Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

Spemann's organizer and self-regulation in amphibian embryos

Abstract

In 1924, Spemann and Mangold demonstrated the induction of Siamese twins in transplantation experiments with salamander eggs. Recent work in amphibian embryos has followed their lead and uncovered that cells in signalling centres that are located at the dorsal and ventral poles of the gastrula embryo communicate with each other through a network of secreted growth-factor antagonists, a protease that degrades them, a protease inhibitor and bone-morphogenic-protein signals.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Embryonic self-regulation.
Figure 2: Ubiquitous neural differentiation: epidermal differentiation can be restored by transplantation of either a dorsal or a ventral centre.
Figure 3: A network of interacting secreted proteins regulates dorsal–ventral cell communication.

References

  1. Spemann, H. Embryonic Development and Induction (Yale Univ. New Haven, 1938).

    Book  Google Scholar 

  2. Morgan, T. H. Half embryos and whole embryos from one of the first two blastomeres. Anat. Anz. 10, 623–638 (1895).

    Google Scholar 

  3. Harrison, R. G. Experiments on the development of the fore-limb of Amblystoma, a self-differentiating equipotential system. J. Exp. Zool. 25, 413–461 (1918).

    Article  Google Scholar 

  4. Stern, C. D. (ed.) Gastrulation (Cold Spring Harbor Laboratory, New York, 2004).

    Google Scholar 

  5. Spemann, H. & Mangold, H. Induction of embryonic primordia by implantation of organizers from a different species. Roux's Arch. Entw. Mech. 100, 599–638 (1924).

    Google Scholar 

  6. Hamburger, V. The Heritage of Experimental Embryology: Hans Spemann and the Organizer (Oxford Univ., Oxford, UK, 1988).

    Google Scholar 

  7. Carrasco, A. E., McGinnis, W., Gehring, W. J. & De Robertis, E. M. Cloning of an X. laevis gene expressed during early embryogenesis coding for a peptide region homologous to Drosophila homeotic genes. Cell 37, 409–414 (1984).

    Article  CAS  Google Scholar 

  8. Cho, K. W. Y., Blumberg, B., Steinbeisser, H. & De Robertis, E. M. Molecular nature of Spemann's organizer: the role of the Xenopus homeobox gene goosecoid. Cell 67, 1111–1120 (1991).

    Article  CAS  Google Scholar 

  9. Taira, M., Jamrich, M., Good, P. J. & Dawid, I. B. The LIM domain-containing homeo box gene Xlim-1 is expressed specifically in the organizer region of Xenopus gastrula embryos. Genes Dev. 6, 356–366 (1992).

    Article  CAS  Google Scholar 

  10. Dirksen, M. L. & Jamrich, M. A novel, activin-inducible, blastopore lip-specific gene of Xenopus laevis contains a fork head DNA-binding domain. Genes Dev. 6, 599–608 (1992).

    Article  CAS  Google Scholar 

  11. Niehrs, C., Keller, R., Cho, K. W. Y. & De Robertis, E. M. The homeobox gene goosecoid controls cell migration in Xenopus embryos. Cell 72, 491–503 (1993).

    Article  CAS  Google Scholar 

  12. Sasai, Y., Lu, B., Steinbeisser, H., Geissert, D., Gont, L. K. & De Robertis, E. M. Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79, 779–790 (1994).

    Article  CAS  Google Scholar 

  13. De Robertis, E. M. in Gastrulation (Stern, C. D. ed.) 581–589 (Cold Spring Harbor Laboratory, New York, 2004).

    Google Scholar 

  14. Smith, W. C. & Harland, R. M. Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell 70, 829–840 (1992).

    Article  CAS  Google Scholar 

  15. Harland, R. Neural induction. Curr. Opin. Genet. Dev. 10, 357–362 (2002).

    Article  Google Scholar 

  16. Lamb, T. M. et al. Neural induction by secreted polypeptide noggin. Science 262, 713–718 (1993).

    Article  CAS  Google Scholar 

  17. Hemmati-Brivanlou, A., Kelly, O. G. & Melton, D. A. Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell 77, 283–295 (1994).

    Article  CAS  Google Scholar 

  18. De Robertis, E. M., Larraín, J., Oelgeschläger, M. & Wessely, O. The establishment of Spemann's organizer and patterning of the vertebrate embryo. Nature Rev. Genet. 1, 171–181 (2000).

    Article  CAS  Google Scholar 

  19. De Robertis, E. M. & Kuroda, H. Dorsal–ventral patterning and neural induction in Xenopus embryos. Annu. Rev. Cell Dev. Biol. 20, 285–308 (2004).

    Article  CAS  Google Scholar 

  20. Moos, M. Jr., Wang, S. & Krinks, M. Anti-dorsalizing morphogenetic protein is a novel TGF-β homolog expressed in the Spemann organizer. Development 121, 4293–4301 (1995).

    CAS  PubMed  Google Scholar 

  21. Dosch, R. & Niehrs, C. Requirement for anti-dorsalizing morphogenetic protein in organizer patterning. Mech. Dev. 90, 195–203 (2000).

    Article  CAS  Google Scholar 

  22. Niehrs, C. & Pollet, N. Synexpression groups in eukaryotes. Nature 402, 483–487 (1999).

    Article  CAS  Google Scholar 

  23. Bautzman, H., Holtfreter, J., Spemann, H. & Mangold, O. Versuche zur Analyse der Induktionsmittel in der Embryonalentwicklung. Naturwissenschaften 20, 971–974 (1932).

    Article  Google Scholar 

  24. Holtfreter, J. & Hamburger, V. in Analysis of Development (Willier, B. H., Weiss, P. A. & Hamburger, V. eds) 230–296 (W. B. Saunders, Philadelphia, 1955).

    Google Scholar 

  25. Barth, L. G. Neural diffferentiation without organizer. J. Exp. Zool. 87, 371–384 (1941).

    Article  Google Scholar 

  26. Holtfreter, J. Neural differentiation of ectoderm through exposure to saline solution. J. Exp. Zool. 95, 307–343 (1944).

    Article  Google Scholar 

  27. Sasai, Y., Lu, B., Steinbeisser, H. & De Robertis, E. M. Regulation of neural induction by the chd and BMP-4 antagonistic patterning signals in Xenopus. Nature 376, 333–336 (1995).

    Article  CAS  Google Scholar 

  28. Piccolo, S., Sasai, Y., Lu, B. & De Robertis, E. M. Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of Chordin to BMP-4. Cell 86, 589–598 (1996).

    Article  CAS  Google Scholar 

  29. Zimmerman, L. B., De Jesús-Escobar, J. M. & Harland, R. M. The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86, 599–606 (1996).

    Article  CAS  Google Scholar 

  30. Thompson, T. B., Lerch, T. F., Cook, R. W., Woodruff, T. K. & Jardetzky, T. S. The structure of the follistatin:activin complex reveals antagonism of both Type I and Type II receptor binding. Dev. Cell 9, 535–543 (2005).

    Article  CAS  Google Scholar 

  31. Heasman, J. Morpholino oligos: making sense of antisense? Dev. Biol. 243, 209–214 (2002).

    Article  CAS  Google Scholar 

  32. Oelgeschläger, M., Kuroda, H., Reversade, B. & De Robertis, E. M. Chordin is required for the Spemann organizer transplantation phenomenon in Xenopus embryos. Dev. Cell 4, 219–230 (2003).

    Article  Google Scholar 

  33. Bachiller, D. et al. The organizer secreted factors Chordin and Noggin are required for forebrain development in the mouse. Nature 403, 658–661 (2000).

    Article  CAS  Google Scholar 

  34. Khokha, M. K., Yeh, J., Grammer, T. C. & Harland, R. M. Depletion of three BMP antagonists from Spemann's organizer leads to a catastrophic loss of dorsal structures. Dev. Cell 8, 401–411 (2005).

    Article  CAS  Google Scholar 

  35. Kuroda, H., Wessely, O. & Robertis, E. M. Neural induction in Xenopus: requirement for ectodermal and endomesodermal signals via Chordin, Noggin, β-catenin, and Cerberus. PLoS Biol. 2, 623–633 (2004).

    Article  CAS  Google Scholar 

  36. Grunz, H. & Tacke, L. Neural differentiation of Xenopus laevis ectoderm takes place after disaggregation and delayed reaggregation without inducer. Cell Differ. Dev. 28, 211–217 (1989).

    Article  CAS  Google Scholar 

  37. Wilson, P. A. & Hemmati-Brivanlou, A. Induction of epidermis and inhibition of neural fate by Bmp-4. Nature 376, 331–333 (1995).

    Article  CAS  Google Scholar 

  38. Kuroda, H., Fuentealba, L., Ikeda, A., Reversade, B. & De Robertis, E. M. Default neural induction: neuralization of dissociated Xenopus cells is mediated by Ras/MAPK activation. Genes Dev. 19, 1022–1027 (2005).

    Article  CAS  Google Scholar 

  39. Massagué, J. Integration of Smad and MAPK pathways: a link and a linker revisited. Genes Dev. 17, 3023–3028 (2003).

    Article  Google Scholar 

  40. Stern, C. D. Neural induction: old problem, new findings, yet more questions. Development 132, 2007–2021 (2005).

    Article  CAS  Google Scholar 

  41. Reversade, B., Kuroda, H., Lee, H., Mays, A. & De Robertis, E. M. Depletion of Bmp2, Bmp4, Bmp7 and Spemann organizer signals induces massive brain formation in Xenopus embryos. Development 132, 3381–3392 (2005).

    Article  CAS  Google Scholar 

  42. Reversade, B. & De Robertis, E. M. Regulation of ADMP and BMP2/4/7 at opposite embryonic poles generates a self-regulating morphogenetic field. Cell 123, 1147–1160 (2005).

    Article  CAS  Google Scholar 

  43. Piccolo, S. et al. Cleavage of Chordin by the Xolloid metalloprotease suggests a role for proteolytic processing in the regulation of Spemann organizer activity. Cell 91, 407–416 (1997).

    Article  CAS  Google Scholar 

  44. Dale, L., Evans, W. & Goodman, S. A. Xolloid-related: a novel BMP1/Tolloid-related metalloprotease is expressed during early Xenopus development. Mech. Dev. 119, 177–190 (2002).

    Article  CAS  Google Scholar 

  45. Lee, H. X., Ambrosio, A. L., Reversade, B. & De Robertis, E. M. Embryonic dorsal–ventral signaling: secreted frizzled-related proteins as inhibitors of tolloid proteinases. Cell 124, 147–159 (2006).

    Article  CAS  Google Scholar 

  46. Collavin, L. & Kirschner, M. W. The secreted Frizzled-related protein Sizzled functions as a negative feedback regulator of extreme ventral mesoderm. Development 130, 805–816 (2003).

    Article  CAS  Google Scholar 

  47. Yabe, T. et al. Ogon/Secreted Frizzled functions as a negative feedback regulator of Bmp signaling. Development 130, 2705–2716 (2003).

    Article  CAS  Google Scholar 

  48. Martyn, U. & Schulte-Merker, S. The ventralized ogon mutant phenotype is caused by a mutation in the zebrafish homologue of Sizzled, a secreted Frizzled-related protein. Dev. Biol. 260, 58–67 (2003).

    Article  CAS  Google Scholar 

  49. De Robertis, E. M., Morita, E. A. & Cho, K. W. Y. Gradient fields and homeobox genes. Development 112, 669–678 (1991).

    CAS  PubMed  Google Scholar 

  50. Morgan, T. H. Embryology and Genetics (Columbia Univ., New York, 1934).

    Google Scholar 

  51. Turing, A. M. The chemical basis of morphogenesis. Phil. Trans. Royal Soc. 237, 37–72 (1952).

    Google Scholar 

  52. Bouwmeester, T., Kim, S. H., Sasai, Y., Lu, B. & De Robertis, E. M. Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann's organizer. Nature 382, 595–601 (1996).

    Article  CAS  Google Scholar 

  53. Beddington, R. S. P. & Robertson, E. J. Axis development and early asymmetry in mammals. Cell 96, 195–209 (1999).

    Article  CAS  Google Scholar 

  54. Glinka, A. et al. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391, 357–362 (1998).

    Article  CAS  Google Scholar 

  55. Mao, B. et al. Kremen proteins are Dickkopf receptors that regulate Wnt–β-catenin signalling. Nature 417, 664–667 (2002).

    Article  CAS  Google Scholar 

  56. Oelgeschläger, M., Larraín, J., Geissert, D. & De Robertis, E. M. The evolutionarily conserved BMP-binding protein Twisted gastrulation promotes BMP signalling. Nature 405, 757–763 (2000).

    Article  Google Scholar 

  57. Little, S. C. & Mullins, M. C. Twisted gastrulation promotes BMP signaling in zebrafish dorsal–ventral axial patterning. Development 131, 5825–5835 (2004).

    Article  CAS  Google Scholar 

  58. Xie, J. & Fisher, S. Twisted gastrulation enhances BMP signaling through chordin dependent and independent mechanisms. Development 132, 383–391 (2005).

    Article  CAS  Google Scholar 

  59. Onichtchouk, D. et al. Silencing of TGF-β signalling by the pseudoreceptor BAMBI. Nature 401, 480–485 (1999).

    Article  CAS  Google Scholar 

  60. Sadler, T. W. Langman's Medical Embryology 9th edn (Lippincott Williams & Wilkins, Baltimore, 2004).

    Google Scholar 

Download references

Acknowledgements

I would like to thank the multiple generations of postdoctoral and graduate students that helped unravel the Spemann's organizer in our laboratory. B. Reversade, H. Kuroda and H. Lee generously provided material for the figures. Many thanks also to the members of the University of California, Los Angeles (UCLA) Embryology Club, which celebrates its twentieth anniversary this year, for providing the atmosphere that made developing these ideas possible. Our work is supported by the Norman Sprague Endowment, a National Institutes of Health MERIT Award and the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary information S1 (movie)

Re-enactment of the Spemann–Mangold experiment by Eddy De Robertis. (AVI 12207 kb)

The movie starts with photos of Hans Spemann and Hilde Mangold circa 1924 (Ref. 1). Next, it shows the author at the dissection microscope. Two embryos can be seen, one of which has the dorsal blastopore lip, the Spemann's organizer, clearly visible as a crescent. With the help of a tungsten needle and forceps, a square of organizer tissue is excised — the operation is done free-hand. The organizer is pushed into the ventral side of a recipient gastrula with an eyebrow hair. One hour after transplantation, the graft has, almost miraculously, healed into the host embryo. Two days later, a Siamese twin has developed with two perfect body axes. The Spemann's organizer graft induced complete central nervous systems and mesodermal somites in tissues of the host that would otherwise have become ventral tissue.

Reference

1. De Robertis, E. M. & Aréchaga, J. (eds). Special issue: the Spemann–Mangold Organizer Int. J. Dev. Biol. 45, (2001).

Related links

Related links

FURTHER INFORMATION

Eddy De Robertis' laboratory

Xenbase: a X. laevis web resource

The origins of Entwicklungsmechanik

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Robertis, E. Spemann's organizer and self-regulation in amphibian embryos. Nat Rev Mol Cell Biol 7, 296–302 (2006). https://doi.org/10.1038/nrm1855

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1855

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing