial level. Cell. Microbiol. 15, 675–687 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Luhrmann, A., Nogueira, C. V., Carey, K. L. & Roy, C. R. Inhibition of pathogen-induced apoptosis by a Coxiella burnetii type IV effector protein. Proc. Natl Acad. Sci. USA 107, 18997–19001 (2010). An article which describes the only characterized C. burnetii T4SS effector that prevents host cell apoptosis by targeting pro-apoptotic protein p32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ge, J. et al. A Legionella type IV effector activates the NF-κB pathway by phosphorylating the IκB family of inhibitors. Proc. Natl Acad. Sci. USA 106, 13725–13730 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. de Felipe, K. S. et al. Legionella eukaryotic-like type IV substrates interfere with organelle trafficking. PLoS Pathog. 4, e1000117 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Shen, X. et al. Targeting eEF1A by a Legionella pneumophila effector leads to inhibition of protein synthesis and induction of host stress response. Cell. Microbiol. 11, 911–926 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Banga, S. et al. Legionella pneumophila inhibits macrophage apoptosis by targeting pro-death members of the Bcl2 protein family. Proc. Natl Acad. Sci. USA 104, 5121–5126 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Campodonico, E. M., Chesnel, L. & Roy, C. R. A yeast genetic system for the identification and characterization of substrate proteins transferred into host cells by the Legionella pneumophila Dot/Icm system. Mol. Microbiol. 56, 918–933 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Ren, Q., Robertson, S. J., Howe, D., Barrows, L. F. & Heinzen, R. A. Comparative DNA microarray analysis of host cell transcriptional responses to infection by Coxiella burnetii or Chlamydia trachomatis. Ann. NY Acad. Sci. 990, 701–713 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Murata, T. et al. The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor. Nature Cell Biol. 8, 971–977 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Machner, M. P. & Isberg, R. R. Targeting of host Rab GTPase function by the intravacuolar pathogen Legionella pneumophila. Dev. Cell 11, 47–56 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Nagai, H., Kagan, J. C., Zhu, X., Kahn, R. A. & Roy, C. R. A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Science 295, 679–682 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Price, C. T., Al-Quadan, T., Santic, M., Rosenshine, I. & Abu Kwaik, Y. Host proteasomal degradation generates amino acids essential for intracellular bacterial growth. Science 334, 1553–1557 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Vishwanath, S. & Hackstadt, T. Lipopolysaccharide phase variation determines the complement-mediated serum susceptibility of Coxiella burnetii. Infect. Immun. 56, 40–44 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Shannon, J. G., Howe, D. & Heinzen, R. A. Virulent Coxiella burnetii does not activate human dendritic cells: role of lipopolysaccharide as a shielding molecule. Proc. Natl Acad. Sci. USA 102, 8722–8727 (2005). A study showing that lipopolysaccharide is used by virulent C. burnetii to evade immune surveillance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zamboni, D. S. et al. Stimulation of toll-like receptor 2 by Coxiella burnetii is required for macrophage production of pro-inflammatory cytokines and resistance to infection. J. Biol. Chem. 279, 54405–54415 (2004). The first report to indicate that lipid A from either phase I or phase II C. burnetii cannot stimulate TLR4.

    Article  CAS  PubMed  Google Scholar 

  92. Hirschfeld, M., Ma, Y., Weis, J. H., Vogel, S. N. & Weis, J. J. Cutting edge: repurification of lipopolysaccharide eliminates signaling through both human and murine Toll-like receptor 2. J. Immunol. 165, 618–622 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Amano, K., Williams, J. C., Missler, S. R. & Reinhold, V. N. Structure and biological relationships of Coxiella burneti i lipopolysaccharide. J. Biol. Chem. 262, 4740–4747 (1987).

    Article  CAS  PubMed  Google Scholar 

  94. Stoenner, H. G. & Lackman, D. B. The biologic properties of Coxiella burnetii isolated from rodents collected in Utah. Am. J. Hyg. 71, 45–51 (1960).

    CAS  PubMed  Google Scholar 

  95. Toman, R. et al. Physicochemical characterization of the endotoxins from Coxiella burnetii strain Priscilla in relation to their bioactivities. BMC Biochem. 5, 1 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Telepnev, M. V. et al. Tetraacylated lipopolysaccharide of Yersinia pestis can inhibit multiple Toll-like receptor-mediated signaling pathways in human dendritic cells. J. Infect. Dis. 200, 1694–1702 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Benoit, M., Barbarat, B., Bernard, A., Olive, D. & Mege, J. L. Coxiella burnetii, the agent of Q fever, stimulates an atypical M2 activation program in human macrophages. Eur. J. Immunol. 38, 1065–1070 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Dellacasagrande, J., Capo, C., Raoult, D. & Mege, J. L. IFN-γ-mediated control of Coxiella burnetii survival in monocytes: the role of cell apoptosis and TNF. J. Immunol. 162, 2259–2265 (1999).

    CAS  PubMed  Google Scholar 

  99. Howe, D., Barrows, L. F., Lindstrom, N. M. & Heinzen, R. A. Nitric oxide inhibits Coxiella burnetii replication and parasitophorous vacuole maturation. Infect. Immun. 70, 5140–5147 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Turco, J., Thompson, H. A. & Winkler, H. Interferon-γ inhibits growth of Coxiella burnetii in mouse fibroblasts. Infect. Immun. 45, 781–783 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zamboni, D. S. & Rabinovitch, M. Nitric oxide partially controls Coxiella burnetii phase II infection in mouse primary macrophages. Infect. Immun. 71, 1225–1233 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Brennan, R. E., Russell, K., Zhang, G. & Samuel, J. E. Both inducible nitric oxide synthase and NADPH oxidase contribute to the control of virulent phase I Coxiella burnetii infections. Infect. Immun. 72, 6666–6675 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hill, J. & Samuel, J. E. Coxiella burnetii acid phosphatase inhibits the release of reactive oxygen intermediates in polymorphonuclear leukocytes. Infect. Immun. 79, 414–420 (2011). Work identifying a specific protein that mediates the inhibition of ROS release in infected polymorphonuclear neutrophils.

    Article  CAS  PubMed  Google Scholar 

  104. Siemsen, D. W., Kirpotina, L. N., Jutila, M. A. & Quinn,M. T. Inhibition of the human neutrophil NADPH oxidase by Coxiella burnetii. Microbes Infect. 11, 671–679 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Vila-del Sol, V., Diaz-Munoz, M. D. & Fresno, M. Requirement of tumor necrosis factor α and nuclear factor-κB in the induction by IFN-γ of inducible nitric oxide synthase in macrophages. J. Leukoc. Biol. 81, 272–283 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Vazquez, C. L. & Colombo, M. I. Coxiella burnetii modulates Beclin 1 and Bcl-2, preventing host cell apoptosis to generate a persistent bacterial infection. Cell Death Differ. 17, 421–438 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. Babudieri, C. Q fever: a zoonosis. Adv. Vet. Sci. 5, 81–84 (1959).

    Google Scholar 

  108. CDC & Department of Health and Human Services. Possession, use, and transfer of select agents and toxins. Final rule. Fed. Regist. 73, 61363–61366 (2008).

  109. Fournier, P.-E., Marrie, T. J. & Raoult, D. Diagnosis of Q fever. J. Clin. Microbiol. 36, 1823–1834 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Million, M., Thuny, F., Richet, H. & Raoult, D. Long-term outcome of Q fever endocarditis: a 26-year personal survey. Lancet Infect. Dis. 10, 527–535 (2010).

    Article  PubMed  Google Scholar 

  111. Raoult, D. et al. Treatment of Q fever endocarditis: comparison of 2 regimens containing doxycycline and ofloxacin or hydroxychloroquine. Arch. Intern. Med. 159, 167–173 (1999).

    Article  CAS  PubMed  Google Scholar 

  112. Marmion, B. P. et al. Long-term persistence of Coxiella burnetii after acute primary Q fever. QJM 98, 7–20 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Penttila, I. A. et al. Cytokine dysregulation in the post-Q-fever fatigue syndrome. QJM 91, 549–560 (1998).

    Article  CAS  PubMed  Google Scholar 

  114. Marmion, B. P., Shannon, M., Maddocks, I., Storm, P. & Penttila, I. Protracted debility and fatigue after acute Q fever. Lancet 347, 977–978 (1996).

    Article  CAS  PubMed  Google Scholar 

  115. Enserink, M. Infectious diseases. Questions abound in Q-fever explosion in the Netherlands. Science 327, 266–267 (2010).

    CAS  PubMed  Google Scholar 

  116. Whelan, J. et al. Q fever among culling workers, the Netherlands, 2009–2010. Emerg. Infect. Dis. 17, 1719–1723 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Roest, H. I. et al. The Q fever epidemic in The Netherlands: history, onset, response and reflection. Epidemiol. Infect. 139, 1–12 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. Glazunova, O. et al. Coxiella burnetii genotyping. Emerg. Infect. Dis. 11, 1211–1217 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Hendrix, L. R., Samuel, J. E. & Mallavia, L. P. Differentiation of Coxiella burnetii isolates by analysis of restriction-endonuclease-digested DNA separated by SDS-PAGE. J. Gen. Microbiol. 137, 269–276 (1991).

    CAS  PubMed  Google Scholar 

  120. Samuel, J. E., Frazier, M. E. & Mallavia, L. P. Correlation of plasmid type and disease caused by Coxiella burnetii. Infect. Immun. 49, 775–779 (1985). The proposal that pathotype-specific differences exist between clinical isolates of C. burnetii.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Svraka, S., Toman, R., Skultety, L., Slaba, K. & Homan, W. L. Establishment of a genotyping scheme for Coxiella burnetii. FEMS Microbiol. Lett. 254, 268–274 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Thiele, D. & Willems, H. Is plasmid based differentiation of Coxiella burnetii in 'acute' and 'chronic' isolates still valid? Eur. J. Epidemiol. 10, 427–434 (1994).

    Article  CAS  PubMed  Google Scholar 

  123. Beare, P. A. et al. Genetic diversity of the Q fever agent, Coxiella burnetii, assessed by microarray-based whole-genome comparisons. J. Bacteriol. 188, 2309–2324 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Russell-Lodrigue, K. E. et al. Coxiella burnetii isolates cause genogroup-specific virulence in mouse and guinea pig models of acute Q fever. Infect. Immun. 77, 5640–5650 (2009). An investigation that clearly establishes pathotype differences in animal models of acute Q fever.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Capo, C. et al. Production of interleukin-10 and transforming growth factor β by peripheral blood mononuclear cells in Q fever endocarditis. Infect. Immun. 64, 4143–4147 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Meghari, S. et al. Persistent Coxiella burnetii infection in mice overexpressing IL-10: an efficient model for chronic Q fever pathogenesis. PLoS Pathog. 4, e23 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Chen, S. Y., Hoover, T. A., Thompson, H. A. & Williams, J. C. Characterization of the origin of DNA replication of the Coxiella burnetii chromosome. Ann. NY Acad. Sci. 590, 491–503 (1990).

    Article  CAS  PubMed  Google Scholar 

  128. Suhan, M. et al. Cloning and characterization of an autonomous replication sequence from Coxiella burnetii. J. Bacteriol. 176, 5233–5243 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hackstadt, T. & Williams, J. C. Biochemical stratagem for obligate parasitism of eukaryotic cells by Coxiella burnetii. Proc. Natl Acad. Sci. USA 78, 3240–3244 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Omsland, A. et al. Host cell-free growth of the Q fever bacterium Coxiella burnetii. Proc. Natl Acad. Sci. USA 106, 4430–4434 (2009). Work which characterizes the cell-free growth medium of C. burnetii and determines the anaerobic and acidophilic tropism of this bacterium.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Beare, P. A. et al. Characterization of a Coxiella burnetii ftsZ mutant generated by Himar1 transposon mutagenesis. J. Bacteriol. 191, 1369–1381 (2009). An article detailing the Himar1 -based transposon system for C. burnetii , building the foundation for forward genetics screens.

    Article  CAS  PubMed  Google Scholar 

  132. Beare, P., Sandoz, K., Omsland, A., Rockey, D. & Heinzen, R. Advances in genetic manipulation of obligate intracellular bacterial pathogens. Front. Microbiol. 2, 97 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grants AI037744, U54 AI057156, AI078213, AI088430, AI090142, and AI092153 (to J.E.S.). The authors thank L. R. Hendrix, K. Russell-Lodrigue and C. Farris for critical review and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Samuel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Axenic culture media

Media used for the growth of intracellular bacteria in the absence of host cells.

Category B select agent

An infectious disease agent of the second highest priority, as defined by the US CDC guidelines for potential misuse. These agents are usually readily transmitted by aerosol, are stable in the environment and cause moderate morbidity and low mortality.

BL3 containment

A level of biocontainment that includes a separation from general traffic areas by double doors, airlocks and negative air flow. Access is limited to trained personnel and requires users to wear personal protective equipment. All research activities with potential exposure of the agent to the atmosphere are conducted within biosafety cabinets.

Integrin

A highly conserved family of heterodimeric surface glycoproteins involved in binding to extracellular matrix components such as fibronectin and vitronectin through arginine-glycine-aspartic acid (RGD) domains.

BL2 containment

A level of biocontainment that involves the use of standard laboratory space in which work using an infectious agent is carried out within a biosafety cabinet.

SRC tyrosine kinases

A family of kinases that was originally identified through homology to Rous sarcoma virus oncogene v-src and is involved in signal transduction from cellular receptors.

Cachexia

Loss of weight, fatigue and weakness that are associated with severe inflammatory disease and cannot be reversed by nutritional supplementation.

Himar1-based transposon system

A eukaryotic horn fly element that is extensively used to create mutations in bacteria and relies on only an AT dinucleotide for insertion.

C. burnetii str. Nine Mile I

The original Coxiella burnetii strain isolated from ticks in 1935. This strain was later serially passaged in embryonated hen eggs and guinea pigs to obtain the avirulent isolate C. burnetii str. Nine Mile II.

Two-component regulatory system

A bacterial signal transduction system involving a sensor kinase that responds to an environmental stimulus by phosphorylating a response regulator, which controls the transcription of downstream genes.

Insertion sequences

Mobile genetic elements consisting of short inverted repeats flanking one or more ORFs.

Ankyrin repeats

Eukaryotic protein domains consisting of repeating segments of 33 amino acids that form a helix–turn–helix motif and mediate protein–protein interactions. These domains are some of the most commonly found domains in eukaryotic proteins.

Coiled-coil domains

Structural motifs that are found in proteins and consist of 2–5 α-helices wrapped around each other in a left-handed manner to form a superhelix.

Tetratricopeptide repeats

Structural motifs that mediate protein–protein interactions and are composed of a degenerate 34 amino acid sequence that is often arranged in a tandem array.

F-box domains

Structural motifs composed of approximately 50 amino acids and that contain tryptophan-aspartic acid repeats. These domains function as protein–protein interaction domains. F-box proteins were first characterized as components of ubiquitin ligase complexes.

Fic domains

(Filamentation induced by cyclic AMP domains). Protein domains that mediate ampylation of proteins and regulate protein function.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Schaik, E., Chen, C., Mertens, K. et al. Molecular pathogenesis of the obligate intracellular bacterium Coxiella burnetii. Nat Rev Microbiol 11, 561–573 (2013). https://doi.org/10.1038/nrmicro3049

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3049

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology