Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Linking data to models: data regression

Key Points

  • Mathematical modelling is an essential tool in systems biology. To ensure the accuracy of mathematical models, model parameters must be estimated using experimental data, a process called regression. Also, pre-regression and post-regression diagnostics must be employed to evaluate the model goodness-of-fit and the reliability of the estimated parameter values.

  • Maximum likelihood estimation and least-squares fitting are the most common regression schemes, yielding parameter values and their variance–covariance matrix. They work under the assumption that the estimated parameters have a normal distribution. When this assumption is not valid, Bayesian inference can be used, yielding the full parameter distribution.

  • Prior to regression, the structural identifiability of models must be assessed to determine whether model parameters can be uniquely determined and what data are required to achieve that.

  • Post-regression diagnostics include testing a model's goodness-of-fit, determining which model among competing ones fits the data best, evaluating parameter determinability and evaluating parameter significance.

  • Parameters in probabilistic models must be inferred by either indirect inference or by Bayesian methods. In indirect inference, model parameters are estimated by minimizing the differences between intermediate statistics that characterize simulated and experimental data.

Abstract

Mathematical models are an essential tool in systems biology, linking the behaviour of a system to the interactions between its components. Parameters in empirical mathematical models must be determined using experimental data, a process called regression. Because experimental data are noisy and incomplete, diagnostics that test the structural identifiability and validity of models and the significance and determinability of their parameters are needed to ensure that the proposed models are supported by the available data.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Workflow of data-driven mechanistic modelling that employs regression as well as pre-regression and post-regression diagnostics.
Figure 2: Diagrams of post-regression diagnostics.
Figure 3: Modelling of probabilistic processes.

Similar content being viewed by others

References

  1. Arkin, A. P. Synthetic cell biology. Curr. Opin. Biotechnol. 12, 638–644 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Kitano, H. Systems biology: a brief overview. Science 295, 1662–1664 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Sachs, K., Perez, O., Pe'er, D., Lauffenburger, D. A. & Nolan, G. P. Causal protein-signaling networks derived from multiparameter single-cell data. Science 308, 523–529 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Woolf, P. J., Prudhomme, W., Daheron, L., Daley, G. Q. & Lauffenburger, D. A. Bayesian analysis of signaling networks governing embryonic stem cell fate decisions. Bioinformatics 21, 741–753 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Bulashevska, S. & Eils, R. Inferring genetic regulatory logic from expression data. Bioinformatics 21, 2706–2713 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Segal, E., Friedman, N., Kaminski, N., Regev, A. & Koller, D. From signatures to models: understanding cancer using microarrays. Nature Genet. 37, S38–S45 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Janes, K. A. et al. Systems model of signaling identifies a molecular basis set for cytokine-induced apoptosis. Science 310, 1646–1653 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Janes, K. A. et al. Cue-signal-response analysis of TNF-induced apoptosis by partial least squares regression of dynamic multivariate data. J. Comp. Biol. 11, 544–561 (2004).

    Article  CAS  Google Scholar 

  9. Heard, N. A., Holmes, C. C., Stephens, D. A., Hand, D. J. & Dimopoulos, G. Bayesian coclustering of Anopheles gene expression time series: study of immune defense response to multiple experimental challenges. Proc. Natl Acad. Sci. USA 102, 16939–16944 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sprague, B. L. et al. Mechanisms of microtubule-based kinetochore positioning in the yeast metaphase spindle. Biophys. J. 84, 3529–3546 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bentele, M. et al. Mathematical modeling reveals threshold mechanism in CD95-induced apoptosis. J. Cell Biol. 166, 839–851 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gardner, M. K. et al. Tension-dependent regulation of microtubule dynamics at kinetochores can explain metaphase congression in yeast. Mol. Biol. Cell 16, 3764–3775 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rodriguez-Fernandez, M., Mendes, P. & Banga, J. R. A hybrid approach for efficient and robust parameter estimation in biochemical pathways. Biosystems 83, 248–265 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Mendes, P. & Kell, D. B. Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics 14, 869–883 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Schoeberl, B., Eichler-Jonsson, C., Gilles, E. D. & Muller, G. Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nature Biotechnol. 20, 370–375 (2002). Ordinary differential equation-based model of the epidermal-growth-factor-signalling network with parameters that were estimated using sensitivity analysis and least-squares regression of concentration time-courses.

    Article  Google Scholar 

  16. Bellman, R. & Astrom, K. J. On structural identifiability. Math. Biosci. 7, 329–339 (1970).

    Article  Google Scholar 

  17. Yao, K. Z., Shaw, B. M., Kou, B., McAuley, K. B. & Bacon, D. W. Modeling ethylene/butene copolymerization with multi-site catalysts: parameter estimability and experimental design. Polymer Reaction Eng. 11, 563–588 (2003).

    Article  CAS  Google Scholar 

  18. Gadkar, K. G., Gunawan, R. & Doyle, F. J. III Iterative approach to model identification of biological networks. BMC Bioinformatics 6, 155 (2005). Presents details of structural identifiability analysis and its application to parameter estimation and optimal experimental design.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning — Data Mining, Inference and Prediction (Springer, New York, 2001).

    Google Scholar 

  20. Papoulis, A. in Probability, Random Variables, and Stochastic Processes (ed. Editions, M.-H. I.) (McGraw-Hill, New York, 1991).

    Google Scholar 

  21. Press, W. H., Flannery, B. P., Teukolsky, S. A. & Vetterling, W. T. Numerical Recipes in C: The Art of Scientific Computing (Cambridge Univ. Press, New York, 1992).

    Google Scholar 

  22. Golub, G. H. & Van Loan, C. F. An analysis of the total least squares problem. SIAM J. Numer. Anal. 17, 883–893 (1980).

    Article  Google Scholar 

  23. Danuser, G. & Strickler, M. Parametric model fitting: from inlier characterization to outlier detection. IEEE Trans. Patt. Anal. Mach. Intell. 20, 263–280 (1998).

    Article  Google Scholar 

  24. Rousseeuw, P. J. Least median of squares regression. J. Am. Stat. Ass. 79, 871–880 (1984).

    Article  Google Scholar 

  25. Koch, K. -R. Parameter Estimation and Hypothesis Testing in Linear Models (Springer, Berlin, 1988).

    Book  Google Scholar 

  26. Pardalos, P. M. & Romeijn, H. E. Handbook of Global Optimization Volume 2 (Kluwer Academic, Dordrecht, 2002).

    Book  Google Scholar 

  27. Horst, R. & Pardalos, P. M. Handbook of Global Optimization (Kluwer Academic, Dodrecht, 1995).

    Book  Google Scholar 

  28. Moles, C. G., Mendes, P. & Banga, J. R. Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res. 13, 2467–2474 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kleinbaum, D. G., Kupper, L. L., Muller, K. E. & Nizam, A. Applied Regression Analysis and Multivariable Methods (Duxbury, 1997).

    Google Scholar 

  30. Seber, G. A. & Wild, C. J. Nonlinear Regression (Wiley-Interscience, Hoboken, 2004). References 29 and 30 are comprehensive textbooks on linear and nonlinear regression and important related diagnostics.

    Google Scholar 

  31. Efron, B. Nonparametric estimates of standard error: the jackknife, the bootstrap and other methods. Biometrika 68, 589–599 (1981).

    Article  Google Scholar 

  32. Potvin, C. & Roff, D. A. Distribution-free and robust statistical methods: viable alternatives to parametric statistics. Ecology 74, 1617–1628 (1993).

    Article  Google Scholar 

  33. Coleman, M. C. & Block, D. E. Bayesian parameter estimation with informative priors for nonlinear systems. AIChE J. 52, 651–667 (2005).

    Article  Google Scholar 

  34. Barenco, M. et al. Ranked prediction of p53 targets using hidden variable dynamic modeling. Genome Biol. 7, R25 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chen, M., Shao, Q. & Ibrahim, J. G. Monte Carlo Methods in Bayesian Computation (Springer, New York, 2000). Presents many computational techniques for carrying out Bayesian inference.

    Book  Google Scholar 

  36. Schwarz, G. Estimating dimension of a model. Ann. Stat. 6, 461–464 (1978).

    Article  Google Scholar 

  37. Gruen, A. W. Data-processing methods for amateur photographs. Photogramm. Rec. 11, 567–579 (1985).

    Article  Google Scholar 

  38. Golub, G. H. & Van Loan, C. F. Matrix Computations (Johns Hopkins Univ. Press, Baltimore, 1983).

    Google Scholar 

  39. Pedraza, J. M. & van Oudenaarden, A. Noise propagation in gene networks. Science 307, 1965–1969 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Rosenfeld, N., Young, J. W., Alon, U., Swain, P. S. & Elowitz, M. B. Gene regulation at the single-cell level. Science 307, 1962–1965 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Bennett, M. R. & Kearns, J. L. Statistics of transmitter release at nerve terminals. Prog. Neurobiol. 60, 545–606 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Redman, S. Quantal analysis of synaptic potentials in neurons of the central nervous system. Physiol. Rev. 70, 165–198 (1990).

    Article  CAS  PubMed  Google Scholar 

  43. Morton-Firth, C. J. & Bray, D. Predicting temporal fluctuations in an intracellular signalling pathway. J. Theor. Biol. 192, 117–128 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Spudich, J. L. & Koshland, D. E. Non-genetic individuality — chance in single cell. Nature 262, 467–471 (1976).

    Article  CAS  PubMed  Google Scholar 

  45. Mitchison, T. & Kirschner, M. Dynamic instability of microtubule growth. Nature 312, 237–242 (1984).

    Article  CAS  PubMed  Google Scholar 

  46. Smith, A. A. Jr Estimating nonlinear time-series models using simulated vector autoregression. J. Appl. Econometrics 8, S63–S84 (1993). Introduces methods of indirect inference for the estimation of parameters in probabilistic models.

    Article  Google Scholar 

  47. Gourieroux, C., Monfort, A. & Renault, E. Indirect inference. J. Appl. Econometrics 8, S85–S118 (1993).

    Article  Google Scholar 

  48. Jiang, W. & Turnbull, B. The indirect method: inference based on intermediate statistics — a synthesis and examples. Stat. Sci. 19, 239–263 (2004).

    Article  Google Scholar 

  49. Gallant, A. R. & Tauchen, G. Which moments to match? Econometric Theory 12, 657–681 (1996).

    Article  Google Scholar 

  50. Golightly, A. & Wilkinson, D. J. Bayesian sequential inference for stochastic kinetic biochemical network models. J. Comp. Biol. 13, 838–851 (2006).

    Article  CAS  Google Scholar 

  51. O'Neill, P. D. & Roberts, G. O. Bayesian inference for partially observed stochastic epidemics. J. Royal Stat. Soc. A 162, 121–129 (1999).

    Article  Google Scholar 

  52. Gibson, G. J., Kleczkowski, A. & Gilligan, C. A. Bayesian analysis of botanical epidemics using stochastic compartmental models. Proc. Natl Acad. Sci. USA 101, 12120–12124 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Smith, A. F. M. & Roberts, G. O. Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo Methods. J. Royal Stat. Soc. B 55, 3–23 (1993).

    Google Scholar 

  54. Wilkinson, D. J. Stochastic Modelling for Systems Biology (CRC Press, Boca Raton, 2006). Discusses issues that are related to probabilistic modelling and the estimation of parameters in stochastic models using Bayesian inference.

    Google Scholar 

  55. Walker, R. A. et al. Dynamic instability of individual microtubules analyzed by video light-microscopy — rate constants and transition frequencies. J. Cell Biol. 107, 1437–1448 (1988).

    Article  CAS  PubMed  Google Scholar 

  56. Shaw, S. L., Yeh, E., Maddox, P., Salmon, E. D. & Bloom, K. Astral microtubule dynamics in yeast: a microtubule-based searching mechanism for spindle orientation and nuclear migration into the bud. J. Cell Biol. 139, 985–994 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Odde, D. J., Cassimeris, L. & Buettner, H. M. Kinetics of microtubule catastrophe assessed by probabilistic analysis. Biophys. J. 69, 796–802 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gildersleeve, R. F., Cross, A. R., Cullen, K. E., Fagen, A. P. & Williams, R. C. Microtubules grow and shorten at intrinsically variable rates. J. Biol. Chem. 267, 7995–8006 (1992).

    CAS  PubMed  Google Scholar 

  59. Dorn, J. F. et al. Interphase kinetochore microtubule dynamics in yeast analyzed by high-resolution microscopy. Biophys. J. 89, 2835–2854 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jaqaman, K. et al. Comparative autoregressive moving average analysis of kinetochore microtubule dynamics in yeast. Biophys. J. 91, 2312–2325 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a National Institutes of Health grant. K.J. is a Paul Sigler/Agouron fellow of the Helen Hay Whitney Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaudenz Danuser.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

FURTHER INFORMATION

Gaudenz Danuser's homepage

Glossary

Structural identifiability

A model is structurally identifiable if its parameters can be uniquely estimated by fitting the model to experimental data. Structural identifiability is related to the sensitivity of process output to parameter variations.

Variance

A measure of the dispersion of a variable around its average. Its square root is the standard deviation.

Covariance

A measure of how two variables vary relative to each other.

Significance

A parameter is statistically significant if, given the uncertainty in its estimate due to noise in the input data, the probability that the parameter magnitude is different from zero not just by chance exceeds the confidence required by the investigator.

Determinability

A measure for the capability to infer the value of a model parameter from the available input data, independent of the values of other parameters.

Regression instability

A measure for the variation of regression results in the presence of data noise. A regression is unstable if the estimates of model parameters significantly differ when one additional data point is added to the set of input data.

Linear independence

A set of parameters is linearly independent if none of its parameters can be written as a linear combination of the other parameters.

Normal distribution

A bell-shaped distribution that is fully characterized by its mean μ and variance σ2. It is usually written as N(μ, σ2).

Residual

The difference between an observation and the corresponding model prediction.

Robust

An estimation technique is said to be robust if it is insensitive to deviations in the model and the input data from the ideal assumptions about them that were used in formulating the estimation process.

Outlier

A data point with an error that does not belong to the assumed distribution of measurement errors.

Lorentzian distribution

A distribution that resembles the normal distribution, but with lower probability for values that are close to the mean and higher probability for values that are farther from the mean.

Linear

The models y = α1x + α2x2 and y = αexp(−x) are linear functions of the parameters α.

Nonlinear

The models y = (α1x + α2x)2 and y = α1exp(−α2x) are nonlinear functions of the parameters α.

Closed-form solution

A solution that can be expressed analytically in terms of a finite number of operations (for example, addition, multiplication, square root, and so on).

Global optimization

The search for the lowest minimum or highest maximum of an objective function that has multiple minima or maxima. Such a function is called non-convex.

Central limit theorem

The central limit theorem states that any variable that is calculated as the sum of a large number of variables, even if they are not normally distributed, will be normally distributed.

Nonparametric methods

Statistical methods that do not assume an underlying distribution for the data being analysed.

Number of degrees of freedom

The number of degrees of freedom in a regression is the number of data points that were used in the regression minus the number of estimated parameters.

Null hypothesis

A statement that is tested for possible rejection under the assumption that it is true.

Alternative hypothesis

A statement that is placed in opposition to the null hypothesis.

Test-statistic

The variable calculated from the available data in order to test whether the null hypothesis can be rejected. Its distribution under the null hypothesis is usually known.

Chi-square distribution

A variable that is calculated as the sum of the squares of ν variables that are N(0,1)-distributed has a Chi square (χ2)-distribution with ν degrees of freedom.

P-value

The probability of obtaining a test-statistic at least as extreme as the one observed, assuming that the null hypothesis is true. It is effectively the probability of wrongly rejecting the null hypothesis when it is actually true.

Significance value

The value below which a p-value supports rejecting the null hypothesis.

F-distribution

A variable that is calculated as the ratio of two Chi-square-distributed variables divided by their degrees of freedom ν1 and ν2, has an F-distribution with ν1 and ν2 degrees of freedom.

Trace

Sum of the diagonal elements of a matrix.

Student's t-distribution

A distribution that is similar to N(0,1), except that it has heavier tails. It is a function of the number of degrees of freedom ν, and converges to N(0,1) as ν gets larger.

Probabilistic process

A process in which the current state of a system does not uniquely determine its next state, but defines a set of possible states with their transition probabilities.

Markov chain

A chain of events in which what happens at time point t + 1 only depends on what has happened at time point t, and not on any previous time points.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaqaman, K., Danuser, G. Linking data to models: data regression. Nat Rev Mol Cell Biol 7, 813–819 (2006). https://doi.org/10.1038/nrm2030

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2030

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing