Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

How the ubiquitin–proteasome system controls transcription

Key Points

  • The ubiquitin–proteasome system regulates transcriptional control at many levels, and involves both proteolytic and non-proteolytic activities.

  • Histone ubiquitylation forms part of the 'histone code' that distinguishes transcriptionally active from inactive chromatin. In yeast, ubiquitylation of histone H2B has an important role in transcriptional gene silencing.

  • Ubiquitylation of RNA polymerase II is important for transcription-coupled DNA repair, in which the presence of DNA damage in a transcribed gene stops transcription and allows for the coordinated entry of the DNA-repair machinery.

  • Ubiquitin and ubiquitin-family members, including SUMO, control transcriptional activators by regulating their location (cytoplasmic versus nuclear, or in specific nuclear regions, for example, nuclear bodies), activity (for example, regulating the association of transcription factors with partner proteins) and abundance (by proteolysis).

  • The ability of transcriptional activators to engage the ubiquitin–proteasome system is tied intimately to their ability to activate transcription. This intimate connection is likely to have an important role in temporally limiting the ability of an activator to stimulate target-gene expression. In addition, components of the ubiquitin–proteasome system, most notably the proteasome itself, have a direct role in the regulation of gene expression.

  • The authors propose a model in which components of the ubiquitin–proteasome system converge on promoters to regulate the activity of numerous transcriptional components. First, ubiquitin-ligases are recruited to promoter complexes, where they ubiquitylate activators as well as RNA polymerase II and histones. Next, the 26S proteasome is recruited, which destroys activators and promotes transcription elongation, allowing transcription-coupled repair (if needed) as transcription proceeds. Eventually, the proteasome dissociates and RNA polymerase II returns to its initiation-competent form.

Abstract

Gene transcription and ubiquitin-mediated proteolysis are two processes that have seemingly nothing in common: transcription is the first step in the life of any protein and proteolysis the last. Despite the disparate nature of these processes, a growing body of evidence indicates that ubiquitin and the proteasome are intimately involved in gene control. Here, we discuss the deep mechanistic connections between transcription and the ubiquitin–proteasome system, and highlight how the intersection of these processes tightly controls expression of the genetic information.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Control of chromatin by ubiquitin.
Figure 2: Regulation of TCR by ubiquitylation of RNA polymerase II.
Figure 3: Regulation of activators by the ubiquitin–proteasome system.
Figure 4: TADs and degrons overlap.
Figure 5: A unified model?

Similar content being viewed by others

References

  1. Varshavsky, A. The ubiquitin system. Trends Biochem. Sci. 22, 383–387 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Terrell, J., Shih, S., Dunn, R. & Hicke, L. A function for monoubiquitination in the internalization of a G protein-coupled receptor. Mol. Cell 1, 193–202 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Spence, J. et al. Cell cycle-regulated modification of the ribosome by a variant multiubiquitin chain. Cell 102, 67–76 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Russell, S. J., Reed, S. H., Huang, W., Friedberg, E. C. & Johnston, S. A. The 19S regulatory complex of the proteasome functions independently of proteolysis in nucleotide excision repair. Mol. Cell 3, 687–695 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Goldknopf, I. L. et al. Isolation and characterization of protein A24, a 'histone-like' non-histone chromosomal protein. J. Biol. Chem. 250, 7182–7187 (1975).

    Article  CAS  PubMed  Google Scholar 

  6. Goldknopf, I. L. & Busch, H. Isopeptide linkage between nonhistone and histone 2A polypeptides of chromosomal conjugate-protein A24. Proc. Natl Acad. Sci. USA 74, 864–868 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hunt, L. T. & Dayhoff, M. O. Amino-terminal sequence identity of ubiquitin and the nonhistone component of nuclear protein A24. Biochem. Biophys. Res. Commun. 74, 650–655 (1977).

    Article  CAS  PubMed  Google Scholar 

  8. Levinger, L. & Varshavsky, A. Selective arrangement of ubiquitinated and D1 protein-containing nucleosomes within the Drosophila genome. Cell 28, 375–385 (1982).

    Article  CAS  PubMed  Google Scholar 

  9. Nickel, B. E., Allis, C. D. & Davie, J. R. Ubiquitinated histone H2B is preferentially located in transcriptionally active chromatin. Biochemistry 28, 958–963 (1989).

    Article  CAS  PubMed  Google Scholar 

  10. Davie, J. R. & Murphy, L. C. Level of ubiquitinated histone H2B in chromatin is coupled to ongoing transcription. Biochemistry 29, 4752–4757 (1990).

    Article  CAS  PubMed  Google Scholar 

  11. Davie, J. R., Lin, R. & Allis, C. D. Timing of the appearance of ubiquitinated histones in developing new macronuclei of Tetrahymena thermophila. Biochem. Cell Biol. 69, 66–71 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Vavra, K. J., Allis, C. D. & Gorovsky, M. A. Regulation of histone acetylation in Tetrahymena macro- and micronuclei. J. Biol. Chem. 257, 2591–2598 (1982).

    Article  CAS  PubMed  Google Scholar 

  13. Huang, S. Y. et al. The active immunoglobulin κ chain gene is packaged by non-ubiquitin-conjugated nucleosomes. Proc. Natl Acad. Sci. USA 83, 3738–3742 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pham, A. D. & Sauer, F. Ubiquitin-activating/conjugating activity of TAFII250, a mediator of activation of gene expression in Drosophila. Science 289, 2357–2360 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Chen, H. Y., Sun, J. M., Zhang, Y., Davie, J. R. & Meistrich, M. L. Ubiquitination of histone H3 in elongating spermatids of rat testes. J. Biol. Chem. 273, 13165–13169 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Robzyk, K., Recht, J. & Osley, M. A. Rad6-dependent ubiquitination of histone H2B in yeast. Science 287, 501–504 (2000). Identified Rad6 as a Ub-conjugating enzyme for histone H2B in budding yeast and opened the way for genetic analysis of histone ubiquitylation.

    Article  CAS  PubMed  Google Scholar 

  17. Turner, S. D. et al. The E2 ubiquitin conjugase Rad6 is required for the ArgR/Mcm1 repression of ARG1 transcription. Mol. Cell. Biol. 22, 4011–4019 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sun, Z. W. & Hampsey, M. A general requirement for the Sin3-Rpd3 histone deacetylase complex in regulating silencing in Saccharomyces cerevisiae. Genetics 152, 921–932 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huang, H., Kahana, A., Gottschling, D. E., Prakash, L. & Liebman, S. W. The ubiquitin-conjugating enzyme Rad6 (Ubc2) is required for silencing in Saccharomyces cerevisiae. Mol. Cell. Biol. 17, 6693–6699 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bryk, M. et al. Transcriptional silencing of Ty1 elements in the RDN1 locus of yeast. Genes Dev. 11, 255–269 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Ricci, A. R., Genereaux, J. & Brandl, C. J. Components of the SAGA histone acetyltransferase complex are required for repressed transcription of ARG1 in rich medium. Mol. Cell. Biol. 22, 4033–4042 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sun, Z. W. & Allis, C. D. Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature 418, 104–108 (2002). Established that histone ubiquitylation is required for subsequent histone modifications that are important in gene silencing.

    Article  CAS  PubMed  Google Scholar 

  23. Briggs, S. D. et al. Gene silencing: Trans-histone regulatory pathway in chromatin. Nature 418, 498 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Rice, J. C. & Allis, C. D. Histone methylation versus histone acetylation: new insights into epigenetic regulation. Curr. Opin. Cell Biol. 13, 263–273 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Seale, R. L. Rapid turnover of the histone-ubiquitin conjugate, protein A24. Nucleic Acids Res. 9, 3151–3158 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wu, R. S., Kohn, K. W. & Bonner, W. M. Metabolism of ubiquitinated histones. J. Biol. Chem. 256, 5916–5920 (1981).

    Article  CAS  PubMed  Google Scholar 

  28. Haas, A., Reback, P. M., Pratt, G. & Rechsteiner, M. Ubiquitin-mediated degradation of histone H3 does not require the substrate-binding ubiquitin protein ligase, E3, or attachment of polyubiquitin chains. J. Biol. Chem. 265, 21664–21669 (1990).

    Article  CAS  PubMed  Google Scholar 

  29. Gonzalez, F., Delahodde, A., Kodadek, T. & Johnston, S. A. Recruitment of a 19S proteasome subcomplex to an activated promoter. Science 296, 548–550 (2002). Showed that components of the 19S proteasome are recruited to a transcriptionally-active gene in yeast.

    Article  CAS  PubMed  Google Scholar 

  30. Hook, S. S., Orian, A., Cowley, S. M. & Eisenman, R. N. Histone deacetylase 6 binds polyubiquitin through its zinc finger (PAZ domain) and copurifies with deubiquitinating enzymes. Proc. Natl Acad. Sci. USA 99, 13425–13430 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Santos-Rosa, H. et al. Active genes are tri-methylated at K4 of histone H3. Nature 419, 407–411 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Chen, J. L., Attardi, L. D., Verrijzer, C. P., Yokomori, K. & Tjian, R. Assembly of recombinant TFIID reveals differential coactivator requirements for distinct transcriptional activators. Cell 79, 93–105 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Moazed, D. & Johnson, D. A deubiquitinating enzyme interacts with SIR4 and regulates silencing in S. cerevisiae. Cell 86, 667–677 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Sanders, S. L., Garbett, K. A. & Weil, P. A. Molecular characterization of Saccharomyces cerevisiae TFIID. Mol. Cell. Biol. 22, 6000–6013 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Svejstrup, J. Q. Mechanisms of transcription-coupled DNA repair. Nature Rev. Mol. Cell. Biol. 3, 21–29 (2002).

    Article  CAS  Google Scholar 

  36. Lee, K. B., Wang, D., Lippard, S. J. & Sharp, P. A. Transcription-coupled and DNA damage-dependent ubiquitination of RNA polymerase II in vitro. Proc. Natl Acad. Sci. USA 99, 4239–4244 (2002). Provided biochemical evidence that DNA-damage-dependent ubiquitylation of RNA polymerase II is coupled to transcription.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Beaudenon, S. L., Huacani, M. R., Wang, G., McDonnell, D. P. & Huibregtse, J. M. Rsp5 ubiquitin-protein ligase mediates DNA damage-induced degradation of the large subunit of RNA polymerase II in Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 6972–6979 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huibregtse, J. M., Yang, J. C. & Beaudenon, S. L. The large subunit of RNA polymerase II is a substrate of the Rsp5 ubiquitin-protein ligase. Proc. Natl Acad. Sci. USA 94, 3656–3661 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Komarnitsky, P., Cho, E. J. & Buratowski, S. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev. 14, 2452–2460 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mitsui, A. & Sharp, P. A. Ubiquitination of RNA polymerase II large subunit signaled by phosphorylation of carboxyl-terminal domain. Proc. Natl Acad. Sci. USA 96, 6054–6059 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Imhof, M. O. & McDonnell, D. P. Yeast RSP5 and its human homolog hRPF1 potentiate hormone-dependent activation of transcription by human progesterone and glucocorticoid receptors. Mol. Cell. Biol. 16, 2594–2605 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Woudstra, E. C. et al. A Rad26-Def1 complex coordinates repair and RNA pol II proteolysis in response to DNA damage. Nature 415, 929–933 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Darnell, J. E., Jr. STATs and gene regulation. Science 277, 1630–1635 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Brown, M. S., Ye, J., Rawson, R. B. & Goldstein, J. L. Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100, 391–398 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Palombella, V. J., Rando, O. J., Goldberg, A. L. & Maniatis, T. The ubiquitin-proteasome pathway is required for processing the NF-κB1 precursor protein and the activation of NF-κB. Cell 78, 773–785 (1994).

    Article  CAS  PubMed  Google Scholar 

  46. Hoppe, T. et al. Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell 102, 577–586 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Rape, M. et al. Mobilization of processed, membrane-tethered SPT23 transcription factor by CDC48(UFD1/NPL4), a ubiquitin-selective chaperone. Cell 107, 667–677 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Borden, K. L. Pondering the promyelocytic leukemia protein (PML) puzzle: possible functions for PML nuclear bodies. Mol. Cell. Biol. 22, 5259–5269 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Muller, S., Matunis, M. J. & Dejean, A. Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. EMBO J. 17, 61–70 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sachdev, S. et al. PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev. 15, 3088–3103 (2001). Established a solid connection between SUMO-modification of a transcription factor, transcriptional regulation and PML-body formation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ross, S., Best, J. L., Zon, L. I. & Gill, G. SUMO-1 modification represses Sp3 transcriptional activation and modulates its subnuclear localization. Mol. Cell 10, 831–842 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Sapetschnig, A. et al. Transcription factor Sp3 is silenced through SUMO modification by PIAS1. EMBO J. 21, 5206–5215 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bies, J., Markus, J. & Wolff, L. Covalent attachment of the SUMO-1 protein to the negative regulatory domain of the c-Myb transcription factor modifies its stability and transactivation capacity. J. Biol. Chem. 277, 8999–9009 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Nishida, T. & Yasuda, H. PIAS1 and PIASxα function as SUMO-E3 ligases toward androgen receptor and repress androgen receptor-dependent transcription. J. Biol. Chem. 277, 41311–41317 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Schmidt, D. & Muller, S. Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity. Proc. Natl Acad. Sci. USA 99, 2872–2877 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kim, J., Cantwell, C. A., Johnson, P. F., Pfarr, C. M. & Williams, S. C. Transcriptional activity of CCAAT/enhancer-binding proteins is controlled by a conserved inhibitory domain that is a target for sumoylation. J. Biol. Chem. 277, 38037–38044 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Ostendorff, H. P. et al. Ubiquitination-dependent cofactor exchange on LIM homeodomain transcription factors. Nature 416, 99–103 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Kaiser, P., Flick, K., Wittenberg, C. & Reed, S. I. Regulation of transcription by ubiquitination without proteolysis: Cdc34/SCF(Met30)-mediated inactivation of the transcription factor Met4. Cell 102, 303–314 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Rouillon, A., Barbey, R., Patton, E. E., Tyers, M. & Thomas, D. Feedback-regulated degradation of the transcriptional activator Met4 is triggered by the SCFMet30 complex. EMBO J. 19, 282–294 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kuras, L. et al. Dual regulation of the met4 transcription factor by ubiquitin-dependent degradation and inhibition of promoter recruitment. Mol. Cell 10, 69–80 (2002). Showed that the yeast transcription factor Met4 can be either inactivated or destroyed by Met30-dependent ubiquitylation, depending on nutrients.

    Article  CAS  PubMed  Google Scholar 

  61. Polakis, P. Wnt signaling and cancer. Genes Dev. 14, 1837–1851 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Aberle, H., Bauer, A., Stappert, J., Kispert, A. & Kemler, R. β-catenin is a target for the ubiquitin-proteasome pathway. EMBO J. 16, 3797–3804 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yost, C. et al. The axis-inducing activity, stability, and subcellular distribution of β-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev. 10, 1443–1454 (1996).

    Article  CAS  PubMed  Google Scholar 

  64. Haupt, Y., Maya, R., Kazaz, A. & Oren, M. Mdm2 promotes the rapid degradation of p53. Nature 387, 296–299 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Maxwell, P. H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271–275 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Ma, Q. & Baldwin, K. T. 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced degradation of aryl hydrocarbon receptor (AhR) by the ubiquitin-proteasome pathway. Role of the transcription activation and DNA binding of AhR. J. Biol. Chem. 275, 8432–8438 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Lo, R. S. & Massague, J. Ubiquitin-dependent degradation of TGF-β-activated Smad2. Nature Cell Biol. 1, 472–478 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Kim, T. K. & Maniatis, T. Regulation of interferon-γ-activated STAT1 by the ubiquitin-proteasome pathway. Science 273, 1717–1719 (1996).

    Article  CAS  PubMed  Google Scholar 

  69. Bertani, D., Oppenheim, A. B. & Narberhaus, F. An internal region of the RpoH heat shock transcription factor is critical for rapid degradation by the FtsH protease. FEBS Lett. 493, 17–20 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Becker, G., Klauck, E. & Hengge-Aronis, R. Regulation of RpoS proteolysis in Escherichia coli: the response regulator RssB is a recognition factor that interacts with the turnover element in RpoS. Proc. Natl Acad. Sci. USA 96, 6439–6444 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Salghetti, S. E., Kim, S. Y. & Tansey, W. P. Destruction of Myc by ubiquitin-mediated proteolysis: cancer-associated and transforming mutations stabilize Myc. EMBO J. 18, 717–726 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Salghetti, S. E., Muratani, M., Wijnen, H., Futcher, B. & Tansey, W. P. Functional overlap of sequences that activate transcription and signal ubiquitin-mediated proteolysis. Proc. Natl Acad. Sci. USA 97, 3118–3123 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Molinari, E., Gilman, M. & Natesan, S. Proteasome-mediated degradation of transcriptional activators correlates with activation domain potency in vivo. EMBO J. 18, 6439–6447 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Brower, C. S. et al. Mammalian mediator subunit mMED8 is an Elongin BC-interacting protein that can assemble with Cul2 and Rbx1 to reconstitute a ubiquitin ligase. Proc. Natl Acad. Sci. USA 99, 10353–10358 (2002). Established that Ub-ligase activity is directly associated with the RNA polymerase II holoenzyme.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chi, Y. et al. Negative regulation of Gcn4 and Msn2 transcription factors by Srb10 cyclin-dependent kinase. Genes Dev. 15, 1078–1092 (2001). Showed that the yeast transcription factor GCN4 is marked for destruction by a kinase that is present in the RNA polymerase II holoenzyme.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Liao, S. M. et al. A kinase-cyclin pair in the RNA polymerase II holoenzyme. Nature 374, 193–196 (1995).

    Article  CAS  PubMed  Google Scholar 

  77. Tansey, W. P. Transcriptional activation: risky business. Genes Dev. 15, 1045–1050 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Thomas, D. & Tyers, M. Kamikaze activators. Curr. Biol. 10, R341–R343 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Salghetti, S. E., Caudy, A. A., Chenoweth, J. G. & Tansey, W. P. Regulation of transcriptional activation domain function by ubiquitin. Science 293, 1651–1653 (2001). Showed that ubiquitylation of a transcription factor bearing the prototypical VP16 activation domain can be required for transcriptional activation.

    Article  CAS  PubMed  Google Scholar 

  80. Xie, Y. & Varshavsky, A. RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: a negative feedback circuit. Proc. Natl Acad. Sci. USA 98, 3056–3061 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Voges, D., Zwickl, P. & Baumeister, W. The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu. Rev. Biochem. 68, 1015–1068 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Swaffield, J. C., Bromberg, J. F. & Johnston, S. A. Alterations in a yeast protein resembling HIV Tat-binding protein relieve requirement for an acidic activation domain in GAL4. Nature 357, 698–700 (1992).

    Article  CAS  PubMed  Google Scholar 

  83. Russell, S. J., Sathyanarayana, U. G. & Johnston, S. A. Isolation and characterization of SUG2. A novel ATPase family component of the yeast 26 S proteasome. J. Biol. Chem. 271, 32810–32817 (1996).

    Article  CAS  PubMed  Google Scholar 

  84. Swaffield, J. C., Melcher, K. & Johnston, S. A. A highly conserved ATPase protein as a mediator between acidic activation domains and the TATA-binding protein. Nature 374, 88–91 (1995).

    Article  CAS  PubMed  Google Scholar 

  85. Masuyama, H. & MacDonald, P. N. Proteasome-mediated degradation of the vitamin D receptor (VDR) and a putative role for SUG1 interaction with the AF-2 domain of VDR. J. Cell. Biochem. 71, 429–440 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. vom Baur, E. et al. Differential ligand-dependent interactions between the AF-2 activating domain of nuclear receptors and the putative transcriptional intermediary factors mSUG1 and TIF1. EMBO J. 15, 110–124 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang, W., Chevray, P. M. & Nathans, D. Mammalian Sug1 and c-Fos in the nuclear 26S proteasome. Proc. Natl Acad. Sci. USA 93, 8236–8240 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Melcher, K. & Johnston, S. A. GAL4 interacts with TATA-binding protein and coactivators. Mol. Cell. Biol. 15, 2839–2848 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Makino, Y. et al. Multiple mammalian proteasomal ATPases, but not proteasome itself, are associated with TATA-binding protein and a novel transcriptional activator, TIP120. Genes Cells 4, 529–539 (1999).

    Article  CAS  PubMed  Google Scholar 

  90. Weeda, G. et al. The XPB subunit of repair/transcription factor TFIIH directly interacts with SUG1, a subunit of the 26S proteasome and putative transcription factor. Nucleic Acids Res. 25, 2274–2283 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kim, Y. J., Bjorklund, S., Li, Y., Sayre, M. H. & Kornberg, R. D. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77, 599–608 (1994).

    Article  CAS  PubMed  Google Scholar 

  92. Russell, S. J. & Johnston, S. A. Evidence that proteolysis of Gal4 cannot explain the transcriptional effects of proteasome ATPase mutations. J. Biol. Chem. 276, 9825–9831 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Ferdous, A., Gonzalez, F., Sun, L., Kodadek, T. & Johnston, S. A. The 19S regulatory particle of the proteasome is required for efficient transcription elongation by RNA polymerase II. Mol. Cell 7, 981–991 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Blau, J. et al. Three functional classes of transcriptional activation domain. Mol. Cell. Biol. 16, 2044–2055 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Verma, R. et al. Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol. Biol. Cell 11, 3425–3439 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Myers, L. C. et al. The Med proteins of yeast and their function through the RNA polymerase II carboxy-terminal domain. Genes Dev. 12, 45–54 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Makino, Y. et al. SUG1, a component of the 26 S proteasome, is an ATPase stimulated by specific RNAs. J. Biol. Chem. 272, 23201–23205 (1997).

    Article  CAS  PubMed  Google Scholar 

  98. Albert, T. K. et al. Identification of a ubiquitin-protein ligase subunit within the CCR4-NOT transcription repressor complex. EMBO J. 21, 355–364 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Aso, T., Lane, W. S., Conaway, J. W. & Conaway, R. C. Elongin (SIII): a multisubunit regulator of elongation by RNA polymerase II. Science 269, 1439–1443 (1995).

    Article  CAS  PubMed  Google Scholar 

  100. Mueller, C. L. & Jaehning, J. A. Ctr9, Rtf1, and Leo1 are components of the Paf1/RNA polymerase II complex. Mol. Cell. Biol. 22, 1971–1980 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Huibregtse, J. M., Scheffner, M., Beaudenon, S. & Howley, P. M. A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc. Natl Acad. Sci. USA 92, 2563–2567 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Saleh, A. et al. TOM1p, a yeast hect–domain protein which mediates transcriptional regulation through the ADA/SAGA coactivator complexes. J. Mol. Biol. 282, 933–946 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thanks Simone Salghetti for critical comments on the manuscript. W. P. T. is a Leukemia and Lymphoma Society of America Scholar. M. M. is a Marjorie H. Anderson Fellow. Work in W. P. T.'s laboratory is supported by a Cold Spring Harbor Laboratory Cancer Center Support Grant and by a US Public Health Service Grant from the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William P. Tansey.

Related links

Related links

DATABASES

Saccharomyces Genome Database

ARG1

Def1

Med8

Swiss-Prot

β-catenin

Gal4

GSK-3β

histone deacetylase 6

Lef1

Met4

Met30

PIASγ

Rad6

Rad26

RLIM

Rsp5

SIR4

Spt23

Srb10

Sug1

Sug2

TAFII250

FURTHER INFORMATION

William P. Tansey's laboratory

Glossary

GENERAL TRANSCRIPTION FACTORS

A broadly expressed set of proteins that are generally required for accurate, promoter-initiated, transcription by RNA polymerase II.

UBIQUITIN

A highly-conserved 76-amino-acid protein that is linked covalently to lysine residues in other proteins and often signals their destruction.

PROTEASOME

A large, self-compartmentalized protease complex that destroys ubiquitylated substrates. The entire proteasome is often referred to as the 26S complex, which can be separated further into a 20S catalytic and a 19S regulatory complex.

UBIQUITYLATION

The process whereby ubiquitin is conjugated to a substrate protein. This is the chemically-appropriate terminology, as opposed to 'ubiquitination' and 'ubiquitinylation'.

UBIQUITIN-CONJUGATING ENZYME

(Ubc). The enzyme that is responsible for catalysing the transfer of ubiquitin to substrate proteins, and which might or might not be involved directly in substrate recognition.

TELOMERIC-GENE SILENCING

The transcriptional downregulation (silencing) of the expression of genes that are proximal to the telomere.

HISTONE CODE

The pattern of covalent modifications on core histones that functions as an epigenetic mark that distinguishes transcriptionally active regions from inactive regions of the genome.

DE-UBIQUITYLATION

The removal of ubiquitin by cleavage of the isopeptide bond that links ubiquitin to the substrate protein.

UBIQUITIN LIGASE

(Ub-ligase). A substrate recognition factor that brings a ubiquitin-conjugating enzyme and the substrate together. It is often a multiprotein complex.

TCR

(Transcription-coupled repair). The process by which transcriptionally active genes are preferentially repaired following DNA damage.

SUMO

(small ubiquitin-related modifier). One of a family of small ubiquitin-related proteins that are conjugated to substrates in a manner that is analogous to ubiquitylation.

TRANSCRIPTIONAL ACTIVATION DOMAIN

(TAD). A region in a transcription factor that interacts with the general transcriptional machinery to stimulate transcription.

DEGRON

(degradation signal). A specific element in a target protein that signals proteolysis. Usually the site of interaction with a ubiquitin ligase, but not necessarily the site of ubiquitin attachment.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muratani, M., Tansey, W. How the ubiquitin–proteasome system controls transcription. Nat Rev Mol Cell Biol 4, 192–201 (2003). https://doi.org/10.1038/nrm1049

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1049

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing