Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspectives
  • Published:

Ethical sourcing of human embryonic stem cells — rational solutions?

Abstract

At the heart of the extensive ethical and regulatory debates that have surrounded human embryonic stem cells is the human pre-implantation embryo. Advances in the understanding of cellular reprogramming, both by cell nuclear replacement and by potential new protocols, should lead to methods that circumvent the use of a practicably viable embryo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Different scenarios for cell nuclear replacement procedures.

Similar content being viewed by others

References

  1. Gey, G., Coffman, W. & Kubicek, M. Tissue culture studies of the proliferative capacity of cervical carcinoma and normal epithelium. Cancer Res. 12, 264–265 (1952).

    Google Scholar 

  2. Billingham, R. E. Contributions of transplantation to modern biology and medicine. Transplant Proc. 9, 34–48 (1977).

    Google Scholar 

  3. Starzl, T. E. & Zinkernagel, R. M. Transplantation tolerance from a historical perspective. Nature Reviews Immunol. 1, 233–239 (2001).

    Article  CAS  Google Scholar 

  4. Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Reubinoff, B. E. et al. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nature Biotechnol. 18, 399–404 (2000).

    Article  CAS  Google Scholar 

  6. Polkinghorne, J. Review of the Guidance on the Research Use of Fetus and Fetal Material. (HMSO, London, 1989).

    Google Scholar 

  7. Shamblott, M. J. et al. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc. Natl Acad. Sci. USA 95, 13726–13731 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Trounson, A. & Pera, M. Potential benefits of cell cloning for human medicine. Reprod. Fertil. Dev. 10, 121–125 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Naito, H. et al. Xenogeneic embryonic stem cell-derived cardiomyocyte transplantation. Transplant Proc. 36, 2507–2508 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Hassink, R. J. et al. Human stem cells shape the future of cardiac regeneration research. Int. J. Cardiol. 95, (Suppl. 1) S20–S22 (2004).

    Article  PubMed  Google Scholar 

  11. Beltrami, A. P. et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114, 763–776 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Grounds, M. D. et al. The role of stem cells in skeletal and cardiac muscle repair. J. Histochem. Cytochem. 50, 589–610 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Hwang, W. S. et al. Evidence of a pluripotent human embryonic stem cell line derived from a cloned blastocyst. Science 303, 1669–1674 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Bradley, J. A., Bolton, E. A. & Pedersen, R. A. ES Cells for Transplantation: Coping with Immunity in Human Pluripotent Stem Cells (eds Odorico, J. S., Pedersen, R. A. & Zhang, S.-C.) (BIOS Scientific, Abingdon, UK, 2005).

    Google Scholar 

  15. Hochedlinger, K. & Jaenisch, R. Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature 415, 1035–1038 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Holden, C. Stem cell research. Primate parthenotes yield stem cells. Science 295, 779–780 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Holden, C. & Vogel, G. Cell biology. A technical fix for an ethical bind? Science 306, 2174–2176 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Eistetter, H. R. Pluripotent embryonal stem cell lines can be established from disaggregated mouse morulae. Dev. Growth Differ. 31, 275–282 (1989).

    Article  Google Scholar 

  19. Kanatsu-Shinohara, M. et al. Generation of pluripotent stem cells from neonatal mouse testis. Cell 119, 1001–1012 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Gurdon, J. B. The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J. Embryol. Exp. Morphol. 10, 622–640 (1962).

    CAS  PubMed  Google Scholar 

  21. Berardino, M. A. D. Genomic Potential of Differentiated Cells. (Columbia University Press, New York, 1997).

    Google Scholar 

  22. Wilmut, I. et al. Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–813 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Miller, R. A. & Ruddle, F. H. Pluripotent teratocarcinoma-thymus somatic cell hybrids. Cell 9, 45–55 (1976).

    Article  CAS  PubMed  Google Scholar 

  24. Do, J. T. and Scholer, H. R. Nuclei of embryonic stem cells reprogram somatic cells. Stem Cells 22, 941–949 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Byrne, J. A. et al. Nuclei of adult mammalian somatic cells are directly reprogrammed to oct-4 stem cell gene expression by amphibian oocytes. Curr. Biol. 13, 1206–1213 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Wagers, A. J. & Weissman, I. L. Plasticity of adult stem cells. Cell 116, 639–648 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, M. Ethical sourcing of human embryonic stem cells — rational solutions?. Nat Rev Mol Cell Biol 6, 663–667 (2005). https://doi.org/10.1038/nrm1698

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1698

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing