Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Quality control in the endoplasmic reticulum

Key Points

  • Protein folding in the endoplasmic reticulum (ER) is assisted by several molecular chaperones and folding factors. These proteins are key players in the quality-control (QC) system, which regulates the transport of proteins from the ER to other compartments of the secretory pathway.

  • The QC system works at two levels — general and protein-specific. The general level ('primary QC') applies to all proteins and involves the recognition of structural and biophysical features that are common to non-native proteins. The protein-specific level ('secondary QC') involves the recognition of individual proteins or protein families by specialized chaperones.

  • An important factor for determining ER retention is protein stability — the lower the overall stability of a protein the more likely it is to be retained.

  • For glycoproteins, there is a QC system that is based on the recognition of specific glycosylation intermediates of N-linked glycans. This system depends crucially on the direct interaction of the two lectin chaperones, calnexin and calreticulin, with newly synthesized glycoproteins.

  • At the level of ER export, protein sorting at ER exit sites determines whether a protein can leave the ER. Here, export and retention signals, the effects of protein mobility in the ER and selective inclusion in ER exit sites are crucial factors.

  • Protein folding and maturation are intrinsically error-prone processes, and a substantial fraction of proteins are degraded rapidly after synthesis. Peptides from degraded proteins are presented on the cell-surface and thereby ensure the early detection of, for example, viral infections.

Abstract

The endoplasmic reticulum (ER) has a quality-control system for 'proof-reading' newly synthesized proteins, so that only native conformers reach their final destinations. Non-native conformers and incompletely assembled oligomers are retained, and, if misfolded persistently, they are degraded. As a large fraction of ER-synthesized proteins fail to fold and mature properly, ER quality control is important for the fidelity of cellular functions. Here, we discuss recent progress in understanding the conformation-specific sorting of proteins at the level of ER retention and export.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The effects of the endoplasmic reticulum environment on folding equilibria.
Figure 2: The calnexin/calreticulin cycle.
Figure 3: Trafficking of a cargo glycoprotein from the endoplasmic reticulum through exit sites to the Golgi complex.

Similar content being viewed by others

References

  1. Kurland, C. G. Translational accuracy and the fitness of bacteria. Annu. Rev. Genet. 26, 29–50 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Hurtley, S. M. & Helenius, A. Protein oligomerization in the endoplasmic reticulum. Annu. Rev. Cell Biol. 5, 277–307 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Wickner, S., Maurizi, M. R. & Gottesman, S. Posttranslational quality control: folding, refolding, and degrading proteins. Science 286, 1888–1893 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Ibba, M. & Söll, D. Quality control mechanisms during translation. Science 286, 1893–1897 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Lindahl, T. & Wood, R. D. Quality control by DNA repair. Science 286, 1897–1905 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Glickman, M. H. & Ciechanover, A. The ubiquitin–proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev. 82, 373–428 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Hammond, C., Braakman, I. & Helenius, A. Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc. Natl Acad. Sci. USA 91, 913–917 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Parodi, A. J. Protein glucosylation and its role in protein folding. Annu. Rev. Biochem. 69, 69–93 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Klausner, R. D. & Sitia, R. Protein degradation in the endoplasmic reticulum. Cell 62, 611–614 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Tsai, B., Ye, Y. & Rapoport, T. A. Retro-translocation of proteins from the endoplasmic reticulum into the cytosol. Nature Rev. Mol. Cell Biol. 3, 246–255 (2002). This review summarizes retro-translocation across the ER membrane to the cytosol, for example, as it occurs in ERAD.

    Article  CAS  Google Scholar 

  11. Brodsky, J. L. & McCracken, A. A. ER protein quality control and proteasome-mediated protein degradation. Semin. Cell Dev. Biol. 10, 507–513 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Jarosch, E., Geiss-Friedlander, R., Meusser, B., Walter, J. & Sommer, T. Protein dislocation from the endoplasmic reticulum — pulling out the suspect. Traffic 3, 530–536 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Mezzacasa, A. & Helenius, A. The transitional ER defines a boundary for quality control in the secretion of tsO45 VSV glycoprotein. Traffic 3, 833–849 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Zerangue, N., Schwappach, B., Jan, Y. N. & Jan, L. Y. A new ER trafficking signal regulates the subunit stoichiometry of plasma membrane K(ATP) channels. Neuron 22, 537–548 (1999). This paper was the first to show the importance of the RKR motif for ER retention.

    Article  CAS  PubMed  Google Scholar 

  15. Bichet, D. et al. The I-II loop of the Ca2+ channel α1-subunit contains an endoplasmic reticulum retention signal antagonized by the β-subunit. Neuron 25, 177–190 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Brown, A., Sun, L., Feramisco, J., Brown, M. & Goldstein, J. Cholesterol addition to ER membranes alters conformation of SCAP, the SREBP escort protein that regulates cholesterol metabolism. Mol. Cell 10, 237–245 (2002). This report shows that SCAP undergoes a conformational change on sterol binding, which, in turn, results in the retention of the SCAP/SREBP complex in the ER.

    Article  CAS  PubMed  Google Scholar 

  17. Galili, G. et al. Wheat storage proteins: assembly, transport and deposition in protein bodies. Plant Physiol. Biochem. 34, 245–252 (1996).

    CAS  Google Scholar 

  18. Melhus, H., Laurent, B., Rask, L. & Peterson, P. A. Ligand-dependent secretion of rat retinol-binding protein expressed in HeLa cells. J. Biol. Chem. 267, 12036–12041 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Ellgaard, L., Molinari, M. & Helenius, A. Setting the standards: quality control in the secretory pathway. Science 286, 1882–1888 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Fra, A. M., Fagioli, C., Finazzi, D., Sitia, R. & Alberini, C. M. Quality control of ER synthesized proteins: an exposed thiol group as a three-way switch mediating assembly, retention and degradation. EMBO J. 12, 4755–4761 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Helenius, A., Trombetta, E. S., Hebert, D. N. & Simons, J. F. Calnexin, calreticulin and the folding of glycoproteins. Trends Cell Biol. 7, 193–200 (1997).

    Article  CAS  Google Scholar 

  22. Hellman, R., Vanhove, M., Lejeune, A., Stevens, F. J. & Hendershot, L. M. The in vivo association of BiP with newly synthesized proteins is dependent on the rate and stability of folding and not simply on the presence of sequences that can bind to BiP. J. Cell Biol. 144, 21–30 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Amara, J. F., Cheng, S. H. & Smith, A. E. Intracellular protein trafficking defects in human disease. Trends Cell Biol. 2, 145–149 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Aridor, M. & Balch, W. E. Integration of endoplasmic reticulum signaling in health and disease. Nature Med. 5, 745–751 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Rutishauser, J. & Spiess, M. Endoplasmic reticulum storage diseases. Swiss Med. Wkly 132, 211–222 (2002).

    CAS  PubMed  Google Scholar 

  26. Kowalski, J. M., Parekh, R. N., Mao, J. & Wittrup, K. D. Protein folding stability can determine the efficiency of escape from endoplasmic reticulum quality control. J. Biol. Chem. 273, 19453–19458 (1998). This paper describes the correlation between protein stability and secretion efficiency as determined for mutants of BPTI.

    Article  CAS  PubMed  Google Scholar 

  27. Kowalski, J. M., Parekh, R. N. & Wittrup, K. D. Secretion efficiency in Saccharomyces cerevisiae of bovine pancreatic trypsin inhibitor mutants lacking disulfide bonds is correlated with thermodynamic stability. Biochemistry 37, 1264–1273 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Kjeldsen, T. et al. Engineering-enhanced protein secretory expression in yeast with application to insulin. J. Biol. Chem. 277, 18245–18248 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Shusta, E. V., Kieke, M. C., Parke, E., Kranz, D. M. & Wittrup, K. D. Yeast polypeptide fusion surface display levels predict thermal stability and soluble secretion efficiency. J. Mol. Biol. 292, 949–956 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Hagihara, Y. & Kim, P. S. Toward development of a screen to identify randomly encoded, foldable sequences. Proc. Natl Acad. Sci. USA 99, 6619–6624 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shusta, E. V., Holler, P. D., Kieke, M. C., Kranz, D. M. & Wittrup, K. D. Directed evolution of a stable scaffold for T-cell receptor engineering. Nature Biotechnol. 18, 754–759 (2000).

    Article  CAS  Google Scholar 

  32. Minami, Y., Weissman, A. M., Samelson, L. E. & Klausner, R. D. Building a multichain receptor: synthesis, degradation, and assembly of the T-cell antigen receptor. Proc. Natl Acad. Sci. USA 84, 2688–2692 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. VanSlyke, J. K., Deschenes, S. M. & Musil, L. S. Intracellular transport, assembly, and degradation of wild-type and disease-linked mutant gap junction proteins. Mol. Biol. Cell 11, 1933–1946 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. de Silva, A. M., Balch, W. E. & Helenius, A. Quality control in the endoplasmic reticulum: folding and misfolding of vesicular stomatitis virus G protein in cells and in vitro. J. Cell Biol. 111, 857–866 (1990).

    Article  CAS  PubMed  Google Scholar 

  35. Tsai, B., Rodighiero, C., Lencer, W. I. & Rapoport, T. A. Protein disulfide isomerase acts as a redox-dependent chaperone to unfold cholera toxin. Cell 104, 937–948 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Tsai, B. & Rapoport, T. A. Unfolded cholera toxin is transferred to the ER membrane and released from protein disulfide isomerase upon oxidation by Ero1. J. Cell Biol. 159, 207–216 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Flynn, G. C., Pohl, J., Flocco, M. T. & Rothman, J. E. Peptide-binding specificity of the molecular chaperone BiP. Nature 353, 726–730 (1991).

    Article  CAS  PubMed  Google Scholar 

  38. Blond-Elguindi, S. et al. Affinity panning of a library of peptides displayed on bacteriophages reveals the binding specificity of BiP. Cell 75, 717–728 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Knarr, G., Kies, U., Bell, S., Mayer, M. & Buchner, J. Interaction of the chaperone BiP with an antibody domain: implications for the chaperone cycle. J. Mol. Biol. 318, 611–620 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Hubbard, S. J. The structural aspects of limited proteolysis of native proteins. Biochim. Biophys. Acta 1382, 191–206 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Ou, W. J., Cameron, P. H., Thomas, D. Y. & Bergeron, J. J. Association of folding intermediates of glycoproteins with calnexin during protein maturation. Nature 364, 771–776 (1993).

    Article  CAS  PubMed  Google Scholar 

  42. Hammond, C. & Helenius, A. Quality control in the secretory pathway. Curr. Opin. Cell Biol. 7, 523–529 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. McCracken, A. A. & Brodsky, J. L. Assembly of ER-associated protein degradation in vitro: dependence on cytosol, calnexin, and ATP. J. Cell Biol. 132, 291–298 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Ware, F. E. et al. The molecular chaperone calnexin binds Glc1Man9GlcNAc2 oligosaccharide as an initial step in recognizing unfolded glycoproteins. J. Biol. Chem. 270, 4697–4704 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Liu, Y., Choudhury, P., Cabral, C. M. & Sifers, R. N. Oligosaccharide modification in the early secretory pathway directs the selection of a misfolded glycoprotein for degradation by the proteasome. J. Biol. Chem. 274, 5861–5867 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Hebert, D. N., Foellmer, B. & Helenius, A. Glucose trimming and reglucosylation determine glycoprotein association with calnexin in the endoplasmic reticulum. Cell 81, 425–433 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Spiro, R. G., Zhu, Q., Bhoyroo, V. & Soling, H. D. Definition of the lectin-like properties of the molecular chaperone, calreticulin, and demonstration of its copurification with endomannosidase from rat liver Golgi. J. Biol. Chem. 271, 11588–11594 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Schrag, J. D. et al. The structure of calnexin, an ER chaperone involved in quality control of protein folding. Mol. Cell 8, 633–644 (2001). The unusual crystal structure of the calnexin ectodomain shows a molecule that comprises a globular lectin domain and a long extended arm-like domain. The structure provides important clues to the function of the protein.

    Article  CAS  PubMed  Google Scholar 

  49. Ihara, Y., Cohen-Doyle, M. F., Saito, Y. & Williams, D. B. Calnexin discriminates between protein conformational states and functions as a molecular chaperone in vitro. Mol. Cell 4, 331–341 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Saito, Y., Ihara, Y., Leach, M. R., Cohen-Doyle, M. F. & Williams, D. B. Calreticulin functions in vitro as a molecular chaperone for both glycosylated and non-glycosylated proteins. EMBO J. 18, 6718–6729 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Danilczyk, U. G. & Williams, D. B. The lectin chaperone calnexin utilizes polypeptide-based interactions to associate with many of its substrates in vivo. J. Biol. Chem. 276, 25532–25540 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Oliver, J. D., van der Wal, F. J., Bulleid, N. J. & High, S. Interaction of the thiol-dependent reductase ERp57 with nascent glycoproteins. Science 275, 86–88 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Oliver, J. D., Roderick, H. L., Llewellyn, D. H. & High, S. ERp57 functions as a subunit of specific complexes formed with the ER lectins calreticulin and calnexin. Mol. Biol. Cell 10, 2573–2582 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Molinari, M. & Helenius, A. Glycoproteins form mixed disulphides with oxidoreductases during folding in living cells. Nature 402, 90–93 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Ellgaard, L. et al. NMR structure of the calreticulin P-domain. Proc. Natl Acad. Sci. USA 98, 3133–3138 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Frickel, E. -M. et al. TROSY-NMR reveals interaction between ERp57 and the tip of the calreticulin P-domain. Proc. Natl Acad. Sci. USA 99, 1954–1959 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Leach, M. R., Cohen-Doyle, M. F., Thomas, D. Y. & Williams, D. B. Localization of the lectin, ERp57 binding, and polypeptide binding sites of calnexin and calreticulin. J. Biol. Chem. 277, 29686–29697 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Jakob, C. A. et al. Htm1p, a mannosidase-like protein, is involved in glycoprotein degradation in yeast. EMBO Rep. 2, 423–430 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hosokawa, N. et al. A novel ER α-mannosidase-like protein accelerates ER-associated degradation. EMBO Rep. 2, 415–422 (2001). References 58 and 59 describe the identification and characterization of a new ER lectin (Htm1p/EDEM) that is involved in ERAD of glycoproteins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yoshida, Y. et al. E3 ubiquitin ligase that recognizes sugar chains. Nature 418, 438–442 (2002). This study presents evidence that the cytosolic SCFFbx2 ubiquitin-ligase complex targets retro-translocated glycoproteins for proteasomal degradation.

    Article  CAS  PubMed  Google Scholar 

  61. Caramelo, J. J., Castro, O. A., Alonso, L. G., De Prat-Gay, G. & Parodi, A. J. UDP-Glc:glycoprotein glucosyltransferase recognizes structured and solvent accessible hydrophobic patches in molten globule-like folding intermediates. Proc. Natl Acad. Sci. USA 100, 86–91 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Trombetta, E. S. & Helenius, A. Conformational requirements for glycoprotein reglucosylation in the endoplasmic reticulum. J. Cell Biol. 148, 1123–1129 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ritter, C. & Helenius, A. Recognition of local glycoprotein misfolding by the ER folding sensor UDP–glucose:glycoprotein glucosyltransferase. Nature Struct. Biol. 7, 278–280 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Brown, C. R., Hong-Brown, L. Q. & Welch, W. J. Correcting temperature-sensitive protein folding defects. J. Clin. Invest. 99, 1432–1444 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Morello, J. P., Petaja-Repo, U. E., Bichet, D. G. & Bouvier, M. Pharmacological chaperones: a new twist on receptor folding. Trends Pharmacol. Sci. 21, 466–469 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Petäjä-Repo, U. E. et al. Ligands act as pharmacological chaperones and increase the efficiency of δ opioid receptor maturation. EMBO J. 21, 1628–1637 (2002). The beneficial effect of ligands on the protein maturation and ER export of δ opioid receptors nicely illustrates the function of pharmacological chaperones.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Morello, J. P. et al. Pharmacological chaperones rescue cell-surface expression and function of misfolded V2 vasopressin receptor mutants. J. Clin. Invest. 105, 887–895 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Halaban, R., Cheng, E., Svedine, S., Aron, R. & Hebert, D. N. Proper folding and endoplasmic reticulum to golgi transport of tyrosinase are induced by its substrates, DOPA and tyrosine. J. Biol. Chem. 276, 11933–11938 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Loo, T. W. & Clarke, D. M. Correction of defective protein kinesis of human P-glycoprotein mutants by substrates and modulators. J. Biol. Chem. 272, 709–712 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Wiens, G. D., O'Hare, T. & Rittenberg, M. B. Recovering antibody secretion using a hapten ligand as a chemical chaperone. J. Biol. Chem. 276, 40933–40939 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Zanotti, G., Berni, R. & Monaco, H. L. Crystal structure of liganded and unliganded forms of bovine plasma retinol-binding protein. J. Biol. Chem. 268, 10728–10738 (1993).

    Article  CAS  PubMed  Google Scholar 

  72. Herrmann, J. M., Malkus, P. & Schekman, R. Out of the ER — outfitters, escorts and guides. Trends Cell Biol. 9, 5–7 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Stamnes, M. A., Shieh, B. H., Chuman, L., Harris, G. L. & Zuker, C. S. The cyclophilin homolog ninaA is a tissue-specific integral membrane protein required for the proper synthesis of a subset of Drosophila rhodopsins. Cell 65, 219–227 (1991).

    Article  CAS  PubMed  Google Scholar 

  74. Bu, G. The roles of receptor-associated protein (RAP) as a molecular chaperone for members of the LDL receptor family. Int. Rev. Cytol. 209, 79–116 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Nichols, W. C. et al. Mutations in the ER–Golgi intermediate compartment protein ERGIC-53 cause combined deficiency of coagulation factors V and VIII. Cell 93, 61–70 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Appenzeller, C., Andersson, H., Kappeler, F. & Hauri, H. P. The lectin ERGIC-53 is a cargo transport receptor for glycoproteins. Nature Cell Biol. 1, 330–334 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Steck, T. & Lange, Y. SCAP, an ER sensor that regulates cell cholesterol. Dev. Cell 3, 306–308 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Yang, T. et al. Crucial step in cholesterol homeostasis. Sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell 110, 489–500 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Yabe, D., Brown, M. S. & Goldstein, J. L. Insig-2, a second endoplasmic reticulum protein that binds SCAP and blocks export of sterol regulatory element-binding proteins. Proc. Natl Acad. Sci. USA 99, 12753–12758 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Teasdale, R. D. & Jackson, M. R. Signal-mediated sorting of membrane proteins between the endoplasmic reticulum and the Golgi apparatus. Annu. Rev. Cell Dev. Biol. 12, 27–54 (1996).

    Article  CAS  PubMed  Google Scholar 

  81. Harter, C. & Wieland, F. The secretory pathway: mechanisms of protein sorting and transport. Biochim. Biophys. Acta 1286, 75–93 (1996).

    Article  PubMed  Google Scholar 

  82. Munro, S. & Pelham, H. R. A C-terminal signal prevents secretion of luminal ER proteins. Cell 48, 899–907 (1987).

    Article  CAS  PubMed  Google Scholar 

  83. Semenza, J. C., Hardwick, K. G., Dean, N. & Pelham, H. R. ERD2, a yeast gene required for the receptor-mediated retrieval of luminal ER proteins from the secretory pathway. Cell 61, 1349–1357 (1990).

    Article  CAS  PubMed  Google Scholar 

  84. Pelham, H. R. Using sorting signals to retain proteins in endoplasmic reticulum. Methods Enzymol. 327, 279–283 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Nilsson, T., Jackson, M. & Peterson, P. A. Short cytoplasmic sequences serve as retention signals for transmembrane proteins in the endoplasmic reticulum. Cell 58, 707–718 (1989).

    Article  CAS  PubMed  Google Scholar 

  86. Jackson, M. R., Nilsson, T. & Peterson, P. A. Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. EMBO J. 9, 3153–3162 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Letourneur, F. et al. Coatomer is essential for retrieval of dilysine-tagged proteins to the endoplasmic reticulum. Cell 79, 1199–1207 (1994).

    Article  CAS  PubMed  Google Scholar 

  88. Pelham, H. R. About turn for the COPs? Cell 79, 1125–1127 (1994).

    Article  CAS  PubMed  Google Scholar 

  89. Ma, D. & Jan, L. Y. ER transport signals and trafficking of potassium channels and receptors. Curr. Opin. Neurobiol. 12, 287–292 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. O'Kelly, I., Butler, M. H., Zilberberg, N. & Goldstein, S. A. Forward transport: 14-3-3 binding overcomes retention in endoplasmic reticulum by dibasic signals. Cell 111, 577–588 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Mori, K. Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell 101, 451–454 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Shen, J., Chen, X., Hendershot, L. & Prywes, R. ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev. Cell. 3, 99–111 (2002). This paper shows the role of BiP in sensing ER stress by regulating the stress-induced ER export of the ATF6 transcription factor.

    Article  CAS  PubMed  Google Scholar 

  93. Palade, G. Intracellular aspects of the process of protein synthesis. Science 189, 347–358 (1975).

    Article  CAS  PubMed  Google Scholar 

  94. Lotti, L. V., Torrisi, M. R., Erra, M. C. & Bonatti, S. Morphological analysis of the transfer of VSV ts-045 G glycoprotein from the endoplasmic reticulum to the intermediate compartment in vero cells. Exp. Cell Res. 227, 323–331 (1996).

    Article  CAS  PubMed  Google Scholar 

  95. Barlowe, C. COPII-dependent transport from the endoplasmic reticulum. Curr. Opin. Cell Biol. 14, 417–422 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Aridor, M., Weissman, J., Bannykh, S., Nuoffer, C. & Balch, W. E. Cargo selection by the COPII budding machinery during export from the ER. J. Cell. Biol. 141, 61–70 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kuehn, M. J., Herrmann, J. M. & Schekman, R. COPII-cargo interactions direct protein sorting into ER-derived transport vesicles. Nature 391, 187–190 (1998).

    Article  CAS  PubMed  Google Scholar 

  98. Pfeffer, S. R. & Rothman, J. E. Biosynthetic protein transport and sorting by the endoplasmic reticulum and Golgi. Annu. Rev. Biochem. 56, 829–852 (1987).

    Article  CAS  PubMed  Google Scholar 

  99. Kuehn, M. J. & Schekman, R. COPII and secretory cargo capture into transport vesicles. Curr. Opin. Cell Biol. 9, 477–483 (1997).

    Article  CAS  PubMed  Google Scholar 

  100. Gibson, R., Schlesinger, S. & Kornfeld, S. The nonglycosylated glycoprotein of vesicular stomatitis virus is temperature-sensitive and undergoes intracellular aggregation at elevated temperatures. J. Biol. Chem. 254, 3600–3607 (1979).

    Article  CAS  PubMed  Google Scholar 

  101. Molinari, M., Galli, C., Piccaluga, V., Pieren, M. & Paganetti, P. Sequential assistance of molecular chaperones and transient formation of covalent complexes during protein degradation from the ER. J. Cell Biol. 158, 247–257 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Rivera, V. M. et al. Regulation of protein secretion through controlled aggregation in the endoplasmic reticulum. Science 287, 826–830 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Mackenzie, J. M. & Westaway, E. G. Assembly and maturation of the flavivirus Kunjin virus appear to occur in the rough endoplasmic reticulum and along the secretory pathway, respectively. J. Virol. 75, 10787–10799 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mironov, A. A. et al. Small cargo proteins and large aggregates can traverse the Golgi by a common mechanism without leaving the lumen of cisternae. J. Cell Biol. 155, 1225–1238 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lorenz, I. C. et al. Intracellular assembly and secretion of recombinant subviral particles from tick-borne encephalitis virus. J. Virol. (in the press).

  106. Nehls, S. et al. Dynamics and retention of misfolded proteins in native ER membranes. Nature Cell Biol. 2, 288–295 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. Levin, M. H., Haggie, P. M., Vetrivel, L. & Verkman, A. S. Diffusion in the endoplasmic reticulum of an aquaporin-2 mutant causing human nephrogenic diabetes insipidus. J. Biol. Chem. 276, 21331–21336 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Spiliotis, E. T., Pentcheva, T. & Edidin, M. Probing for membrane domains in the endoplasmic reticulum: retention and degradation of unassembled MHC class I molecules. Mol. Biol. Cell 13, 1566–1581 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Booth, C. & Koch, G. L. Perturbation of cellular calcium induces secretion of luminal ER proteins. Cell 59, 729–737 (1989).

    Article  CAS  PubMed  Google Scholar 

  110. Sambrook, J. F. The involvement of calcium in transport of secretory proteins from the endoplasmic reticulum. Cell 61, 197–199 (1990).

    Article  CAS  PubMed  Google Scholar 

  111. Tatu, U. & Helenius, A. Interaction of newly synthesized apolipoprotein B with calnexin and calreticulin requires glucose trimming in the endoplasmic reticulum. Biosci. Rep. 19, 189–196 (1999).

    Article  CAS  PubMed  Google Scholar 

  112. Meunier, L., Usherwood, Y. K., Chung, K. T. & Hendershot, L. M. A subset of chaperones and folding enzymes form multiprotein complexes in endoplasmic reticulum to bind nascent proteins. Mol. Biol. Cell 13, 4456–4469 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Haggie, P. M., Stanton, B. A. & Verkman, A. S. Diffusional mobility of the cystic fibrosis transmembrane conductance regulator mutant, ΔF508-CFTR, in the endoplasmic reticulum measured by photobleaching of GFP–CFTR chimeras. J. Biol. Chem. 277, 16419–16425 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Yamamoto, K. et al. The KDEL receptor mediates a retrieval mechanism that contributes to quality control at the endoplasmic reticulum. EMBO J. 20, 3082–3091 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hammond, C. & Helenius, A. Quality control in the secretory pathway: retention of a misfolded viral membrane glycoprotein involves cycling between the ER, intermediate compartment, and Golgi apparatus. J. Cell Biol. 126, 41–52 (1994).

    Article  CAS  PubMed  Google Scholar 

  116. Miesenböck, G. & Rothman, J. E. The capacity to retrieve escaped ER proteins extends to the trans-most cisterna of the Golgi stack. J. Cell Biol. 129, 309–319 (1995).

    Article  PubMed  Google Scholar 

  117. Caldwell, S. R., Hill, K. J. & Cooper, A. A. Degradation of endoplasmic reticulum (ER) quality control substrates requires transport between the ER and Golgi. J. Biol. Chem. 276, 23296–23303 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Vashist, S. et al. Distinct retrieval and retention mechanisms are required for the quality control of endoplasmic reticulum protein folding. J. Cell Biol. 155, 355–368 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Taxis, C., Vogel, F. & Wolf, D. H. ER–Golgi traffic is a prerequisite for efficient ER degradation. Mol. Biol. Cell 13, 1806–1818 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zuber, C., Spiro, M. J., Guhl, B., Spiro, R. G. & Roth, J. Golgi apparatus immunolocalization of endomannosidase suggests post-endoplasmic reticulum glucose trimming: implications for quality control. Mol. Biol. Cell 11, 4227–4240 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zuber, C. et al. Immunolocalization of UDP-glucose:glycoprotein glucosyltransferase indicates involvement of pre-Golgi intermediates in protein quality control. Proc. Natl Acad. Sci. USA 98, 10710–10715 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hong, E., Davidson, A. R. & Kaiser, C. A. A pathway for targeting soluble misfolded proteins to the yeast vacuole. J. Cell Biol. 135, 623–633 (1996).

    Article  CAS  PubMed  Google Scholar 

  123. Jørgensen, M. U., Emr, S. D. & Winther, J. R. Ligand recognition and domain structure of Vps10p, a vacuolar protein sorting receptor in Saccharomyces cerevisiae. Eur. J. Biochem. 260, 461–469 (1999).

    Article  PubMed  Google Scholar 

  124. Reggiori, F. & Pelham, H. R. A transmembrane ubiquitin ligase required to sort membrane proteins into multivesicular bodies. Nature Cell Biol. 4, 117–123 (2002).

    Article  CAS  PubMed  Google Scholar 

  125. Petäjä-Repo, U. E., Hogue, M., Laperriere, A., Walker, P. & Bouvier, M. Export from the endoplasmic reticulum represents the limiting step in the maturation and cell surface expression of the human δ-opioid receptor. J. Biol. Chem. 275, 13727–13736. (2000).

    Article  PubMed  Google Scholar 

  126. Kopito, R. R. Biosynthesis and degradation of CFTR. Physiol. Rev. 79, S167–S173 (1999).

    Article  CAS  PubMed  Google Scholar 

  127. Merlie, J. P. & Lindstrom, J. Assembly in vivo of mouse muscle acetylcholine receptor: identification of an α-subunit species that may be an assembly intermediate. Cell 34, 747–757 (1983).

    Article  CAS  PubMed  Google Scholar 

  128. Sitia, R. & Cattaneo, A. in The antibodies (eds Zanetti, M. & Capra, J. D.) 127–168 (Harwood Academic, Luxembourg, 1995).

    Google Scholar 

  129. Cresswell, P. Intracellular surveillance: controlling the assembly of MHC class I-peptide complexes. Traffic 1, 301–305 (2000).

    Article  CAS  PubMed  Google Scholar 

  130. Yewdell, J. W., Schubert, U. & Bennink, J. R. At the crossroads of cell biology and immunology: DRiPs and other sources of peptide ligands for MHC class I molecules. J. Cell Sci. 114, 845–851 (2001).

    Article  CAS  PubMed  Google Scholar 

  131. Turner, G. C. & Varshavsky, A. Detecting and measuring cotranslational protein degradation in vivo. Science 289, 2117–2120 (2000). This paper took advantage of the elegant 'ubiquitin-sandwich technique' to measure cotranslational degradation in vivo , and showed that a surprisingly high number of proteins were degraded at the level of nascent chains.

    Article  CAS  PubMed  Google Scholar 

  132. Lin, L., DeMartino, G. N. & Greene, W. C. Cotranslational biogenesis of NF-κB p50 by the 26S proteasome. Cell 92, 819–828 (1998).

    Article  CAS  PubMed  Google Scholar 

  133. Schubert, U. et al. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 404, 770–774 (2000).

    Article  CAS  PubMed  Google Scholar 

  134. Reits, E. A., Vos, J. C., Gromme, M. & Neefjes, J. The major substrates for TAP in vivo are derived from newly synthesized proteins. Nature 404, 774–778 (2000).

    Article  CAS  PubMed  Google Scholar 

  135. Dobson, C. M. Protein-misfolding diseases: Getting out of shape. Nature 418, 729–730 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Smith, A. Mezzacasa and E. Frickel for their critical reading of the manuscript. This work was supported by the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ari Helenius.

Related links

Related links

DATABASES

European Bioinformatics Institute

BiP

calnexin

calreticulin

CFTR

ERp57

PDI

UDP-glucose:glycoprotein glucosyltransferase

FURTHER INFORMATION

Ari Helenius' laboratory

Lars Ellgaard's laboratory

Glossary

CONFORMATIONAL STABILITY

The conformational stability of a protein is defined as the free energy change, ΔG, for the conversion of its unfolded (denatured) form to its folded (native) form.

LECTIN

A protein that binds carbohydrates.

F-BOX PROTEIN

A protein component of a ubiquitin-ligase complex that contains an F-box domain, which is responsible for the interaction with a specific substrate protein.

UBIQUITIN LIGASE

A protein or protein complex that mediates the ubiquitylation of a substrate protein through interactions with other components of the ubiquitylation machinery.

CFTR

(Cystic fibrosis transmembrane conductance regulator). A plasma membrane Cl channel.

CFTRΔF508

A folding-defective and principal disease-causing allele of the cystic fibrosis transmembrane conductance regulator (CFTR).

TYPE I MEMBRANE PROTEIN

A transmembrane protein that is orientated with its carboxyl terminus in the cytosol.

14-3-3 PROTEINS

A family of abundant proteins that bind to phosphoserine- and phosphothreonine-containing motifs in a sequence-specific manner.

INVARIANT CHAIN

A specific chaperone and escort protein for MHC class II molecules.

TYPE II MEMBRANE PROTEIN

A transmembrane protein that is orientated with its amino terminus in the cytosol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellgaard, L., Helenius, A. Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 4, 181–191 (2003). https://doi.org/10.1038/nrm1052

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1052

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing