Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Self-consumption: the interplay of autophagy and apoptosis

Key Points

  • Autophagy and apoptosis constitute functionally distinct mechanisms for the turnover or destruction of cytoplasmic structures within cells and of cells within organisms, respectively.

  • Multiple stress-elicited signal transduction pathways can sequentially induce autophagy and apoptosis within the same cell. Elements of such pathways include p53, BH3 (BCL-2 homology 3)-only proteins, several kinases (including AKT, DAPK (death-associated protein kinase) and JNK (JUN N-terminal kinase)) and oncoproteins such as MYC and RAS.

  • Autophagy increases the threshold of stress required for the induction of cell death by several mechanisms. These include the selective removal of damaged, potentially apoptosis-inducing mitochondria or that of other potentially lethal organelles, such as damaged zymogen granules in the exocrine pancreas. Autophagy can also lead to the selective elimination of pro-apoptotic signal transducers.

  • Apoptosis-associated caspase activation leads to the cleavage of various essential pro-autophagic proteins. Several of the resulting fragments acquire a new, pro-apoptotic function. This mechanism may accelerate the apoptotic demise of cells at its final stage.

  • Cell death frequently occurs with (or is preceded by) autophagy, but it is rarely truly mediated by autophagy. In some cases, autophagic membranes or individual autophagy-relevant proteins facilitate the activation of apoptotic or necrotic pathways. There are also a few examples in which autophagy may be responsible for lethally dismantling cells. This cell death by autophagy is referred to as autophagic cell death (ACD).

  • Soluble products released by dying or dead cells can induce autophagy in neighbouring cells via the activation of pattern recognition receptors (PRRs). Pre-mortem autophagy is important for the production of chemotactic signals, which determine the removal of dead cells, inflammatory reactions and immune responses against dead-cell antigens.

  • Crosstalk between autophagy and apoptosis, as it occurs within the same cell or between distinct cells, has a cardinal role in pathophysiological processes, including those related to cancer, hormesis and ageing.

Abstract

Autophagy and apoptosis control the turnover of organelles and proteins within cells, and of cells within organisms, respectively, and many stress pathways sequentially elicit autophagy, and apoptosis within the same cell. Generally autophagy blocks the induction of apoptosis, and apoptosis-associated caspase activation shuts off the autophagic process. However, in special cases, autophagy or autophagy-relevant proteins may help to induce apoptosis or necrosis, and autophagy has been shown to degrade the cytoplasm excessively, leading to 'autophagic cell death'. The dialogue between autophagy and cell death pathways influences the normal clearance of dying cells, as well as immune recognition of dead cell antigens. Therefore, the disruption of the relationship between autophagy and apoptosis has important pathophysiological consequences.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Signals that induce both apoptosis and autophagy.
Figure 2: Effects of autophagy on lethal signalling.
Figure 3: Impact of autophagy on the removal of dead cells in tissues.
Figure 4: Functional relationship between autophagy and apoptosis.

Similar content being viewed by others

References

  1. Maiuri, M. C., Zalckvar, E., Kimchi, A. & Kroemer, G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nature Rev. Mol. Cell Biol. 8, 741–752 (2007).

    Article  CAS  Google Scholar 

  2. Yang, Z. & Klionsky, D. J. Mammalian autophagy: core molecular machinery and signaling regulation. Curr. Opin. Cell Biol. 22, 124–131 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Mizushima, N. & Komatsu, M. Autophagy: renovation of cells and tissues. Cell 147, 728–741 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Choi, A. M., Ryter, S. W. & Levine, B. Autophagy in human health and disease. N. Engl. J. Med. 368, 1845–1846 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Thumm, M. et al. Isolation of autophagocytosis mutants of Saccharomyces cerevisiae. FEBS Lett. 349, 275–280 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Mizushima, N. et al. A protein conjugation system essential for autophagy. Nature 395, 395–398 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Yuan, J. & Kroemer, G. Alternative cell death mechanisms in development and beyond. Genes Dev. 24, 2592–2602 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Denton, D., Nicolson, S. & Kumar, S. Cell death by autophagy: facts and apparent artefacts. Cell Death Differ. 19, 87–95 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. He, C. & Klionsky, D. J. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 43, 67–93 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Weidberg, H., Shvets, E. & Elazar, Z. Biogenesis and cargo selectivity of autophagosomes. Annu. Rev. Biochem. 80, 125–156 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Klionsky, D. J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8, 445–544 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mizushima, N., Yoshimori, T. & Levine, B. Methods in mammalian autophagy research. Cell 140, 313–326 (2010). References 11 and 12 enumerate the methods to quantify autophagy, as well as possible pitfalls in the interpretation of autophagy assays.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Galluzzi, L. et al. Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death Differ. 16, 1093–1107 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Kroemer, G., Marino, G. & Levine, B. Autophagy and the integrated stress response. Mol. Cell 40, 280–293 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yu, L. et al. Regulation of an ATG7–beclin 1 program of autophagic cell death by caspase-8. Science 304, 1500–1502 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Shimizu, S. et al. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nature Cell Biol. 6, 1221–1228 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Boya, P. et al. Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol. 25, 1025–1040 (2005). Provides the first evidence that autophagy inhibits apoptosis in mammalian cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shen, H. M. & Codogno, P. Autophagic cell death: Loch Ness monster or endangered species? Autophagy 7, 457–465 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Kruse, J. P. & Gu, W. Modes of p53 regulation. Cell 137, 609–622 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tasdemir, E. et al. Regulation of autophagy by cytoplasmic p53. Nature Cell Biol. 10, 676–687 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Morselli, E. et al. p53 inhibits autophagy by interacting with the human ortholog of yeast Atg17, RB1CC1/FIP200. Cell Cycle 10, 2763–2769 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Yu, X. et al. Inhibition of autophagy via p53-mediated disruption of ULK1 in a SCA7 polyglutamine disease model. J. Mol. Neurosci. 50, 586–599 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Vaseva, A. V. et al. p53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell 149, 1536–1548 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Galluzzi, L., Kepp, O. & Kroemer, G. Mitochondria: master regulators of danger signalling. Nature Rev. Mol. Cell Biol. 13, 780–788 (2012).

    Article  CAS  Google Scholar 

  25. Youle, R. J. & Narendra, D. P. Mechanisms of mitophagy. Nature Rev. Mol. Cell Biol. 12, 9–14 (2011).

    Article  CAS  Google Scholar 

  26. Riley, T., Sontag, E., Chen, P. & Levine, A. Transcriptional control of human p53-regulated genes. Nature Rev. Mol. Cell Biol. 9, 402–412 (2008).

    Article  CAS  Google Scholar 

  27. Budanov, A. V. & Karin, M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 134, 451–460 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gao, W., Shen, Z., Shang, L. & Wang, X. Upregulation of human autophagy-initiation kinase ULK1 by tumor suppressor p53 contributes to DNA-damage-induced cell death. Cell Death Differ. 18, 1598–1607 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kenzelmann Broz, D. et al. Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. Genes Dev. 27, 1016–1031 (2013). A complete catalogue of autophagy-relevant genes induced by p53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. He, Z. et al. p73 regulates autophagy and hepatocellular lipid metabolism through a transcriptional activation of the ATG5 gene. Cell Death Differ. 20, 1415–1424 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Crighton, D. et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126, 121–134 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, X. D., Qi, L., Wu, J. C. & Qin, Z. H. DRAM1 regulates autophagy flux through lysosomes. PloS ONE 8, e63245 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Laforge, M. et al. DRAM triggers lysosomal membrane permeabilization and cell death in CD4+T cells infected with HIV. PLoS Pathog. 9, e1003328 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vousden, K. H. & Lane, D. P. p53 in health and disease. Nature Rev. Mol. Cell Biol. 8, 275–283 (2007).

    Article  CAS  Google Scholar 

  35. Davids, M. S. & Letai, A. Targeting the B-cell lymphoma/leukemia 2 family in cancer. J. Clin. Oncol. 30, 3127–3135 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Maiuri, M. C. et al. Functional and physical interaction between Bcl-XL and a BH3-like domain in Beclin-1. EMBO J. 26, 2527–2539 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bellot, G. et al. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol. Cell Biol. 29, 2570–2581 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Malik, S. A. et al. BH3 mimetics activate multiple pro-autophagic pathways. Oncogene 30, 3918–3929 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Andreu-Fernandez, V. et al. BH3-mimetics- and cisplatin-induced cell death proceeds through different pathways depending on the availability of death-related cellular components. PloS ONE 8, e56881 (2013).

    Article  CAS  Google Scholar 

  40. Pattingre, S. et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122, 927–939 (2005). Reveals the mechanisms through which BCL-2 can repress autophagy in addition to its anti-apoptotic function.

    Article  CAS  PubMed  Google Scholar 

  41. Schwarten, M. et al. Nix directly binds to GABARAP: a possible crosstalk between apoptosis and autophagy. Autophagy 5, 690–698 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Luo, S. et al. Bim inhibits autophagy by recruiting Beclin 1 to microtubules. Mol. Cell 47, 359–370 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wei, Y., Pattingre, S., Sinha, S., Bassik, M. & Levine, B. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol. Cell 30, 678–688 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zalckvar, E. et al. DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO Rep. 10, 285–292 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Eisenberg-Lerner, A. & Kimchi, A. PKD is a kinase of Vps34 that mediates ROS-induced autophagy downstream of DAPk. Cell Death Differ. 19, 788–797 (2012). References 43 and 45 unravel the mechanisms through which DAPK stimulate autophagy.

    Article  CAS  PubMed  Google Scholar 

  46. Gandesiri, M. et al. DAPK plays an important role in panobinostat-induced autophagy and commits cells to apoptosis under autophagy deficient conditions. Apoptosis 17, 1300–1315 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Guenebeaud, C. et al. The dependence receptor UNC5H2/B triggers apoptosis via PP2A-mediated dephosphorylation of DAP kinase. Mol. Cell 40, 863–876 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Widau, R. C., Jin, Y., Dixon, S. A., Wadzinski, B. E. & Gallagher, P. J. Protein phosphatase 2A (PP2A) holoenzymes regulate death-associated protein kinase (DAPK) in ceramide-induced anoikis. J. Biol. Chem. 285, 13827–13838 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. He, C. et al. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature 481, 511–515 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. del Peso, L., Gonzalez-Garcia, M., Page, C., Herrera, R. & Nunez, G. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 278, 687–689 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Wang, R. C. et al. Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science 338, 956–959 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Petiot, A., Ogier-Denis, E., Blommaart, E. F., Meijer, A. J. & Codogno, P. Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J. Biol. Chem. 275, 992–998 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Scott, R. C., Schuldiner, O. & Neufeld, T. P. Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev. Cell 7, 167–178 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Iaccarino, I., Hancock, D., Evan, G. & Downward, J. c-Myc induces cytochrome c release in Rat1 fibroblasts by increasing outer mitochondrial membrane permeability in a Bid-dependent manner. Cell Death Differ. 10, 599–608 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Hart, L. S. et al. ER stress-mediated autophagy promotes Myc-dependent transformation and tumor growth. J. Clin. Invest. 122, 4621–4634 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Guo, J. Y. et al. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev. 25, 460–470 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lock, R. et al. Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Mol. Biol. Cell 22, 165–178 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang, Y. et al. Autophagic activity dictates the cellular response to oncogenic RAS. Proc. Natl Acad. Sci. USA 109, 13325–13330 (2012). References 56 to 58 illustrate the importance of autophagy to survive stress occurring in cells expressing oncogenic RAS.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Schmukler, E. et al. Ras inhibition enhances autophagy, which partially protects cells from death. Oncotarget 4, 142–152 (2013).

    Article  PubMed Central  Google Scholar 

  60. Gomes, L. C., Di Benedetto, G. & Scorrano, L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nature Cell Biol. 13, 589–598 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Kim, I. & Lemasters, J. J. Mitophagy selectively degrades individual damaged mitochondria after photoirradiation. Antioxid. Redox Signal. 14, 1919–1928 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Grasso, D. et al. Zymophagy, a novel selective autophagy pathway mediated by VMP1–USP9x–p62, prevents pancreatic cell death. J. Biol. Chem. 286, 8308–8324 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Fortunato, F. et al. Impaired autolysosome formation correlates with Lamp-2 depletion: role of apoptosis, autophagy, and necrosis in pancreatitis. Gastroenterology 137, 350–360, (2009).

    Article  PubMed  Google Scholar 

  64. Shaid, S., Brandts, C. H., Serve, H. & Dikic, I. Ubiquitination and selective autophagy. Cell Death Differ. 20, 21–30 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Hou, W., Han, J., Lu, C., Goldstein, L. A. & Rabinowich, H. Autophagic degradation of active caspase-8: a crosstalk mechanism between autophagy and apoptosis. Autophagy 6, 891–900 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Amir, M. et al. Inhibition of hepatocyte autophagy increases tumor necrosis factor-dependent liver injury by promoting caspase-8 activation. Cell Death Differ. 20, 878–887 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sandilands, E., Serrels, B., Wilkinson, S. & Frame, M. C. Src-dependent autophagic degradation of Ret in FAK-signalling-defective cancer cells. EMBO Rep. 13, 733–740 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mathew, R. et al. Autophagy suppresses tumorigenesis through elimination of p62. Cell 137, 1062–1075 (2009). Details the molecular and cellular mechanisms through which autophagy inhibition triggers carcinogenesis in the liver.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Oral, O. et al. Cleavage of Atg3 protein by caspase-8 regulates autophagy during receptor-activated cell death. Apoptosis 17, 810–820 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Luo, S. & Rubinsztein, D. C. Apoptosis blocks Beclin 1-dependent autophagosome synthesis: an effect rescued by Bcl-xL. Cell Death Differ. 17, 268–277 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Wirawan, E. et al. Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria. Cell Death Dis. 1, e18 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pagliarini, V. et al. Proteolysis of Ambra1 during apoptosis has a role in the inhibition of the autophagic pro-survival response. Cell Death Differ. 19, 1495–1504 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fujita, N. et al. An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure. Mol. Biol. Cell 19, 4651–4659 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Betin, V. M. & Lane, J. D. Caspase cleavage of Atg4D stimulates GABARAP-L1 processing and triggers mitochondrial targeting and apoptosis. J. Cell Sci. 122, 2554–2566 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Yousefi, S. et al. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nature Cell Biol. 8, 1124–1132 (2006). Illustrates how limited proteolysis of an autophagy-inducing gene product generates a protein with a new pro-apoptotic function.

    Article  CAS  PubMed  Google Scholar 

  76. Lamy, L. et al. Control of autophagic cell death by caspase-10 in multiple myeloma. Cancer Cell 23, 435–449 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kroemer, G. & Levine, B. Autophagic cell death: the story of a misnomer. Nature Rev. Mol. Cell Biol. 9, 1004–1010 (2008).

    Article  CAS  Google Scholar 

  78. Shen, S., Kepp, O. & Kroemer, G. The end of autophagic cell death? Autophagy 8, 1–3 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Galluzzi, L. et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 19, 107–120 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Shravage, B. V., Hill, J. H., Powers, C. M., Wu, L. & Baehrecke, E. H. Atg6 is required for multiple vesicle trafficking pathways and hematopoiesis in Drosophila. Development 140, 1321–1329 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Manjithaya, R. & Subramani, S. Autophagy: a broad role in unconventional protein secretion? Trends Cell Biol. 21, 67–73 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Young, M. M. et al. Autophagosomal membrane serves as platform for intracellular death-inducing signaling complex (iDISC)-mediated caspase-8 activation and apoptosis. J. Biol. Chem. 287, 12455–12468 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nezis, I. P. et al. Autophagic degradation of dBruce controls DNA fragmentation in nurse cells during late Drosophila melanogaster oogenesis. J. Cell Biol. 190, 523–531 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yu, L. et al. Autophagic programmed cell death by selective catalase degradation. Proc. Natl Acad. Sci. USA 103, 4952–4957 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Saftig, P., Beertsen, W. & Eskelinen, E. L. LAMP-2: a control step for phagosome and autophagosome maturation. Autophagy 4, 510–512 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Ma, X. et al. Impaired autophagosome clearance contributes to cardiomyocyte death in ischemia/reperfusion injury. Circulation 125, 3170–3181 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rubinstein, A. D., Eisenstein, M., Ber, Y., Bialik, S. & Kimchi, A. The autophagy protein Atg12 associates with antiapoptotic Bcl-2 family members to promote mitochondrial apoptosis. Mol. Cell 44, 698–709 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Kessel, D. H., Price, M. & Reiners, J. J. Jr. ATG7 deficiency suppresses apoptosis and cell death induced by lysosomal photodamage. Autophagy 8, 1333–1341 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Boya, P. et al. Lysosomal membrane permeabilization induces cell death in a mitochondrion-dependent fashion. J. Exp. Med. 197, 1323–1334 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Deretic, V. Autophagy in immunity and cell-autonomous defense against intracellular microbes. Immunol. Rev. 240, 92–104 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tang, D., Kang, R., Coyne, C. B., Zeh, H. J. & Lotze, M. T. PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol. Rev. 249, 158–175 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zitvogel, L., Kepp, O. & Kroemer, G. Decoding cell death signals in inflammation and immunity. Cell 140, 798–804 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Huang, C. et al. Preconditioning involves selective mitophagy mediated by Parkin and p62/SQSTM1. PLoS ONE 6, e20975 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Perez-Pinzon, M. A., Stetler, R. A. & Fiskum, G. Novel mitochondrial targets for neuroprotection. J. Cereb. Blood Flow Metab. 32, 1362–1376 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Qu, X. et al. Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 128, 931–946 (2007). A seminal paper demonstrating the impact of pre-mortem autophagy on the clearance of apoptotic cells.

    Article  CAS  PubMed  Google Scholar 

  96. Chekeni, F. B. et al. Pannexin 1 channels mediate 'find-me' signal release and membrane permeability during apoptosis. Nature 467, 863–867 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Michaud, M. et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334, 1573–1577 (2011). Evidence that inhibition of autophagy in tumour cells may subvert anticancer immunosurveillance and hence reduce the efficacy of chemotherapies.

    Article  CAS  PubMed  Google Scholar 

  98. Sukkurwala, A. Q. et al. Immunogenic calreticulin exposure occurs through a phylogenetically conserved stress pathway involving the chemokine CXCL8. Cell Death Differ. Jan 2013 (doi: http://dx.doi.org/10.1038/cdd.2013.73).

  99. Bao, J. X. et al. Lysosome–membrane fusion mediated superoxide production in hyperglycaemia-induced endothelial dysfunction. PLoS ONE 7, e30387 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Fader, C. M., Aguilera, M. O. & Colombo, M. I. ATP is released from autophagic vesicles to the extracellular space in a VAMP7-dependent manner. Autophagy 8, 1741–1756 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Uhl, M. et al. Autophagy within the antigen donor cell facilitates efficient antigen cross-priming of virus-specific CD8+ T cells. Cell Death Differ. 16, 991–1005 (2009).

    Article  CAS  PubMed  Google Scholar 

  102. Ko, A. et al. Autophagy inhibition radiosensitizes in vitro, yet reduces radioresponses in vivo due to deficient immunogenic signaling. Cell Death Differ Sep 2013 (doi: http://dx.doi.org/10.1038/cdd.2013.124).

  103. Ma, Y. et al. Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells. Immunity 38, 729–741 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Calabrese, E. J., Iavicoli, I. & Calabrese, V. Hormesis: its impact on medicine and health. Hum. Exp. Toxicol. 32, 120–152 (2013).

    Article  CAS  PubMed  Google Scholar 

  105. Hetz, C. et al. XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy. Genes Dev. 23, 2294–2306 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. White, E. Deconvoluting the context-dependent role for autophagy in cancer. Nature Rev. Cancer 12, 401–410 (2012).

    Article  CAS  Google Scholar 

  107. Rello-Varona, S. et al. Autophagic removal of micronuclei. Cell Cycle 11, 170–176 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Kuo, T. C. et al. Midbody accumulation through evasion of autophagy contributes to cellular reprogramming and tumorigenicity. Nature Cell Biol. 13, 1214–1223 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Rubinsztein, D. C., Marino, G. & Kroemer, G. Autophagy and aging. Cell 146, 682–695 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Hamasaki, M. et al. Autophagosomes form at ER–mitochondria contact sites. Nature 495, 389–393 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Adams, J. M. & Cory, S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26, 1324–1337 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kroemer, G., Galluzzi, L. & Brenner, C. Mitochondrial membrane permeabilization in cell death. Physiol. Rev. 87, 99–163 (2007). An exhaustive review on pro-survival and lethal signalling pathways converging on mitochondria, as well as on the mechanisms that decide whether mitochondrial membranes undergo deadly permeabilization.

    Article  CAS  PubMed  Google Scholar 

  114. Galonek, H. L. & Hardwick, J. M. Upgrading the BCL-2 network. Nature Cell Biol. 8, 1317–1319 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Kroemer, G. & Martin, S. J. Caspase-independent cell death. Nature Med. 11, 725–730 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Boya, P. & Kroemer, G. Lysosomal membrane permeabilization in cell death. Oncogene 27, 6434–6451 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Vandenabeele, P., Galluzzi, L., Vanden Berghe, T. & Kroemer, G. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nature Rev. Mol. Cell Biol. 11, 700–714 (2010).

    Article  CAS  Google Scholar 

  118. Vitale, I., Galluzzi, L., Castedo, M. & Kroemer, G. Mitotic catastrophe: a mechanism for avoiding genomic instability. Nature Rev. Mol. Cell Biol. 12, 385–392 (2011).

    Article  CAS  Google Scholar 

  119. Samara, C., Syntichaki, P. & Tavernarakis, N. Autophagy is required for necrotic cell death in Caenorhabditis elegans. Cell Death Differ. 15, 105–112 (2008). An important paper describing the contribution of autophagy to pathological loss of neurons in nematodes.

    Article  CAS  PubMed  Google Scholar 

  120. Erdelyi, P. et al. Shared developmental roles and transcriptional control of autophagy and apoptosis in Caenorhabditis elegans. J. Cell Sci. 124, 1510–1518 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Tracy, K. & Baehrecke, E. H. The role of autophagy in Drosophila metamorphosis. Curr. Top. Dev. Biol. 103, 101–125 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Berry, D. L. & Baehrecke, E. H. Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell 131, 1137–1148 (2007). First genetic evidence that autophagic cell death occurrs during the development of Drosophila.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Denton, D. et al. Autophagy, not apoptosis, is essential for midgut cell death in Drosophila. Curr. Biol. 19, 1741–1746 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Chang, T.-K. et al. Uba1 functions in Atg7- and Atg3-independent autophagy. Nature Cell Biol. 15, 1067–1078 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Gozuacik, D. et al. DAP-kinase is a mediator of endoplasmic reticulum stress-induced caspase activation and autophagic cell death. Cell Death Differ. 15, 1875–1886 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Byun, J. Y. et al. The Rac1/MKK7/JNK pathway signals upregulation of Atg5 and subsequent autophagic cell death in response to oncogenic Ras. Carcinogenesis 30, 1880–1888 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. Elgendy, M., Sheridan, C., Brumatti, G. & Martin, S. J. Oncogenic Ras-induced expression of Noxa and Beclin-1 promotes autophagic cell death and limits clonogenic survival. Mol. Cell 42, 23–35 (2011).

    Article  CAS  PubMed  Google Scholar 

  128. Koike, M. et al. Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. Am. J. Pathol. 172, 454–469 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zhu, H. et al. Cardiac autophagy is a maladaptive response to hemodynamic stress. J. Clin. Invest. 117, 1782–1793 (2007). An example of how autophagy may mediate deleterious effects in a model of pressure overload affecting the heart muscle.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Sun, Y. et al. Inhibition of autophagy ameliorates acute lung injury caused by avian influenza A H5N1 infection. Science Signal. 5, ra16 (2012).

    Article  Google Scholar 

  131. Sentelle, R. D. et al. Ceramide targets autophagosomes to mitochondria and induces lethal mitophagy. Nature Chem. Biol. 8, 831–838 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are supported by the Ligue contre le Cancer (équipe labellisée), Agence National de la Recherche, AXA Chair for Longevity Research, Association pour la Recherche sur le Cancer, Cancéropôle Ile-de-France, Institut National du Cancer (INCa), Fondation Bettencourt-Schueller, Fondation de France, Fondation pour la Recherche Médicale, the European Commission (ArtForce), the European Research Council, the LabEx Immuno-Oncology, the SIRIC Stratified Oncology Cell DNA Repair and Tumor Immune Elimination (Socrate), Cancer Research and Personalized Medicine (Carpem), the Paris Alliance of Cancer Research Institutes, the National Institutes of Health and the Ellison Medical Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Kroemer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

Contribution of individual components of the Beclin 1 interactome to autophagy and apoptosis. (PDF 121 kb)

PowerPoint slides

Glossary

Autophagosomes

Vesicles characterized by two membranes that contain autophagic cargo.

Autolysosomes

Fusion proteins of autophagosomes and lysosomes, also called autophagolysosomes. Autolysosomes only have one membrane.

Programmed cell death

(PCD). Cell death that occurs during development or adult tissue homeostasis for the removal of superfluous cells.

Mitochondrial outer membrane permeabilization

(MOMP). An apoptosis-associated process that results in the release of apoptosis-inducing proteins (such as cytochrome c, AIF (apoptosis-inducing factor), SMAC (second mitochondria-derived activator of caspase) and others) that are normally retained in the mitochondrial intermembrane space, through the outer membrane into the cytosol.

Caspases

A family of Cys proteases that cleave after Asp residues. Initiator caspases are typically activated in response to a particular triggering event (for example, caspase 8 upon death receptor ligation, caspase 9 upon apoptosome activation and caspase 2 upon DNA damage), whereas effector caspases (mainly caspase 3, caspase 6 and caspase 7) are particularly important for the ordered dismantling of vital cellular structures.

p53

A central tumour suppressor protein that has multiple functions, both in the cytoplasm and in the nucleus. As a transcription factor, p53 transactivates genes that induce cell cycle arrest, cellular senescence, autophagy and apoptosis.

Lysosomal membrane permeabilization

(LMP). A disruption of lysosomal membrane function that leads to the translocation of lysosomal hydrolases, including cathepsins, from the lysosomal lumen to the rest of the cell. LMP can be induced by endogenous signal transducers (such as reactive oxygen species and sphingosine), as well as by lysosomotropic drugs.

BCL-2 family

Each member of this protein family contains at least one BCL-2 homology (BH) region. The family is divided into anti-apoptotic multidomain proteins (such as BCL-2, BCL-XL (BCL extra large) and MCL1 (myeloid cell leukaemia sequence 1)), which contain four BH domains (BH1, BH2, BH3 and BH4), pro-apoptotic multidomain proteins (for example, BAX (BCL-2- associated X protein) and BAK (BCL-2 antagonist or killer)), which contain BH1, BH2 and BH3, and the pro-apoptotic BH3-only protein family.

Unfolded protein response

(UPR). The UPR is activated in response to stress in the endoplasmic reticulum (ER). It enables cells to adapt to ER stress by reducing the quantity of misfolded proteins in this organelle.

Senescence

An irreversible G1 cell cycle arrest that is accompanied by morphological changes (flattening of the cells), metabolic alterations and transcriptional reprogramming that leads to the expression of cell cycle blockers, such as p16 and p21, and senescence-associated ß-galactosidase.

Cytochrome c

A haem protein exclusively present in the mitochondrial intermembrane space. During the initiation of apoptosis, cytochrome c is released from mitochondria and triggers the assembly of the apoptosome, which is a caspase activation complex.

Reactive oxygen species

(ROS). Classic oxygen radicals and peroxides that are formed within cells.

Death receptors

Cell surface receptors that activate the extrinsic pathway of apoptosis upon ligand-induced trimerization. The family of death receptors includes CD95 (which binds CD95 ligand), tumour necrosis factor receptor 1 (TNFR1) and two receptors for TNF-related apoptosis-inducing ligand (TRAILR1 and TRAILR2).

Sphingosine kinase

A conserved lipid kinase that catalyses the formation of the bioactive sphingolipid metabolite sphingosine 1- phosphate. This acts as a second messenger, with important roles in numerous physiological processes, including cell growth, motility and survival.

Danger-associated molecular patterns

(DAMPs). These molecules are released by or exposed on the surface of stressed and dying cells. They initiate and perpetuate sterile inflammatory responses.

Pattern recognition receptors

(PRRs). A series of intracellular or surface receptors that sense danger-associated molecular patterns (DAMPs) or foreign structures from infectious pathogens, triggering inflammatory and immune responses.

Heterophagy

Phagocytosis of a cell by another cell. Heterophagy has a major role in the efficient removal of apoptotic cells. Efficient heterophagy is indispensable for avoiding inflammatory responses triggered by apoptotic material.

Amyotrophic lateral sclerosis

(ALS). A progressive and debilitating neurodegenerative disease that is characterized by progressive muscle atrophy and other degenerative manifestations. The disease pathophysiology is complex and not yet fully understood, but it is proposed to involve the accumulation of misfolded proteins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mariño, G., Niso-Santano, M., Baehrecke, E. et al. Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 15, 81–94 (2014). https://doi.org/10.1038/nrm3735

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3735

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing