Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Somatic stem cell heterogeneity: diversity in the blood, skin and intestinal stem cell compartments

Key Points

  • The concept of a strictly hierarchical model of tissue regeneration in which a uniform pool of stem cells that continuously regenerates somatic tissues has recently been re-evaluated.

  • In the haematopoietic system, stem cells with distinct differentiation preferences generate progeny in a lineage-biased manner. New data suggest that there is sustained production of specific cell types from highly specialized long-term progenitors, overturning traditional views.

  • The skin epithelium, which includes the interfollicular epidermis, the hair follicle and the sebaceous gland, contains heterogeneous pools of stem cells that maintain their discrete compartments during homeostasis. In transplantation assays or in response to injury, these stem cells are no longer restricted in their lineage choice.

  • Specific niches that surround the different pools of stem cells define the identities and behaviours of the stem cells.

  • Under normal conditions, the intestinal epithelium is primarily maintained by crypt base columnar (CBC) stem cells. Following injury, or in the absence of CBC cells, other cells can maintain and repair the intestine. Reserve or quiescent stem cells (qISCs; also known as +4 cells) are thought to be important for repair, but progenitors and differentiated cells may also revert to function as stem cells.

  • The identity and characteristics of stem cell types and the mechanisms of their differential regulation through intrinsic and extrinsic signals remain to be determined.

Abstract

Somatic stem cells replenish many tissues throughout life to repair damage and to maintain tissue homeostasis. Stem cell function is frequently described as following a hierarchical model in which a single master cell undergoes self-renewal and differentiation into multiple cell types and is responsible for most regenerative activity. However, recent data from studies on blood, skin and intestinal epithelium all point to the concomitant action of multiple types of stem cells with distinct everyday roles. Under stress conditions such as acute injury, the surprising developmental flexibility of these stem cells enables them to adapt to diverse roles and to acquire different regeneration capabilities. This paradigm shift raises many new questions about the developmental origins, inter-relationships and molecular regulation of these multiple stem cell types.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stem cell models for the haematopoietic system.
Figure 2: Heterogeneity of skin epithelial stem cells.
Figure 3: Overview of the intestinal stem cell system.

Similar content being viewed by others

References

  1. Pappenheim, A. Ueber Entwickelung und Ausbildung der Erythroblasten. Virchows Arch. Pathol. Anat. Physiol. Klin. Med. 145, 587–643 (in German) (1896).

    Google Scholar 

  2. Ramalho-Santos, M. & Willenbring, H. On the origin of the term “stem cell”. Cell Stem Cell 1, 35–38 (2007).

    CAS  PubMed  Google Scholar 

  3. Becker, A. J., McCulloch, E. A. & Till, J. E. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 197, 452–454 (1963).

    CAS  PubMed  Google Scholar 

  4. Lemischka, I. R., Raulet, D. H. & Mulligan, R. C. Developmental potential and dynamic behavior of hematopoietic stem cells. Cell 45, 917–927 (1986).

    CAS  PubMed  Google Scholar 

  5. Keller, G. & Snodgrass, R. Life span of multipotential hematopoietic stem cells in vivo. J. Exp. Med. 171, 1407–1418 (1990).

    CAS  PubMed  Google Scholar 

  6. Cheng, H. & Leblond, C. P. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine V. Unitarian theory of the origin of the four epithelial cell types. Am. J. Anat. 141, 537–561 (1974).

    CAS  PubMed  Google Scholar 

  7. Stange, D. E. et al. Differentiated Troy+ chief cells act as reserve stem cells to generate all lineages of the stomach epithelium. Cell 155, 357–368 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Van Keymeulen, A. et al. Distinct stem cells contribute to mammary gland development and maintenance. Nature 479, 189–193 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Ousset, M. et al. Multipotent and unipotent progenitors contribute to prostate postnatal development. Nature Cell Biol. 14, 1131–1138 (2012).

    CAS  PubMed  Google Scholar 

  10. Osawa, M., Hanada, K., Hamada, H. & Nakauchi, H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273, 242–245 (1996).

    CAS  PubMed  Google Scholar 

  11. Müller-Sieburg, C. E., Cho, R. H., Thoman, M., Adkins, B. & Sieburg, H. B. Deterministic regulation of hematopoietic stem cell self-renewal and differentiation. Blood 100, 1302–1309 (2002).

    PubMed  Google Scholar 

  12. Muller-Sieburg, C. E., Cho, R. H., Karlsson, L., Huang, J. F. & Sieburg, H. B. Myeloid-biased hematopoietic stem cells have extensive self-renewal capacity but generate diminished lymphoid progeny with impaired IL-7 responsiveness. Blood 103, 4111–4118 (2004).

    CAS  PubMed  Google Scholar 

  13. Dykstra, B. et al. Long-term propagation of distinct hematopoietic differentiation programs in vivo. Cell Stem Cell 1, 218–229 (2007). This landmark study used single-cell transplantation to definitively establish various types of HSC with distinct differentiation preferences.

    CAS  PubMed  Google Scholar 

  14. Benz, C. et al. Hematopoietic stem cell subtypes expand differentially during development and display distinct lymphopoietic programs. Cell Stem Cell 10, 273–283 (2012).

    CAS  PubMed  Google Scholar 

  15. Cavazzana-Calvo, M. et al. Is normal hematopoiesis maintained solely by long-term multipotent stem cells? Blood 117, 4420–4424 (2011).

    PubMed  PubMed Central  Google Scholar 

  16. Challen, G. A., Boles, N. C., Chambers, S. M. & Goodell, M. A. Distinct hematopoietic stem cell subtypes are differentially regulated by TGF-ß1. Cell Stem Cell 6, 265–278 (2010). This study was the first to prospectively isolate HSC subtypes and show their differential regulation by a growth factor.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Morita, Y., Ema, H. & Nakauchi, H. Heterogeneity and hierarchy within the most primitive hematopoietic stem cell compartment. J. Exp. Med. 207, 1173–1182 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Beerman, I. et al. Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion. Proc. Natl Acad. Sci. USA 107, 5465–5470 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kent, D. G. et al. Prospective isolation and molecular characterization of hematopoietic stem cells with durable self-renewal potential. Blood 113, 6342–6350 (2009).

    CAS  PubMed  Google Scholar 

  20. Benveniste, P. et al. Intermediate-term hematopoietic stem cells with extended but time-limited reconstitution potential. Cell Stem Cell 6, 48–58 (2010).

    CAS  PubMed  Google Scholar 

  21. Gekas, C. & Graf, T. CD41 expression marks myeloid-biased adult hematopoietic stem cells and increases with age. Blood 121, 4463–4472 (2013).

    CAS  PubMed  Google Scholar 

  22. Sanjuan-Pla, A. et al. Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy. Nature 502, 232–236 (2013).

    CAS  PubMed  Google Scholar 

  23. Mallaney, C., Kothari, A., Martens, A. & Challen, G. A. Clonal-level responses of functionally distinct hematopoietic stem cells to trophic factors. Exp. Hematol. 42, 317–327. e2 (2014).

    CAS  PubMed  Google Scholar 

  24. Wang, J. et al. A differentiation checkpoint limits hematopoietic stem cell self-renewal in response to DNA damage. Cell 148, 1001–1014 (2012).

    CAS  PubMed  Google Scholar 

  25. Ema, H., Morita, Y. & Suda, T. Heterogeneity and hierarchy of hematopoietic stem cells. Exp. Hematol. 42, 74–82. e2 (2014).

    CAS  PubMed  Google Scholar 

  26. Ramos, C. A. et al. Evidence for diversity in transcriptional profiles of single hematopoietic stem cells. PLoS Genet. 2, e159 (2006).

    PubMed  PubMed Central  Google Scholar 

  27. Moignard, V. et al. Characterization of transcriptional networks in blood stem and progenitor cells using high-throughput single-cell gene expression analysis. Nature Cell Biol. 15, 363–372 (2013).

    CAS  PubMed  Google Scholar 

  28. Guo, G. et al. Mapping cellular hierarchy by single-cell analysis of the cell surface repertoire. Cell Stem Cell 13, 492–505 (2013).

    CAS  PubMed  Google Scholar 

  29. Cabezas-Wallscheid, N. et al. Identification of regulatory networks in HSCs and their immediate progeny via integrated proteome, transcriptome, and DNA methylome analysis. Cell Stem Cell 15, 507–522 (2014).

    CAS  PubMed  Google Scholar 

  30. Sun, D. et al. Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. Cell Stem Cell 14, 673–688 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Beerman, I. et al. Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging. Cell Stem Cell 12, 413–425 (2013).

    CAS  PubMed  Google Scholar 

  32. Challen, G. A. et al. Dnmt3a and Dnmt3b have overlapping and distinct functions in hematopoietic stem cells. Cell Stem Cell 15, 350–364 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang, J. et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425, 836–841 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Ding, L., Saunders, T. L., Enikolopov, G. & Morrison, S. J. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481, 457–462 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kunisaki, Y. et al. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502, 637–643 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Yamazaki, S. et al. Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 147, 1146–1158 (2011).

    CAS  PubMed  Google Scholar 

  37. Bruns, I. et al. Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nature Med. 20, 1315–1320 (2014).

    CAS  PubMed  Google Scholar 

  38. Scadden, D. T. Nice neighborhood: emerging concepts of the stem cell niche. Cell 157, 41–50 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Sun, J. et al. Clonal dynamics of native hematopoiesis. Nature 514, 322–327 (2014). This work uses transposon tagging to track haematopoietic differentiation in an unperturbed system in the absence of injury for the first time, showing that very long-lived progenitors can sustain a specific lineage over time.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Yamamoto, R. et al. Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell 154, 1112–1126 (2013).

    CAS  PubMed  Google Scholar 

  41. Adolfsson, J. et al. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell 121, 295–306 (2005).

    CAS  PubMed  Google Scholar 

  42. Blanpain, C. & Fuchs, E. Epidermal stem cells of the skin. Annu. Rev. Cell Dev. Biol. 22, 339–373 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Müller-Rover, S. et al. A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. J. Invest. Dermatol. 117, 3–15 (2001).

    PubMed  Google Scholar 

  44. Rompolas, P. et al. Live imaging of stem cell and progeny behaviour in physiological hair-follicle regeneration. Nature 487, 496–499 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Chi, W., Wu, E. & Morgan, B. A. Dermal papilla cell number specifies hair size, shape and cycling and its reduction causes follicular decline. Development 140, 1676–1683 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kobayashi, K., Rochat, A. & Barrandon, Y. Segregation of keratinocyte colony-forming cells in the bulge of the rat vibrissa. Proc. Natl Acad. Sci. USA 90, 7391–7395 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Morris, R. J. & Potten, C. S. Slowly cycling (label-retaining) epidermal cells behave like clonogenic stem cells in vitro. Cell Prolif. 27, 279–289 (1994).

    CAS  PubMed  Google Scholar 

  48. Cotsarelis, G., Sun, T. T. & Lavker, R. M. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61, 1329–1337 (1990).

    CAS  PubMed  Google Scholar 

  49. Taylor, G., Lehrer, M. S., Jensen, P. J., Sun, T. T. & Lavker, R. M. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell 102, 451–461 (2000).

    CAS  PubMed  Google Scholar 

  50. Tumbar, T. et al. Defining the epithelial stem cell niche in skin. Science 303, 359–363 (2004).

    CAS  PubMed  Google Scholar 

  51. Trempus, C. S. et al. Enrichment for living murine keratinocytes from the hair follicle bulge with the cell surface marker CD34. J. Invest. Dermatol. 120, 501–511 (2003).

    CAS  PubMed  Google Scholar 

  52. Horsley, V., Aliprantis, A. O., Polak, L., Glimcher, L. H. & Fuchs, E. NFATc1 balances quiescence and proliferation of skin stem cells. Cell 132, 299–310 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu, Y., Lyle, S., Yang, Z. & Cotsarelis, G. Keratin 15 promoter targets putative epithelial stem cells in the hair follicle bulge. J. Invest. Dermatol. 121, 963–968 (2003).

    CAS  PubMed  Google Scholar 

  54. Youssef, K. K. et al. Identification of the cell lineage at the origin of basal cell carcinoma. Nature Cell Biol. 12, 299–305 (2010).

    CAS  PubMed  Google Scholar 

  55. DasGupta, R. & Fuchs, E. Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development 126, 4557–4568 (1999).

    CAS  PubMed  Google Scholar 

  56. Nguyen, H. et al. Tcf3 and Tcf4 are essential for long-term homeostasis of skin epithelia. Nature Genet. 41, 1068–1075 (2009).

    CAS  PubMed  Google Scholar 

  57. Rhee, H., Polak, L. & Fuchs, E. Lhx2 maintains stem cell character in hair follicles. Science 312, 1946–1949 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Nowak, J. A., Polak, L., Pasolli, H. A. & Fuchs, E. Hair follicle stem cells are specified and function in early skin morphogenesis. Cell Stem Cell 3, 33–43 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Jaks, V. et al. Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nature Genet. 40, 1291–1299 (2008).

    CAS  PubMed  Google Scholar 

  60. Blanpain, C., Lowry, W. E., Geoghegan, A., Polak, L. & Fuchs, E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118, 635–648 (2004).

    CAS  PubMed  Google Scholar 

  61. Morris, R. J. et al. Capturing and profiling adult hair follicle stem cells. Nature Biotech. 22, 411–417 (2004).

    CAS  Google Scholar 

  62. Claudinot, S., Nicolas, M., Oshima, H., Rochat, A. & Barrandon, Y. Long-term renewal of hair follicles from clonogenic multipotent stem cells. Proc. Natl Acad. Sci. USA 102, 14677–14682 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Snippert, H. J. et al. Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science 327, 1385–1389 (2010).

    CAS  PubMed  Google Scholar 

  64. Jensen, U. B. et al. A distinct population of clonogenic and multipotent murine follicular keratinocytes residing in the upper isthmus. J. Cell Sci. 121, 609–617 (2008).

    CAS  PubMed  Google Scholar 

  65. Nijhof, J. G. et al. The cell-surface marker MTS24 identifies a novel population of follicular keratinocytes with characteristics of progenitor cells. Development 133, 3027–3037 (2006).

    CAS  PubMed  Google Scholar 

  66. Jensen, K. B. et al. Lrig1 expression defines a distinct multipotent stem cell population in mammalian epidermis. Cell Stem Cell 4, 427–439 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Ghazizadeh, S. & Taichman, L. B. Multiple classes of stem cells in cutaneous epithelium: a lineage analysis of adult mouse skin. EMBO J. 20, 1215–1222 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Levy, V., Lindon, C., Harfe, B. D. & Morgan, B. A. Distinct stem cell populations regenerate the follicle and interfollicular epidermis. Dev. Cell 9, 855–861 (2005).

    CAS  PubMed  Google Scholar 

  69. Ito, M. et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nature Med. 11, 1351–1354 (2005).

    CAS  PubMed  Google Scholar 

  70. Clayton, E. et al. A single type of progenitor cell maintains normal epidermis. Nature 446, 185–189 (2007).

    CAS  PubMed  Google Scholar 

  71. Mascre, G. et al. Distinct contribution of stem and progenitor cells to epidermal maintenance. Nature 489, 257–262 (2012).

    CAS  PubMed  Google Scholar 

  72. Page, M. E., Lombard, P., Ng, F., Göttgens, B. & Jensen, K. B. The epidermis comprises autonomous compartments maintained by distinct stem cell populations. Cell Stem Cell 13, 471–482 (2013). Using lineage tracing, this paper shows that discrete pools of stem cells contribute to distinct compartments of the skin epithelium.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Brownell, I., Guevara, E., Bai, C. B., Loomis, C. A. & Joyner, A. L. Nerve-derived sonic hedgehog defines a niche for hair follicle stem cells capable of becoming epidermal stem cells. Cell Stem Cell 8, 552–565 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Howard, J. M., Nuguid, J. M., Ngole, D. & Nguyen, H. Tcf3 expression marks both stem and progenitor cells in multiple epithelia. Development 141, 3143–3152 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Horsley, V. et al. Blimp1 defines a progenitor population that governs cellular input to the sebaceous gland. Cell 126, 597–609 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kretzschmar, K. et al. BLIMP1 is required for postnatal epidermal homeostasis but does not define a sebaceous gland progenitor under steady-state conditions. Stem Cell Rep. 3, 620–633 (2014).

    CAS  Google Scholar 

  77. Liao, X. H. & Nguyen, H. Epidermal expression of Lgr6is dependent on nerve endings and Schwann cells. Exp. Dermatol. 23, 195–198 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Hsu, Y. C., Pasolli, H. A. & Fuchs, E. Dynamics between stem cells, niche, and progeny in the hair follicle. Cell 144, 92–105 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Rompolas, P., Mesa, K. R. & Greco, V. Spatial organization within a niche as a determinant of stem-cell fate. Nature 502, 513–518 (2013). Using laser ablation and striking live imaging, this paper shows that the niche determines the fate of stem cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Greco, V. et al. A two-step mechanism for stem cell activation during hair regeneration. Cell Stem Cell 4, 155–169 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Levy, V., Lindon, C., Zheng, Y., Harfe, B. D. & Morgan, B. A. Epidermal stem cells arise from the hair follicle after wounding. FASEB J. 21, 1358–1366 (2007).

    CAS  PubMed  Google Scholar 

  82. Festa, E. et al. Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling. Cell 146, 761–771 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Fujiwara, H. et al. The basement membrane of hair follicle stem cells is a muscle cell niche. Cell 144, 577–589 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Nishimura, E. K. et al. Dominant role of the niche in melanocyte stem-cell fate determination. Nature 416, 854–860 (2002).

    CAS  PubMed  Google Scholar 

  85. Chang, C. Y. et al. NFIB is a governor of epithelial–melanocyte stem cell behaviour in a shared niche. Nature 495, 98–102 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Mezoff, E. & Shroyer, N. in Pediatric Gastrointestinal and Liver Diseases 5th edn (eds Hyams, J. S. & Wylie, R.) 324–336 (Elsevier, 2014).

    Google Scholar 

  87. Potten, C. S., Hume, W. J., Reid, P. & Cairns, J. The segregation of DNA in epithelial stem cells. Cell 15, 899–906 (1978).

    CAS  PubMed  Google Scholar 

  88. Potten, C. S., Owen, G. & Booth, D. Intestinal stem cells protect their genome by selective segregation of template DNA strands. J. Cell Sci. 115, 2381–2388 (2002).

    CAS  PubMed  Google Scholar 

  89. Gracz, A. D. & Magness, S. T. Defining hierarchies of stemness in the intestine: evidence from biomarkers and regulatory pathways. Am. J. Physiol. Gastrointest. Liver Physiol. 307, G260–G273 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).

    CAS  PubMed  Google Scholar 

  91. van der Flier, L. G. et al. Transcription factor achaete scute-like 2 controls intestinal stem cell fate. Cell 136, 903–912 (2009).

    CAS  PubMed  Google Scholar 

  92. Munoz, J. et al. The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent '+4' cell markers. EMBO J. 31, 3079–3091 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Fafilek, B. et al. Troy, a tumor necrosis factor receptor family member, interacts with Lgr5 to inhibit Wnt signaling in intestinal stem cells. Gastroenterology 144, 381–391 (2013).

    CAS  PubMed  Google Scholar 

  94. Schuijers, J., van der Flier, L. G., van Es, J. & Clevers, H. Robust Cre-mediated recombination in small intestinal stem cells utilizing the Olfm4 locus. Stem Cell Rep. 3, 234–241 (2014).

    CAS  Google Scholar 

  95. Li, L. & Clevers, H. Coexistence of quiescent and active adult stem cells in mammals. Science 327, 542–545 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Sangiorgi, E. & Capecchi, M. R. Bmi1 is expressed in vivo in intestinal stem cells. Nature Genet. 40, 915–920 (2008).

    CAS  PubMed  Google Scholar 

  97. Westphalen, C. B. et al. Long-lived intestinal tuft cells serve as colon cancer-initiating cells. J. Clin. Invest. 124, 1283–1295 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Takeda, N. et al. Interconversion between intestinal stem cell populations in distinct niches. Science 334, 1420–1424 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Powell, A. E. et al. The pan-ErbB negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor. Cell 149, 146–158 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Wong, V. W. et al. Lrig1 controls intestinal stem-cell homeostasis by negative regulation of ErbB signalling. Nature Cell Biol. 14, 401–408 (2012).

    CAS  PubMed  Google Scholar 

  101. Montgomery, R. K. et al. Mouse telomerase reverse transcriptase (mTert) expression marks slowly cycling intestinal stem cells. Proc. Natl Acad. Sci. USA 108, 179–184 (2011).

    CAS  PubMed  Google Scholar 

  102. Metcalfe, C., Kljavin, N. M., Ybarra, R. & de Sauvage, F. J. Lgr5+ stem cells are indispensable for radiation-induced intestinal regeneration. Cell Stem Cell 14, 149–159 (2014).

    CAS  PubMed  Google Scholar 

  103. Yan, K. S. et al. The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations. Proc. Natl Acad. Sci. USA 109, 466–471 (2012).

    CAS  PubMed  Google Scholar 

  104. Tian, H. et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature 478, 255–259 (2011). These authors show that Lgr5+ ISCs are dispensable for intestinal homeostasis and that loss of Lgr5+ cells stimulates expansion of Bmi1+ 'reserve' stem cells, which repopulate the crypt.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. He, X. C. et al. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt–ß-catenin signaling. Nature Genet. 36, 1117–1121 (2004).

    CAS  PubMed  Google Scholar 

  106. Noah, T. K. & Shroyer, N. F. Notch in the intestine: regulation of homeostasis and pathogenesis. Annu. Rev. Physiol. 75, 263–288 (2013).

    CAS  PubMed  Google Scholar 

  107. Buczacki, S. J. et al. Intestinal label-retaining cells are secretory precursors expressing Lgr5. Nature 495, 65–69 (2013). These authors show that histone H2B label-retaining cells in the intestine are secretory progenitor cells that can revert to become stem cells following genotoxic injury.

    CAS  PubMed  Google Scholar 

  108. van Es, J. H. et al. Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nature Cell Biol. 14, 1099–1104 (2012). This work shows that Dll1+ secretory progenitor cells can become activated by injury to repopulate the injured crypt.

    CAS  PubMed  Google Scholar 

  109. Gerbe, F. et al. Distinct ATOH1 and Neurog3 requirements define tuft cells as a new secretory cell type in the intestinal epithelium. J. Cell Biol. 192, 767–780 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Sato, T. et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469, 415–418 (2011).

    CAS  PubMed  Google Scholar 

  111. Durand, A. et al. Functional intestinal stem cells after Paneth cell ablation induced by the loss of transcription factor Math1 (Atoh1). Proc. Natl Acad. Sci. USA 109, 8965–8970 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Kabiri, Z. et al. Stroma provides an intestinal stem cell niche in the absence of epithelial Wnts. Development 141, 2206–2215 (2014).

    CAS  PubMed  Google Scholar 

  113. Nigro, G., Rossi, R., Commere, P. H., Jay, P. & Sansonetti, P. J. The cytosolic bacterial peptidoglycan sensor Nod2 affords stem cell protection and links microbes to gut epithelial regeneration. Cell Host Microbe 15, 792–798 (2014).

    CAS  PubMed  Google Scholar 

  114. Ritsma, L. et al. Intestinal crypt homeostasis revealed at single-stem-cell level by in vivo live imaging. Nature 507, 362–365 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Snippert, H. J. et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143, 134–144 (2010).

    CAS  PubMed  Google Scholar 

  116. Sato, T. et al. Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

    CAS  PubMed  Google Scholar 

  117. Moore, S. R. et al. Robust circadian rhythms in organoid cultures from PERIOD2::LUCIFERASE mouse small intestine. Dis. Model. Mech. 7, 1123–1130 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Melendez, J. et al. Cdc42 coordinates proliferation, polarity, migration, and differentiation of small intestinal epithelial cells in mice. Gastroenterology 145, 808–819 (2013).

    CAS  PubMed  Google Scholar 

  119. Van Landeghem, L. et al. Activation of two distinct Sox9-EGFP-expressing intestinal stem cell populations during crypt regeneration after irradiation. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G1111–G1132 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Middendorp, S. et al. Adult stem cells in the small intestine are intrinsically programmed with their location-specific function. Stem Cells 32, 1083–1091 (2014).

    CAS  PubMed  Google Scholar 

  121. Fukuda, M. et al. Small intestinal stem cell identity is maintained with functional Paneth cells in heterotopically grafted epithelium onto the colon. Genes Dev. 28, 1752–1757 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Kozar, S. et al. Continuous clonal labeling reveals small numbers of functional stem cells in intestinal crypts and adenomas. Cell Stem Cell 13, 626–633 (2013).

    CAS  PubMed  Google Scholar 

  123. Challen, G. A. et al. Dnmt3a is essential for hematopoietic stem cell differentiation. Nature Genet. 44, 23–31 (2012).

    CAS  Google Scholar 

  124. Shlush, L. I. et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 506, 328–333 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Corces-Zimmerman, M. R., Hong, W. J., Weissman, I. L., Medeiros, B. C. & Majeti, R. Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission. Proc. Natl Acad. Sci. USA 111, 2548–2553 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Welch, J. S. et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 150, 264–278 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Krivtsov, A. V. et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL–AF9. Nature 442, 818–822 (2006).

    CAS  PubMed  Google Scholar 

  128. Rosen, J. M. & Jordan, C. T. The increasing complexity of the cancer stem cell paradigm. Science 324, 1670–1673 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Kreso, A. & Dick, J. E. Evolution of the cancer stem cell model. Cell Stem Cell 14, 275–291 (2014).

    CAS  PubMed  Google Scholar 

  130. Oguro, H., Ding, L. & Morrison, S. J. SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors. Cell Stem Cell 13, 102–116 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research in the Goodell laboratory is supported by the US National Institutes of Health (NIH) (grants DK092883 and CA183252), the Edward P. Evans Foundation, and the Samuel Waxman Cancer Research Foundation. Research in the Nguyen laboratory is supported by R01AR059122. Work in the Shroyer laboratory is supported by the US NIH grants DK092456, DK092306, CA1428260 and DK103117.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret A. Goodell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Quiescence

The state of being inactive. This usually implies limited mitotic activity and is sometimes referred to as dormancy.

Niches

The local environments in which stem cells reside. Niches are thought to regulate stem cell activity through various types of interaction.

CrePR

A Cre recombinase fused with a truncated progesterone receptor that translocates into the nucleus when the receptor binds to the progesterone antagonist RU486.

CreER

A Cre recombinase fused with an oestrogen receptor that translocates into the nucleus when the receptor binds to the oestrogen antagonist tamoxifen. When it translocates to the nucleus, the Cre recombinase is activated and removes the sequences preceding the reporter gene, allowing expression of the reporter.

Quiescent label-retaining cells

Cells that are labelled with a pulse of 5-bromo-2-deoxyuridine (BrdU) and that retain the BrdU label when followed for a certain amount of time.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goodell, M., Nguyen, H. & Shroyer, N. Somatic stem cell heterogeneity: diversity in the blood, skin and intestinal stem cell compartments. Nat Rev Mol Cell Biol 16, 299–309 (2015). https://doi.org/10.1038/nrm3980

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3980

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing