Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Shared molecular and cellular mechanisms of premature ageing and ageing-associated diseases

Key Points

  • The world's most common diseases are chronic ageing-associated illnesses.

  • Premature ageing diseases and ageing-associated diseases (AADs) share the common hallmarks of increased genomic instability, altered metabolic signalling and reduced regenerative potency.

  • Premature ageing diseases are powerful models to study the cellular and molecular causes and mechanisms of physiological ageing and AADs.

  • Decreased efficiency of DNA repair, shortening of telomeres and loss of heterochromatin underlie the loss of genomic integrity in (premature) ageing and AADs.

  • Increased metabolic signalling contributes to increased levels of oxidative stress, which compromise the integrity of the cellular genome and proteome in ageing.

  • Chronic stress permanently alters cellular fate by inducing senescence and reducing the regenerative capacity of stem cells, which ultimately drives physiological decline in ageing.

  • Segmental progeroid syndromes provide exciting new opportunities to understand and therapeutically correct the loss of cellular homeostasis in ageing and disease.

Abstract

Ageing is the predominant risk factor for many common diseases. Human premature ageing diseases are powerful model systems to identify and characterize cellular mechanisms that underpin physiological ageing. Their study also leads to a better understanding of the causes, drivers and potential therapeutic strategies of common diseases associated with ageing, including neurological disorders, diabetes, cardiovascular diseases and cancer. Using the rare premature ageing disorder Hutchinson–Gilford progeria syndrome as a paradigm, we discuss here the shared mechanisms between premature ageing and ageing-associated diseases, including defects in genetic, epigenetic and metabolic pathways; mitochondrial and protein homeostasis; cell cycle; and stem cell-regenerative capacity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cellular ageing defects.
Figure 2: Defects in DNA damage repair associated with ageing.
Figure 3: Epigenetic defects associated with ageing.
Figure 4: Mitochondrial ROS-driven ageing defects.
Figure 5: Cellular senescence pathways.

Similar content being viewed by others

References

  1. Lopez, A. D., Mathers, C. D., Ezzati, M., Jamison, D. T. & Murray, C. J. Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet 367, 1747–1757 (2006).

    PubMed  Google Scholar 

  2. National Center for Health Statistics. Deaths and mortality. Center for Disease Control and Prevention http://www.cdc.gov/nchs/fastats/deaths.htm (2017).

  3. Denayer, T., Stöhr, T. & Van Roy, M. Animal models in translational medicine: validation and prediction. New Horizons Transl Med. 2, 5–11 (2014).

    Google Scholar 

  4. Potashkin, J. A., Blume, S. R. & Runkle, N. K. Limitations of animal models of Parkinson's disease. Parkinsons Dis. 2011, 658083 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Getz, G. S. & Reardon, C. A. Animal models of atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 32, 1104–1115 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Childs, B. G. et al. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 354, 472–477 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Baker, D. J. et al. Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature 530, 184–189 (2016). An important study elegantly demonstrating the detrimental effect of the accumulation of senescent cells on lifespan and healthspan.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nystrom, H., Nordstrom, A. & Nordstrom, P. Risk of injurious fall and hip fracture up to 26 y before the diagnosis of Parkinson disease: nested case-control studies in a nationwide cohort. PLoS Med. 13, e1001954 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chang, Y. T. et al. Handgrip strength is an independent predictor of renal outcomes in patients with chronic kidney diseases. Nephrol. Dial. Transplant. 26, 3588–3595 (2011).

    Article  PubMed  Google Scholar 

  10. Eriksson, M. et al. Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome. Nature 423, 293–298 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. de Sandre-Giovannoli, A. et al. Lamin A truncation in Hutchinson–Gilford progeria. Science 1084, 2055 (2003).

    Article  Google Scholar 

  12. Yu, C. E. et al. Positional cloning of the Werner's syndrome gene. Science 272, 258–262 (1996).

    CAS  PubMed  Google Scholar 

  13. Hennekam, R. C. Hutchinson–Gilford progeria syndrome: review of the phenotype. Am. J. Med. Genet. A 140, 2603–2624 (2006).

    Article  PubMed  CAS  Google Scholar 

  14. Gordon, L. B. et al. Impact of farnesylation inhibitors on survival in Hutchinson–Gilford progeria syndrome. Circulation 130, 27–34 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gordon, L. B., Rothman, F. G., Lopez-Otin, C. & Misteli, T. Progeria: a paradigm for translational medicine. Cell 156, 400–407 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dittmer, T. A. & Misteli, T. The lamin protein family. Genome Biol. 12, 222 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Davies, B. S., Fong, L. G., Yang, S. H., Coffinier, C. & Young, S. G. The posttranslational processing of prelamin A and disease. Annu. Rev. Genomics Hum. Genet. 10, 153–174 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Taimen, P. et al. A progeria mutation reveals functions for lamin A in nuclear assembly, architecture, and chromosome organization. Proc. Natl Acad. Sci. USA 106, 20788–20793 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dahl, K. N., Ribeiro, A. J. & Lammerding, J. Nuclear shape, mechanics, and mechanotransduction. Circ. Res. 102, 1307–1318 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Carrero, D. & Soria-Valles, C. Hallmarks of progeroid syndromes: lessons from mice and reprogrammed cells. Dis. Model. Mech. 9, 719–735 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. de la Rosa, J. et al. Prelamin A causes progeria through cell-extrinsic mechanisms and prevents cancer invasion. Nat. Commun. 4, 2268 (2013).

    Article  PubMed  CAS  Google Scholar 

  22. Jung, H. J. et al. Regulation of prelamin A but not lamin C by miR-9, a brain-specific microRNA. Proc. Natl Acad. Sci. USA 109, E423–E431 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fernandez, P. et al. Transformation resistance in a premature aging disorder identifies a tumor-protective function of BRD4. Cell Rep. 9, 248–260 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Merideth, M. A. et al. Phenotype and course of Hutchinson–Gilford progeria syndrome. N. Engl. J. Med. 358, 592–604 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Broers, J. L., Ramaekers, F. C., Bonne, G., Yaou, R. B. & Hutchison, C. J. Nuclear lamins: laminopathies and their role in premature ageing. Physiol. Rev. 86, 967–1008 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013). A comprehensive overview of the cellular defects that occur during ageing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kubben, N. et al. Repression of the antioxidant Nrf2 pathway in premature aging. Cell 165, 1361–1374 (2016). An important study that used unbiased screening to identify the mechanisms that drive premature cellular ageing. Entrapment of the antioxidant-promoting transcription factor NRF2 by progerin was found as a novel mechanism that drives HGPS and is likely a cause of chronic oxidative stress during ageing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Scaffidi, P. & Misteli, T. Lamin A-dependent nuclear defects in human aging. Science 312, 1059–1063 (2006). This study provided the first evidence that similar changes in histone modifications occur in HGPS and normal ageing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Viteri, G., Chung, Y. W. & Stadtman, E. R. Effect of progerin on the accumulation of oxidized proteins in fibroblasts from Hutchinson Gilford progeria patients. Mech. Ageing Dev. 131, 2–8 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Liu, G. H. et al. Recapitulation of premature ageing with iPSCs from Hutchinson–Gilford progeria syndrome. Nature 472, 221–225 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang, J. et al. A human iPSC model of Hutchinson Gilford Progeria reveals vascular smooth muscle and mesenchymal stem cell defects. Cell Stem Cell 8, 31–45 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Pegoraro, G. et al. Ageing-related chromatin defects through loss of the NURD complex. Nat. Cell Biol. 11, 1261–1267 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Van Berlo, J. H. et al. A-Type lamins are essential for TGF-beta1 induced PP2A to dephosphorylate transcription factors. Hum. Mol. Genet. 14, 2839–2849 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Varela, I. et al. Accelerated ageing in mice deficient in Zmpste24 protease is linked to p53 signalling activation. Nature 437, 564–568 (2005). This study provided important proof that chronic activation of the p53 pathway as a response to elevated cellular stress has a detrimental effect in prelamin A-induced premature ageing.

    Article  CAS  PubMed  Google Scholar 

  35. Puente, X. S. et al. Exome sequencing and functional analysis identifies BANF1 mutation as the cause of a hereditary progeroid syndrome. Am. J. Hum. Genet. 88, 650–656 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McClintock, D. et al. The mutant form of lamin A that causes Hutchinson–Gilford progeria is a biomarker of cellular aging in human skin. PLoS ONE 2, e1269 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Lopez-Mejia, I. C. et al. Antagonistic functions of LMNA isoforms in energy expenditure and lifespan. EMBO Rep. 15, 529–539 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hisama, F. M. et al. Coronary artery disease in a Werner syndrome-like form of progeria characterized by low levels of progerin, a splice variant of lamin A. Am J Med Genet A 155, 3002–3006 (2011).

    Article  CAS  Google Scholar 

  39. Atamna, H., Cheung, I. & Ames, B. N. A method for detecting abasic sites in living cells: age-dependent changes in base excision repair. Proc. Natl Acad. Sci. USA 97, 686–691 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Annett, K. et al. An investigation of DNA mismatch repair capacity under normal culture conditions and under conditions of supra-physiological challenge in human CD4+T cell clones from donors of different ages. Exp. Gerontol. 40, 976–981 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Moriwaki, S., Ray, S., Tarone, R. E., Kraemer, K. H. & Grossman, L. The effect of donor age on the processing of UV-damaged DNA by cultured human cells: reduced DNA repair capacity and increased DNA mutability. Mutat. Res. 364, 117–123 (1996).

    Article  PubMed  Google Scholar 

  42. Mao, Z. et al. Sirtuin 6 (SIRT6) rescues the decline of homologous recombination repair during replicative senescence. Proc. Natl Acad. Sci. USA 109, 11800–11805 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stuart, G. R. & Glickman, B. W. Through a glass, darkly: reflections of mutation from lacI transgenic mice. Genetics 155, 1359–1367 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu, Y. et al. Involvement of xeroderma pigmentosum group A (XPA) in progeria arising from defective maturation of prelamin A. FASEB J. 22, 603–611 (2008). This paper provides a mechanistic explanation for the frequently observed persistence of irreparable DNA damage in HGPS.

    Article  CAS  PubMed  Google Scholar 

  45. Musich, P. R. & Zou, Y. Genomic instability and DNA damage responses in progeria arising from defective maturation of prelamin A. Aging (Albany NY) 1, 28–37 (2009).

    Article  CAS  Google Scholar 

  46. Tang, H., Hilton, B., Musich, P. R., Fang, D. Z. & Zou, Y. Replication factor C1, the large subunit of replication factor C, is proteolytically truncated in Hutchinson–Gilford progeria syndrome. Aging Cell 11, 363–365 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Cobb, A. M., Murray, T. V., Warren, D. T., Liu, Y. & Shanahan, C. M. Disruption of PCNA-lamins A/C interactions by prelamin A induces DNA replication fork stalling. Nucleus 7, 498–511 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang, H., Xiong, Z. M. & Cao, K. Mechanisms controlling the smooth muscle cell death in progeria via down-regulation of poly(ADP-ribose) polymerase 1. Proc. Natl Acad. Sci. USA 111, E2261–E2270 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu, B. et al. Genomic instability in laminopathy-based premature aging. Nat. Med. 11, 780–785 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Rass, U., Ahel, I. & West, S. C. Defective DNA repair and neurodegenerative disease. Cell 130, 991–1004 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Shackelford, D. A. DNA end joining activity is reduced in Alzheimer's disease. Neurobiol. Aging 27, 596–605 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Kao, S. Y. Regulation of DNA repair by parkin. Biochem. Biophys. Res. Commun. 382, 321–325 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Robbins, J. H. et al. Parkinson's disease and Alzheimer's disease: hypersensitivity to X rays in cultured cell lines. J. Neurol. Neurosurg. Psychiatry 48, 916–923 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mahmoudi, M., Mercer, J. & Bennett, M. DNA damage and repair in atherosclerosis. Cardiovasc. Res. 71, 259–268 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Muftuoglu, M. et al. The clinical characteristics of Werner syndrome: molecular and biochemical diagnosis. Hum. Genet. 124, 369–377 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tavana, O. et al. Ku70 functions in addition to nonhomologous end joining in pancreatic beta-cells: a connection to beta-catenin regulation. Diabetes 62, 2429–2438 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schmidt, E. et al. Expression of the Hutchinson–Gilford progeria mutation during osteoblast development results in loss of osteocytes, irregular mineralization, and poor biomechanical properties. J. Biol. Chem. 287, 33512–33522 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lombard, D. B. et al. DNA repair, genome stability, and aging. Cell 120, 497–512 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Gorbunova, V., Seluanov, A., Mao, Z. & Hine, C. Changes in DNA repair during aging. Nucleic Acids Res. 35, 7466–7474 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fuster, J. J. & Andres, V. Telomere biology and cardiovascular disease. Circ. Res. 99, 1167–1180 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Wong, L. S. et al. Telomere biology in cardiovascular disease: the TERC−/− mouse as a model for heart failure and ageing. Cardiovasc. Res. 81, 244–252 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Benson, E. K., Lee, S. W. & Aaronson, S. A. Role of progerin-induced telomere dysfunction in HGPS premature cellular senescence. J. Cell Sci. 123, 2605–2612 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Decker, M. L., Chavez, E., Vulto, I. & Lansdorp, P. M. Telomere length in Hutchinson–Gilford progeria syndrome. Mech. Ageing Dev. 130, 377–383 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Gonzalez-Suarez, I. et al. Novel roles for A-type lamins in telomere biology and the DNA damage response pathway. EMBO J. 28, 2414–2427 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. De Vos, W. H. et al. Increased plasticity of the nuclear envelope and hypermobility of telomeres due to the loss of A-type lamins. Biochim. Biophys. Acta 1800, 448–458 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Raz, V. et al. The nuclear lamina promotes telomere aggregation and centromere peripheral localization during senescence of human mesenchymal stem cells. J. Cell Sci. 121, 4018–4028 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Wood, A. M. et al. TRF2 and lamin A/C interact to facilitate the functional organization of chromosome ends. Nat. Commun. 5, 5467 (2014).

    Article  PubMed  Google Scholar 

  68. Saha, B. et al. DNA damage accumulation and TRF2 degradation in atypical Werner syndrome fibroblasts with LMNA mutations. Front. Genet. 4, 129 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Cao, K. et al. Progerin and telomere dysfunction collaborate to trigger cellular senescence in normal human fibroblasts. J. Clin. Invest. 121, 2833–2844 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li, D., Yuan, Q. & Wang, W. The role of telomeres in musculoskeletal diseases. J. Int. Med. Res. 40, 1242–1250 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Kordinas, V., Ioannidis, A. & Chatzipanagiotou, S. The telomere/telomerase system in chronic inflammatory diseases. Cause or effect? Genes (Basel) 7, 60 (2016).

    Article  CAS  Google Scholar 

  72. Alder, J. K. et al. Short telomeres are a risk factor for idiopathic pulmonary fibrosis. Proc. Natl Acad. Sci. USA 105, 13051–13056 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Adnot, S. et al. Telomere dysfunction and cell senescence in chronic lung diseases: therapeutic potential. Pharmacol. Ther. 153, 125–134 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Chojnowski, A. et al. Progerin reduces LAP2alpha-telomere association in Hutchinson–Gilford progeria. eLife 4, e07759 (2015).

    Article  PubMed Central  Google Scholar 

  75. Heyn, H., Moran, S. & Esteller, M. Aberrant DNA methylation profiles in the premature aging disorders Hutchinson–Gilford Progeria and Werner syndrome. Epigenetics 8, 28–33 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Scaffidi, P. & Misteli, T. Reversal of the cellular phenotype in the premature aging disease Hutchinson–Gilford progeria syndrome. Nat. Med. 11, 440–445 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shumaker, D. K. et al. Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc. Natl Acad. Sci. USA 103, 8703–8708 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jin, C. et al. Histone demethylase UTX-1 regulates C. elegans life span by targeting the insulin/IGF-1 signaling pathway. Cell Metab. 14, 161–172 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Chen, H. et al. Polycomb protein Ezh2 regulates pancreatic beta-cell Ink4a/Arf expression and regeneration in diabetes mellitus. Genes Dev. 23, 975–985 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lund, H. L. & van Loohuizen, M. Polycomb complexes and silencing mechanisms. Curr. Opin. Cell Biol. 16, 239–246 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Marullo, F. et al. Nucleoplasmic Lamin A/C and Polycomb group of proteins: an evolutionarily conserved interplay. Nucleus 7, 103–111 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhang, W. et al. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science 348, 1160–1163 (2015). This paper demonstrates that global epigenetic defects underlie mesenchymal stem cell dysfunction in Werner premature ageing syndrome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Liu, B. et al. Depleting the methyltransferase Suv39h1 improves DNA repair and extends lifespan in a progeria mouse model. Nat. Commun. 4, 1868 (2013).

    Article  PubMed  CAS  Google Scholar 

  84. Wing, M. R., Ramezani, A., Gill, H. S., Devaney, J. M. & Raj, D. S. Epigenetics of progression of chronic kidney disease: fact or fantasy? Semin. Nephrol. 33, 363–374 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Frost, B., Hemberg, M., Lewis, J. & Feany, M. B. Tau promotes neurodegeneration through global chromatin relaxation. Nat. Neurosci. 17, 357–366 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Misteli, T. Higher-order genome organization in human disease. Cold Spring Harb. Perspect. Biol. 2, a000794 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Krishnan, V. et al. Histone H4 lysine 16 hypoacetylation is associated with defective DNA repair and premature senescence in Zmpste24- deficient mice. Proc. Natl Acad. Sci. USA 108, 12325–12330 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sharma, G. G. et al. MOF and histone H4 acetylation at lysine 16 are critical for DNA damage response and double-strand break repair. Mol. Cell. Biol. 30, 3582–3595 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dang, W. et al. Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature 459, 802–807 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Peleg, S. et al. Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 328, 753–756 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Qiu, X., Xiao, X., Li, N. & Li, Y. Histone deacetylases inhibitors (HDACis) as novel therapeutic application in various clinical diseases. Prog. Neuropsychopharmacol. Biol. Psychiatry 72, 60–72 (2017).

    Article  CAS  PubMed  Google Scholar 

  92. Mazucanti, C. H. et al. Longevity pathways (mTOR, SIRT, Insulin/IGF-1) as key modulatory targets on aging and neurodegeneration. Curr. Top. Med. Chem. 15, 2116–2138 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Mariño, G. et al. Insulin-like growth factor 1 treatment extends longevity in a mouse model of human premature aging by restoring somatotroph axis function. Proc. Natl Acad. Sci. USA 107, 16268–16273 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Perluigi, M., Di Domenico, F. & Butterfield, D. A. mTOR signaling in aging and neurodegeneration: at the crossroad between metabolism dysfunction and impairment of autophagy. Neurobiol. Dis. 84, 39–49 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Talaei, F., van Praag, V. M. & Henning, R. H. Hydrogen sulfide restores a normal morphological phenotype in Werner syndrome fibroblasts, attenuates oxidative damage and modulates mTOR pathway. Pharmacol. Res. 74, 34–44 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Sharples, A. P. et al. Longevity and skeletal muscle mass: the role of IGF signalling, the sirtuins, dietary restriction and protein intake. Aging Cell 14, 511–523 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Massudi, H. et al. Age-associated changes in oxidative stress and NAD+ metabolism in human tissue. PLoS ONE 7, e42357 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Liu, B. et al. Resveratrol rescues SIRT1-dependent adult stem cell decline and alleviates progeroid features in laminopathy-based progeria. Cell Metab. 16, 738–750 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Jeon, S. M. Regulation and function of AMPK in physiology and diseases. Exp. Mol. Med. 48, e245 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Satriano, J., Sharma, K., Blantz, R. C. & Deng, A. Induction of AMPK activity corrects early pathophysiological alterations in the subtotal nephrectomy model of chronic kidney disease. Am. J. Physiol. Renal Physiol. 305, F727–F733 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Anderson, J. G. et al. Enhanced insulin sensitivity in skeletal muscle and liver by physiological overexpression of SIRT6. Mol. Metab. 4, 846–856 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Endisha, H. et al. Restoring SIRT6 expression in Hutchinson–Gilford progeria syndrome cells impedes premature senescence and formation of dysmorphic nuclei. Pathobiology 82, 9–20 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Lane, R. K., Hilsabeck, T. & Rea, S. L. The role of mitochondrial dysfunction in age-related diseases. Biochim. Biophys. Acta 1847, 1387–1400 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Trifunovic, A. et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429, 417–423 (2004). This study provided direct evidence that the accumulation of mutations in mtDNA that occurs with ageing is not simply correlative but causes a eduction in lifespan and leads to the development of premature ageing pathologies.

    Article  CAS  PubMed  Google Scholar 

  105. Xiong, Z. M. et al. Methylene blue alleviates nuclear and mitochondrial abnormalities in progeria. Aging Cell 15, 279–290 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Rivera-Torres, J. et al. Identification of mitochondrial dysfunction in Hutchinson–Gilford progeria syndrome through use of stable isotope labeling with amino acids in cell culture. J. Proteomics 91, 466–477 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. Massip, L. et al. Vitamin C restores healthy aging in a mouse model for Werner syndrome. FASEB J. 24, 158–172 (2010).

    Article  PubMed  CAS  Google Scholar 

  108. Jiang, T., Sun, Q. & Chen, S. Oxidative stress: a major pathogenesis and potential therapeutic target of antioxidative agents in Parkinson's disease and Alzheimer's disease. Prog. Neurobiol. 147, 1–19 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. de Souza-Pinto, N. C., Wilson, D. M. III, Stevnsner, T. V. & Bohr, V. A. Mitochondrial DNA, base excision repair and neurodegeneration. DNA Repair (Amst.) 7, 1098–1109 (2008).

    Article  CAS  Google Scholar 

  110. Golpich, M. et al. Mitochondrial dysfunction and biogenesis in neurodegenerative diseases: pathogenesis and treatment. CNS Neurosci. Ther. 23, 5–22 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Kang, M. J. & Shadel, G. S. A mitochondrial perspective of chronic obstructive pulmonary disease pathogenesis. Tuberc. Respir. Dis. (Seoul) 79, 207–213 (2016).

    Article  Google Scholar 

  112. Villa-Bellosta, R. et al. Defective extracellular pyrophosphate metabolism promotes vascular calcification in a mouse model of Hutchinson–Gilford progeria syndrome that is ameliorated on pyrophosphate treatment. Circulation 127, 2442–2451 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Demer, L. L. & Tintut, Y. Vascular calcification: pathobiology of a multifaceted disease. Circulation 117, 2938–2948 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Dinkova-Kostova, A. T. & Abramov, A. Y. The emerging role of Nrf2 in mitochondrial function. Free Radic. Biol. Med. 88, 179–188 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Pallardo, F. V. et al. Mitochondrial dysfunction in some oxidative stress-related genetic diseases: Ataxia–Telangiectasia, Down Syndrome, Fanconi Anaemia and Werner Syndrome. Biogerontology 11, 401–419 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Suh, J. H. et al. Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid. Proc. Natl Acad. Sci. USA 101, 3381–3386 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ramsey, C. P. et al. Expression of Nrf2 in neurodegenerative diseases. J. Neuropathol. Exp. Neurol. 66, 75–85 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Schriner, S. E. et al. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308, 1909–1911 (2005). This paper provides evidence that mitochondria are a prominent source of oxidative stress that drives ageing.

    Article  CAS  PubMed  Google Scholar 

  119. Tamaki, M. et al. Chronic kidney disease reduces muscle mitochondria and exercise endurance and its exacerbation by dietary protein through inactivation of pyruvate dehydrogenase. Kidney Int. 85, 1330–1339 (2014).

    Article  CAS  PubMed  Google Scholar 

  120. Tanaka, K. & Matsuda, N. Proteostasis and neurodegeneration: the roles of proteasomal degradation and autophagy. Biochim. Biophys. Acta 1843, 197–204 (2014).

    Article  CAS  PubMed  Google Scholar 

  121. Cao, K. et al. Rapamycin reverses cellular phenotypes and enhances mutant protein clearance in Hutchinson–Gilford progeria syndrome cells. Sci. Transl Med. 3, 89ra58 (2011). This paper provides a mechanistic link between metabolic signalling and ageing via the autophagic degradation of progerin and offers a novel therapeutic strategy for HGPS that is currently being tested in a clinical trial.

    CAS  PubMed  Google Scholar 

  122. Anisimov, V. N. et al. Rapamycin increases lifespan and inhibits spontaneous tumorigenesis in inbred female mice. Cell Cycle 10, 4230–4236 (2011).

    Article  CAS  PubMed  Google Scholar 

  123. Di Domenico, F., Tramutola, A. & Perluigi, M. Cathepsin D as a therapeutic target in Alzheimer's disease. Expert Opin. Ther. Targets 20, 1393–1395 (2016).

    Article  PubMed  Google Scholar 

  124. Caccamo, A., De Pinto, V., Messina, A., Branca, C. & Oddo, S. Genetic reduction of mammalian target of rapamycin ameliorates Alzheimer's disease-like cognitive and pathological deficits by restoring hippocampal gene expression signature. J. Neurosci. 34, 7988–7998 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Xilouri, M. et al. Impairment of chaperone-mediated autophagy induces dopaminergic neurodegeneration in rats. Autophagy 12, 2230–2247 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wang, X. & Robbins, J. Proteasomal and lysosomal protein degradation and heart disease. J. Mol. Cell. Cardiol. 71, 16–24 (2014).

    Article  CAS  PubMed  Google Scholar 

  127. Tai, S., Hu, X. Q., Peng, D. Q., Zhou, S. H. & Zheng, X. L. The roles of autophagy in vascular smooth muscle cells. Int. J. Cardiol. 211, 1–6 (2016).

    Article  PubMed  Google Scholar 

  128. Mukherjee, A., Morales-Scheihing, D., Butler, P. C. & Soto, C. Type 2 diabetes as a protein misfolding disease. Trends Mol. Med. 21, 439–449 (2015). An interesting perspective on T2D, which has joined the growing ranks of diseases related to protein misfolding.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Saez, I. & Vilchez, D. The mechanistic links between proteasome activity, aging and age-related diseases. Curr. Genomics 15, 38–51 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Deger, J. M., Gerson, J. E. & Kayed, R. The interrelationship of proteasome impairment and oligomeric intermediates in neurodegeneration. Aging Cell 14, 715–724 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Tchkonia, T., Zhu, Y., van Deursen, J., Campisi, J. & Kirkland, J. L. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J. Clin. Invest. 123, 966–972 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Krishnamurthy, J. et al. Ink4a/Arf expression is a biomarker of aging. J. Clin. Invest. 114, 1299–1307 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Baker, D. J. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479, 232–236 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Osorio, F. G. et al. Nuclear lamina defects cause ATM-dependent NF-kappaB activation and link accelerated aging to a systemic inflammatory response. Genes Dev. 26, 2311–2324 (2012). An important study depicting for the first time that chronic activation of inflammatory pathways is crucial for the formation of premature ageing defects in HGPS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ibrahim, M. X. et al. Targeting isoprenylcysteine methylation ameliorates disease in a mouse model of progeria. Science 340, 1330–1333 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Soria-Valles, C. et al. NF-kappaB activation impairs somatic cell reprogramming in ageing. Nat. Cell Biol. 17, 1004–1013 (2015).

    Article  CAS  PubMed  Google Scholar 

  137. Bhat, R. et al. Astrocyte senescence as a component of Alzheimer's disease. PLoS ONE 7, e45069 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Shi, Z. M. et al. Upstream regulators and downstream effectors of NF-kappaB in Alzheimer's disease. J. Neurol. Sci. 366, 127–134 (2016).

    Article  CAS  PubMed  Google Scholar 

  139. Phani, S., Loike, J. D. & Przedborski, S. Neurodegeneration and inflammation in Parkinson's disease. Parkinsonism Relat. Disord. 18 (Suppl. 1), S207–S209 (2012).

    Article  PubMed  Google Scholar 

  140. Kuwano, K. et al. Cellular senescence and autophagy in the pathogenesis of chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Respir. Investig. 54, 397–406 (2016).

    Article  PubMed  Google Scholar 

  141. Decleves, A. E. & Sharma, K. Novel targets of antifibrotic and anti-inflammatory treatment in CKD. Nat. Rev. Nephrol. 10, 257–267 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Iyemere, V. P., Proudfoot, D., Weissberg, P. L. & Shanahan, C. M. Vascular smooth muscle cell phenotypic plasticity and the regulation of vascular calcification. J. Intern. Med. 260, 192–210 (2006).

    Article  CAS  PubMed  Google Scholar 

  143. Turinetto, V., Vitale, E. & Giachino, C. Senescence in human mesenchymal stem cells: functional changes and implications in stem cell-based therapy. Int. J. Mol. Sci. 17, E1164 (2016).

    Article  PubMed  CAS  Google Scholar 

  144. Rosengardten, Y., McKenna, T., Grochova, D. & Eriksson, M. Stem cell depletion in Hutchinson–Gilford progeria syndrome. Aging Cell 10, 1011–1020 (2011).

    Article  CAS  PubMed  Google Scholar 

  145. Scaffidi, P. & Misteli, T. Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing. Nat. Cell Biol. 10, 452–459 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Olive, M. et al. Cardiovascular pathology in Hutchinson–Gilford progeria: correlation with the vascular pathology of aging. Arterioscler. Thromb. Vasc. Biol. 30, 2301–2309 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Oh, J., Lee, Y. D. & Wagers, A. J. Stem cell aging: mechanisms, regulators and therapeutic opportunities. Nat. Med. 20, 870–880 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Bhartiya, D. & Patel, H. Very small embryonic-like stem cells are involved in pancreatic regeneration and their dysfunction with age may lead to diabetes and cancer. Stem Cell Res. Ther. 6, 96 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Navarro, S. & Driscoll, B. Regeneration of the aging lung: a mini-review. Gerontology 63, 270–280 (2016).

    Article  PubMed  CAS  Google Scholar 

  150. Wang, J. et al. Vascular smooth muscle cell senescence promotes atherosclerosis and features of plaque vulnerability. Circulation 132, 1909–1919 (2015).

    Article  CAS  PubMed  Google Scholar 

  151. Tincer, G., Mashkaryan, V., Bhattarai, P. & Kizil, C. Neural stem/progenitor cells in Alzheimer's disease. Yale J. Biol. Med. 89, 23–35 (2016).

    PubMed  PubMed Central  Google Scholar 

  152. Ocampo, A. et al. In vivo amelioration of age-associated hallmarks by partial reprogramming. Cell 167, 1719–1733.e12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

N. K. and T. M. researched data for the article, contributed to discussion of the content, wrote the article and reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Nard Kubben or Tom Misteli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Nucleotide excision repair

(NER). A DNA repair pathway specialized in the removal of bulky DNA adducts, including ultraviolet damage-induced thymidine dimers.

Non-homologous end joining

(NHEJ). A DNA repair pathway that repairs double-strand breaks through direct ligation of the broken ends without the need of a homologous template.

Oxidative phosphorylation

(OXPHOS). A process by which electrons are transferred from electron donors to electron acceptors, thereby releasing energy in the form of ATP. In prokaryotes, this process takes place in the inner mitochondrial membrane at the site of the electron transport chain.

Ubiquitin–proteasome system

(UPS). A system that degrades proteins marked by degradation-specific ubiquitin marks in an ATP-dependent manner.

Epithelial-to-mesenchymal transition

(EMT). A process by which epithelial cells undergo various molecular changes related to cell–cell adhesion, polarity and invasive properties, in order to become mesenchymal cells. EMT has beneficial roles in wound healing but exerts detrimental effects in organ fibrosis and the initiation of tumour metastasis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubben, N., Misteli, T. Shared molecular and cellular mechanisms of premature ageing and ageing-associated diseases. Nat Rev Mol Cell Biol 18, 595–609 (2017). https://doi.org/10.1038/nrm.2017.68

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm.2017.68

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing