Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Developmental cell biology

Heparan sulphate proteoglycans: the sweet side of development

Key Points

  • Heparan sulphate proteoglycans (HSPGs) are cell-surface or extracellular matrix glycoproteins that are modified by the addition of one or several glycosaminoglycan (GAG) chains.

  • GAGs are long unbranched polysaccharide chains that consist of repeating disaccharide units incorporating an amino sugar and a uronic acid.

  • Genetic studies in invertebrate and vertebrate model systems have identified HSPGs as important modulators of signal transduction pathways during development. Mutations in genes that encode proteoglycan core proteins or in genes that are involved in the biosynthesis of GAGs cause loss of activity in the Wnt, Hedgehog (Hh), Decapentaplegic (Dpp)/transforming growth factor-β (TGFβ) and fibroblast growth factor signalling pathways during development.

  • Glypicans and syndecans are HSPG core proteins that have been shown to mediate HSPG function during developmental signalling. Glypicans modulate the activity of the Wnt, Hh and Dpp/TGFβ pathways during embryonic development and patterning of imaginal discs in Drosophila melanogaster. Syndecans regulate the activity of the Slit–Robo pathway during axon pathfinding.

  • HSPGs modulate the tissue distribution of secreted signalling molecules in a concentration-dependent fashion by binding and concentrating morphogens — signalling molecules that form protein gradients and activate target genes in a concentration-dependent fashion — at the cell surface. In the absence of functional HSPGs, signalling molecules are lost from the cell surface and morphogen gradients are disrupted, which results in the loss of target-gene activation.

  • The function of HSPGs in different signalling pathways is core-protein specific and can be locally regulated by shedding from the cell surface. Proteoglycan core proteins are expressed in a tissue-specific fashion that correlates with their specific function in different signal transduction pathways.

Abstract

Pattern formation during development is controlled to a great extent by a small number of conserved signal transduction pathways that are activated by extracellular ligands such as Hedgehog, Wingless or Decapentaplegic. Genetic experiments have identified heparan sulphate proteoglycans (HSPGs) as important regulators of the tissue distribution of these extracellular signalling molecules. Several recent reports provide important new insights into the mechanisms by which HSPGs function during development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biosynthesis of heparan sulphate, chondroitin sulphate or dermatan sulphate glycosaminoglycans.
Figure 2: Structure of membrane heparan sulphate proteoglycans.
Figure 3: Drosophila melanogaster genes involved in synthesis and modification of heparan sulphate.
Figure 4: Function of glypicans in growth factor signalling.
Figure 5: Heparan sulphate proteoglycans and Wingless morphogen activity gradients.

Similar content being viewed by others

References

  1. Cadigan, K. M. & Nusse, R. Wnt signaling: a common theme in animal development. Genes Dev. 11, 3286–3305 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Lum, L. & Beachy, P. A. The Hedgehog response network: sensors, switches, and routers. Science 304, 1755–1759 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Martinez Arias, A. Wnts as morphogens? The view from the wing of Drosophila. Nature Rev. Mol. Cell Biol. 4, 321–325 (2003).

    Article  CAS  Google Scholar 

  4. Tabata, T. & Takei, Y. Morphogens, their identification and regulation. Development 131, 703–712 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Lin, X. & Perrimon, N. Developmental roles of heparan sulfate proteoglycans in Drosophila. Glycoconjugate J. 19, 363–368 (2003).

    Article  Google Scholar 

  6. Nybakken, K. & Perrimon, N. Heparan sulfate proteoglycan modulation of developmental signaling in Drosophila. Biochim. Biophys. Acta 1573, 280–291 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Selleck, S. B. Genetic dissection of proteoglycan function in Drosophila and C. elegans. Semin. Cell Dev. Biol. 12, 127–134 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Lin, X. & Perrimon, N. Dally cooperates with Drosophila Frizzled-2 to transduce Wingless signalling. Nature 400, 281–284 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Tsuda, M. et al. The cell-surface proteoglycan Dally regulates Wingless signalling in Drosophila. Nature 400, 276–280 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Desbordes, S. C. & Sanson, B. The glypican Dally-like is required for Hedgehog signalling in the embryonic epidermis of Drosophila. Development 130, 6245–6255 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Han, C., Belenkaya, T. Y., Wang, B. & Lin, X. Drosophila glypicans control the cell-to-cell movement of Hedgehog by a dynamin-independent process. Development 131, 601–611 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Fujise, M. et al. Dally regulates Dpp morphogen gradient formation in the Drosophila wing. Development 130, 1515–1522 (2003). Characterization of the role of a proteoglycan core protein in TGFβ signalling.

    Article  CAS  PubMed  Google Scholar 

  13. Belenkaya, T. Y. et al. Drosophila Dpp morphogen movement is independent of dynamin-mediated endocytosis but regulated by the glypican members of heparan sulfate proteoglycans. Cell 119, 231–244 (2004). Study of the mechanism regulating TGFβ morphogen gradient formation.

    Article  CAS  PubMed  Google Scholar 

  14. Lin, X., Buff, E. M., Perrimon, N. & Michelson, A. M. Heparan sulfate proteoglycans are essential for FGF receptor signaling during Drosophila embryonic development. Development 126, 3715–3723 (1999).

    CAS  PubMed  Google Scholar 

  15. Varki, A. et al. Essentials of Glycobiology (CSHL Press, Cold Spring Harbor, New York, 1999).

    Google Scholar 

  16. Esko, J. D. & Selleck, S. B. Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu. Rev. Biochem. 71, 435–471 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Rapraeger, A. C., Krufka, A. & Olwin, B. B. Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science 252, 1705–1708 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Yayon, A., Klagsbrun, M., Esko, J. D., Leder, P. & Ornitz, D. M. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 64, 841–848 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Nakato, H., Futch, T. A. & Selleck, S. B. The division abnormally delayed (dally) gene: a putative integral membrane proteoglycan required for cell division patterning during postembryonic development of the nervous system in Drosophila. Development 121, 3687–3702 (1995).

    CAS  PubMed  Google Scholar 

  20. Galli, A., Roure, A., Zeller, R. & Dono, R. Glypican 4 modulates FGF signalling and regulates dorsoventral forebrain patterning in Xenopus embryos. Development 130, 4919–4929 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Ohkawara, B., Yamamoto, T. S., Tada, M. & Ueno, N. Role of glypican 4 in the regulation of convergent extension movements during gastrulation in Xenopus laevis. Development 130, 2129–2138 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Topczewski, J. et al. The zebrafish glypican knypek controls cell polarity during gastrulation movements of convergent extension. Dev. Cell 1, 251–264 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Lee, J. S. et al. Axon sorting in the optic tract requires HSPG synthesis by ext2 (dackel) and extl3 (Boxer). Neuron 44, 947–960 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Kantor, D. B. et al. Semaphorin 5A is a bifunctional axon guidance cue regulated by heparan and chondroitin sulfate proteoglycans. Neuron 44, 961–75 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Song, H. H., Shi, W., Xiang, Y. Y. & Filmus, J. The loss of glypican-3 induces alterations in Wnt signaling. J. Biol. Chem. 280, 2116–2125 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Haerry, T. E., Heslip, T. R., Marsh, J. L. & O'Connor, M. B. Defects in glucuronate biosynthesis disrupt Wingless signaling in Drosophila. Development 124, 3055–3064 (1997).

    CAS  PubMed  Google Scholar 

  27. Binari, R. C. et al. Genetic evidence that heparin-like glycosaminoglycans are involved in wingless signaling. Development 124, 2623–2632 (1997).

    CAS  PubMed  Google Scholar 

  28. Häcker, U., Lin, X. & Perrimon, N. The Drosophila sugarless gene modulates Wingless signaling and encodes an enzyme involved in polysaccharide biosynthesis. Development 124, 3565–3573 (1997).

    PubMed  Google Scholar 

  29. Bellaiche, Y., The, I. & Perrimon, N. Tout-velu is a Drosophila homologue of the putative tumour suppressor EXT-1 and is needed for Hh diffusion. Nature 394, 85–88 (1998). First demonstration that GAGs are required for the tissue distribution of Hedgehog.

    Article  CAS  PubMed  Google Scholar 

  30. Goto, S. et al. UDP–sugar transporter implicated in glycosylation and processing of Notch. Nature Cell Biol. 3, 816–822 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Selva, E. M. et al. Dual role of the fringe connection gene in both heparan sulfate and fringe-dependent signalling events. Nature Cell Biol. 3, 809–815 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Lüders, F. et al. Slalom encodes an adenosine 3′-phosphate 5′-phosphosulfate transporter essential for development in Drosophila. EMBO J. 22, 3635–3644 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Glise, B. et al. Shifted, the Drosophila ortholog of Wnt Inhibitory Factor-1, controls the distribution and movement of Hedgehog. Dev. Cell 8, 255–266 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Gorfinkiel, N., Sierra, J., Callejo, A., Ibanez, C. & Guerrero, I. The Drosophila ortholog of the human Wnt inhibitor factor shifted controls the diffusion of lipid–modified hedgehog. Dev. Cell 8, 241–253 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Koziel, L., Kunath, M., Kelly, O. G. & Vortkamp, A. Ext1-dependent heparan sulfate regulates the range of Ihh signaling during endochondral ossification. Dev. Cell 6, 801–813 (2004). Study of the role of GAGs during Hedgehog signalling in vertebrates.

    Article  CAS  PubMed  Google Scholar 

  36. Lander, A. D., Nie, Q. & Wan, F. Y. Do morphogen gradients arise by diffusion? Dev. Cell 2, 785–796 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Baeg, G. H., Lin, X., Khare, N., Baumgartner, S. & Perrimon, N. Heparan sulfate proteoglycans are critical for the organization of the extracellular distribution of Wingless. Development 128, 87–94 (2001).

    CAS  PubMed  Google Scholar 

  38. Han, C., Belenkaya, T. Y., Khodoun, M., Tauchi, M. & Lin, X. Distinct and collaborative roles of Drosophila EXT family proteins in morphogen signalling and gradient formation. Development 131, 1563–1575 (2004). Demonstration of the role of GAGs in the shaping of morphogen gradients.

    Article  CAS  PubMed  Google Scholar 

  39. Takei, Y., Ozawa, Y., Sato, M., Watanabe, A. & Tabata, T. Three Drosophila EXT genes shape morphogen gradients through synthesis of heparan sulfate proteoglycans. Development 131, 73–82 (2004). Demonstration of the role of GAGs in the shaping of morphogen gradients.

    Article  CAS  PubMed  Google Scholar 

  40. Strigini, M. & Cohen, S. M. Wingless gradient formation in the Drosophila wing. Curr. Biol. 10, 293–300 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Franch–Marro, X. et al. Glypicans shunt the Wingless signal between local signalling and further transport. Development 132, 659–666 (2005).

    Article  PubMed  CAS  Google Scholar 

  42. Kirkpatrick, C. A., Dimitroff, B. D., Rawson, J. M. & Selleck, S. B. Spatial regulation of Wingless morphogen distribution and signaling by Dally–like protein. Dev. Cell 7, 513–523 (2004). Elegant demonstration of the local regulation of proteoglycan function.

    Article  CAS  PubMed  Google Scholar 

  43. Kreuger, J., Perez, L., Giraldez, A. J. & Cohen, S. M. Opposing activities of Dally–like glypican at high and low levels of Wingless morphogen activity. Dev. Cell 7, 503–512 (2004). Elegant demonstration of the local regulation of proteoglycan function.

    Article  CAS  PubMed  Google Scholar 

  44. Han, C., Yan, D., Belenkaya, T. Y. & Lin, X. Drosophila glypicans Dally and Dally–like shape the extracellular Wingless morphogen gradient in the wing disc. Development 132, 667–679 (2005). Analysis of the specific roles of Dally and Dlp in shaping the Wg morphogen gradient.

    Article  CAS  PubMed  Google Scholar 

  45. Khare, N. & Baumgartner, S. Dally–like protein, a new Drosophila glypican with expression overlapping with wingless. Mech. Dev. 99, 199–202 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Lum, L. et al. Identification of Hedgehog pathway components by RNAi in Drosophila cultured cells. Science 299, 2039–2045 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Perrimon, N. & Häcker, U. Wingless, hedgehog and heparan sulfate proteoglycans. Development 131, 2509–2511 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Jackson, S. M. et al. dally, a Drosophila glypican, controls cellular responses to the TGFβ-related morphogen, Dpp. Development 124, 4113–4120 (1997).

    CAS  PubMed  Google Scholar 

  49. Bornemann, D. J., Duncan, J. E., Staatz, W., Selleck, S. & Warrior, R. Abrogation of heparan sulfate synthesis in Drosophila disrupts the Wingless, Hedgehog and Decapentaplegic signaling pathways. Development 131, 1927–1938 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Olwin, B. B. & Rapraeger, A. Repression of myogenic differentiation by aFGF, bFGF, and K-FGF is dependent on cellular heparan sulfate. J. Cell Biol. 118, 631–639 (1992).

    Article  CAS  PubMed  Google Scholar 

  51. The, I., Bellaiche, Y. & Perrimon, N. Hedgehog movement is regulated through tout velu–dependent synthesis of a heparan sulfate proteoglycan. Mol. Cell 4, 633–639 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Brückner, K., Perez, L., Clausen, H. & Cohen, S. Glycosyltransferase activity of Fringe modulates Notch–Delta interactions. Nature 406, 411–415 (2000).

    Article  PubMed  Google Scholar 

  53. Moloney, D. J. et al. Fringe is a glycosyltransferase that modifies Notch. Nature 406, 369–375 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Liang, Y. et al. Mammalian homologues of the Drosophila slit protein are ligands of the heparan sulfate proteoglycan glypican-1 in brain. J. Biol. Chem. 274, 17885–17892 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Hu, H. Cell-surface heparan sulfate is involved in the repulsive guidance activities of Slit2 protein. Nature Neurosci. 4, 695–701 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Johnson, K. G. et al. Axonal heparan sulfate proteoglycans regulate the distribution and efficiency of the repellent slit during midline axon guidance. Curr. Biol. 14, 499–504 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Steigemann, P., Molitor, A., Fellert, S., Jackle, H. & Vorbruggen, G. Heparan sulfate proteoglycan syndecan promotes axonal and myotube guidance by slit/robo signaling. Curr. Biol. 14, 225–230 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Park, Y. et al. Drosophila perlecan modulates FGF and hedgehog signals to activate neural stem cell division. Dev. Biol. 253, 247–257 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Voigt, A., Pflanz, R., Schafer, U. & Jackle, H. Perlecan participates in proliferation activation of quiescent Drosophila neuroblasts. Dev. Dyn. 224, 403–412 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Pellegrini, L., Burke, D. F., von Delft, F., Mulloy, B. & Blundell, T. L. Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin. Nature 407, 1029–1034 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Faham, S., Hileman, R. E., Fromm, J. R., Linhardt, R. J. & Rees, D. C. Heparin structure and interactions with basic fibroblast growth factor. Science 271, 1116–1120 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Faham, S., Linhardt, R. J. & Rees, D. C. Diversity does make a difference: fibroblast growth factor–heparin interactions. Curr. Opin. Struct. Biol. 8, 578–586 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Reichsman, F., Smith, L. & Cumberledge, S. Glycosaminoglycans can modulate extracellular localization of the wingless protein and promote signal transduction. J. Cell Biol. 135, 819–827 (1996).

    Article  CAS  PubMed  Google Scholar 

  64. Kamimura, K. et al. Drosophila heparan sulfate 6-O-sulfotransferase (dHS6ST) gene. Structure, expression, and function in the formation of the tracheal system. J. Biol. Chem. 276, 17014–17021 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Bullock, S. L., Fletcher, J. M., Beddington, R. S. & Wilson, V. A. Renal agenesis in mice homozygous for a gene trap mutation in the gene encoding heparan sulfate 2-sulfotransferase. Genes Dev. 12, 1894–1906 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Morio, H. et al. EXT gene family member rib-2 is essential for embryonic development and heparan sulfate biosynthesis in Caenorhabditis elegans. Biochem. Biophys. Res. Commun. 301, 317–323 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Herman, T. & Horvitz, H. R. Mutations that perturb vulval invagination in C. elegans. Cold Spring Harb. Symp. Quant. Biol. 62, 353–359 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Herman, T., Hartwieg, E. & Horvitz, H. R. sqv mutants of Caenorhabditis elegans are defective in vulval epithelial invagination. Proc. Natl Acad. Sci. USA 96, 968–973 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bulow, H. E. & Hobert, O. Differential sulfations and epimerization define heparan sulfate specificity in nervous system development. Neuron 41, 723–736 (2004).

    Article  PubMed  Google Scholar 

  70. Baeg, G. H., Selva, E. M., Goodman, R. M., Dasgupta, R. & Perrimon, N. The Wingless morphogen gradient is established by the cooperative action of Frizzled and Heparan Sulfate Proteoglycan receptors. Dev. Biol. 276, 89–100 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Giraldez, A. J., Copley, R. R. & Cohen, S. M. HSPG modification by the secreted enzyme Notum shapes the Wingless morphogen gradient. Dev. Cell 2, 667–676 (2002). Elegant demonstration of the local regulation of proteoglycan function.

    Article  CAS  PubMed  Google Scholar 

  72. Feizi, T. & Chai, W. Oligosaccharide microarrays to decipher the glyco code. Nature Rev. Mol. Cell Biol. 5, 582–588 (2004).

    Article  CAS  Google Scholar 

  73. Pilia, G. et al. Mutations in GPC3, a glypican gene, cause the Simpson-Golabi–Behmel overgrowth syndrome. Nature Genet. 12, 241–247 (1996).

    Article  CAS  PubMed  Google Scholar 

  74. Kleeff, J. et al. The cell-surface heparan sulfate proteoglycan glypican-1 regulates growth factor action in pancreatic carcinoma cells and is overexpressed in human pancreatic cancer. J. Clin. Invest. 102, 1662–1673 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ahn, J. et al. Cloning of the putative tumour suppressor gene for hereditary multiple exostoses (EXT1). Nature Genet. 11, 137–143 (1995).

    Article  CAS  PubMed  Google Scholar 

  76. Stickens, D. et al. The EXT2 multiple exostoses gene defines a family of putative tumour suppressor genes. Nature Genet. 14, 25–32 (1996).

    Article  CAS  PubMed  Google Scholar 

  77. Furukawa, K. & Okajima, T. Galactosyltransferase I is a gene responsible for progeroid variant of Ehlers–Danlos syndrome: molecular cloning and identification of mutations. Biochim. Biophys. Acta 1573, 377–381 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Nelson, W. J. & Nusse, R. Convergence of Wnt, β–catenin, and cadherin pathways. Science 303, 1483–1487 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Seto, E. S. & Bellen, H. J. The ins and outs of Wingless signaling. Trends Cell Biol. 14, 45–53 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Ogden, S. K., Ascano, M., Jr., Stegman, M. A. & Robbins, D. J. Regulation of Hedgehog signaling: a complex story. Biochem. Pharmacol. 67, 805–814 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Raftery, L. A. & Sutherland, D. J. TGFβ family signal transduction in Drosophila development: from Mad to Smads. Dev. Biol. 210, 251–268 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Bulik, D. A. et al. sqv-3, −7, and −8, a set of genes affecting morphogenesis in caenorhabditis elegans, encode enzymes required for glycosaminoglycan biosynthesis. Proc. Natl Acad. Sci. USA 97, 10838–10843 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bulik, D. A. & Robbins, P. W. The Caenorhabditis elegans sqv genes and functions of proteoglycans in development. Biochim. Biophys. Acta 1573, 247–257 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Hwang, H. Y., Olson, S. K., Esko, J. D. & Horvitz, H. R. Caenorhabditis elegans early embryogenesis and vulval morphogenesis require chondroitin biosynthesis. Nature 423, 439–443 (2003). This paper highlights the importance of chondroitin sulphate in morphogenesis.

    Article  CAS  PubMed  Google Scholar 

  85. Mizuguchi, S. et al. Chondroitin proteoglycans are involved in cell division of Caenorhabditis elegans. Nature 423, 443–448 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Sen, J., Goltz, J. S., Stevens, L. & Stein, D. Spatially restricted expression of pipe in the Drosophila egg chamber defines embryonic dorsal-ventral polarity. Cell 95, 471–481 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Ebner, A. et al. Tracheal development in Drosophila melanogaster as a model system for studying the development of a branched organ. Gene 287, 55–66 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the Perrimon laboratory is supported by the Howard Hughes Medical Institute and the NIH. Work in the Häcker laboratory is supported by the Swedish Research Council VR and the Swedish Cancer Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udo Häcker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

glypican 4

Flybase

botv

dally

dll

dlp

dpp

frc

Hh

notum

patched

Robo

sfl

sgl

Slit

sotv

ssl

trol

ttv

Wg

OMIM

Ehlers–Danlos syndrome

multiple hereditary exostosis

Simpson–Golabi–Behmel syndrome

Glossary

PATTERN FORMATION

The developmental processes by which the complex shape and structure of higher organisms occur.

EXTRACELLULAR MATRIX

The complex, multi-molecular material that surrounds cells. The extracellular matrix comprises a scaffold on which tissues are organized, it provides cellular microenvironments and it regulates many cellular functions.

GLYCOSAMINOGLYCAN

A long, linear, charged polysaccharide that comprises a repeating pair of sugars, of which one is an amino sugar.

AMINO SUGAR

A monosaccharide or its derivative in which an alcoholic hydroxyl group has been replaced by an amino group.

EPIMERIZATION

The process by which an epimer is converted into its diastereoisomer by altering the configuration at the epimeric chiral centre.

WILMS' TUMOUR

A malignant tumour of the kidney that occurs in children.

PROGEROID

Associated with premature ageing.

GPI ANCHOR

The function of this post-translational modification is to attach proteins to the exoplasmic leaflet of membranes, possibly to specific domains therein. The anchor is made of one molecule of phosphatidylinositol to which a carbohydrate chain is linked through the C-6 hydroxyl of the inositol, and is linked to the protein through an ethanolamine phosphate moiety.

TYPE I TRANSMEMBRANE PROTEIN

A protein that contains a single membrane-spanning domain, with the C terminus orientated towards the cytoplasm and the N terminus orientated towards the lumen of membrane compartments or in an extracellular direction.

SEGMENT POLARITY

The segmented patterning of the body along the anterior–posterior axis. Segment polarity genes are expressed in a pattern of 14 stripes at the onset of gastrulation and follow the expression of pair-rule genes.

GAL4/UAS SYSTEM

Used in D. melanogaster to target the expression of specific genes to specific tissues. UAS stands for the upstream-activating system of the yeast GAL4 gene.

WING IMAGINAL DISCS

Imaginal discs are the larval precursors of adult structures. The wing imaginal discs give rise to the dorsal thorax and the wing appendages.

CHONDROCYTE

A differentiated cell of cartilage tissue.

HYPOMORPHIC

A mutation that reduces, but does not completely eliminate, the function of a gene.

SOMATIC CLONES

A group of non-germline cells produced by proliferation of a single common ancestor cell.

RNA-MEDIATED INTERFERENCE (RNAi)

A form of post-transcriptional gene silencing in which expression or transfection of double-stranded RNA induces nuclease-mediated degradation of the homologous endogenous transcripts. This mimics the effect of the reduction, or loss, of gene activity.

PAIR-RULE GENE

A class of segmentation gene that determines segments along the anterior–posterior axis. The expression of pair-rule genes in a pattern of seven stripes that are perpendicular to the axis is regulated by another class of segmentation genes: the gap genes.

NON-CELL-AUTONOMOUS

A gene functions non-automonously if expression of the gene in one cell influences the phenotype of a different cell.

MESODERM

The third embryonic layer generated during gastrulation, which occupies an intermediate position between the ectoderm and the endoderm. It will develop into the skeleton, muscles and connective tissue.

GASTRULATION

A series of morphogenetic movements observed during the early development of most animals that leads to the formation of a multilayered embryo with an outer cell layer (ectoderm), an inner cell layer (endoderm) and an intermediate cell layer (mesoderm).

MORPHOLINO

A chemically modified oligonucleotide that behaves as an antisense RNA analogue and that is used to interfere with gene function.

TRANSHETEROZYGOUS COMBINATIONS

A combination of alleles of the same or different genes located on different homologous or non-homologous chromosomes.

GENE TRAP

A DNA construct that contains a reporter gene sequence downstream of a splice acceptor site that can integrate into random chromosomal locations in mouse. Integration of the gene trap into an intron allows the expression of a new mRNA containing one or more upstream exons followed by the reporter gene.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Häcker, U., Nybakken, K. & Perrimon, N. Heparan sulphate proteoglycans: the sweet side of development. Nat Rev Mol Cell Biol 6, 530–541 (2005). https://doi.org/10.1038/nrm1681

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1681

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing