Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Organizing the cell cortex: the role of ERM proteins

An Erratum to this article was published on 30 July 2010

Key Points

  • Ezrin, radixin and moesin, the ERMs, have a key role in organizing specialized membrane domains through their ability to interact with transmembrane proteins, membrane-associated cytoplasmic proteins and filamentous actin.

  • ERM activity is regulated through head to tail folding, which in turn is regulated by phospholipid binding and phosphorylation. Structural studies indicate that known interaction sites are inaccessible in the fully folded state, although the data suggest that phospholipid binding may displace the linker region between the head and tail domains, thereby initiating unfolding and activation of ERMs.

  • Genetic studies of ERMs have now been carried out in flies, worms and mice, revealing a wealth of functions in polarized epithelial cells, mitotic cells and the developing oocyte. In addition, recent studies in mammalian cultured cells using genetic tools such as short hairpin RNA-mediated knockdown, have added to our understanding of ERM function in the immune system and disease.

  • Experiments in various systems have implicated ERMs as both regulators and downstream targets of RhoA signalling. Studies in flies suggest that ERMs function antagonistically to RhoA, whereas most studies in mammalian systems have suggested that ERMs promote RhoA signalling.

  • Studies in flies indicate that ERMs are important for epithelial integrity, in part because of their role in organizing apical actin and in part because of their ability to regulate RhoA function.

  • In worms and mice, genetic experiments indicate an essential role for ERMs in lumen morphogenesis. In both cases, the ability to form a free apical domain bordered by a junctional complex seems to be compromised in the absence of ERM function.

  • In the immunological synapse, which forms between antigen-presenting cells and T cells, ERM function is modulated to disassemble microvilli and alter the abundance and localization of several transmembrane proteins. This system also provides clear evidence of functional diversification between the three ERMs. A similar structure, termed the virological synapse, has been described at the site where HIV-1 infects lymphocytes.

  • Recent work has revealed roles for ERMs in tumour metastasis, although the mechanistic basis of this function is not yet understood.

Abstract

Specialized membrane domains are an important feature of almost all cells. In particular, they are essential to tissues that have a highly organized cell cortex, such as the intestinal brush border epithelium. The ERM proteins (ezrin, radixin and moesin) have a crucial role in organizing membrane domains through their ability to interact with transmembrane proteins and the cytoskeleton. In doing so, they can provide structural links to strengthen the cell cortex and regulate the activities of signal transduction pathways. Recent studies examining the structure and in vivo functions of ERMs have greatly advanced our understanding of the importance of membrane–cytoskeleton interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Domain organization of ERMs and an activation model.
Figure 2: Structures of FERM domains with bound ligands.
Figure 3: In vivo functions of ERMs.

Similar content being viewed by others

References

  1. Lajoie, P., Goetz, J. G., Dennis, J. W. & Nabi, I. R. Lattices, rafts, and scaffolds: domain regulation of receptor signaling at the plasma membrane. J. Cell Biol. 185, 381–385 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Saotome, I., Curto, M. & McClatchey, A. I. Ezrin is essential for epithelial organization and villus morphogenesis in the developing intestine. Dev. Cell 6, 855–864 (2004). This work provides a detailed phenotypic analysis of epithelial defects in the intestine of mice deficient for ezrin, showing that ezrin has a crucial role in lumen morphogenesis in the gut.

    CAS  PubMed  Google Scholar 

  3. Chorna-Ornan, I. et al. Light-regulated interaction of Dmoesin with TRP and TRPL channels is required for maintenance of photoreceptors. J. Cell Biol. 171, 143–152 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kunda, P., Pelling, A. E., Liu, T. & Baum, B. Moesin controls cortical rigidity, cell rounding, and spindle morphogenesis during mitosis. Curr. Biol. 18, 91–101 (2008).

    CAS  PubMed  Google Scholar 

  5. Carreno, S. et al. Moesin and its activating kinase Slik are required for cortical stability and microtubule organization in mitotic cells. J. Cell Biol. 180, 739–746 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Speck, O., Hughes, S. C., Noren, N. K., Kulikauskas, R. M. & Fehon, R. G. Moesin functions antagonistically to the Rho pathway to maintain epithelial integrity. Nature 421, 83–87 (2003). This in vivo analysis of Moesin's role in D. melanogaster epithelial morphogenesis shows that there are strong functional interactions between Moesin and RhoA.

    CAS  PubMed  Google Scholar 

  7. Ivetic, A. & Ridley, A. J. Ezrin/radixin/moesin proteins and Rho GTPase signalling in leucocytes. Immunology 112, 165–176 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bretscher, A., Edwards, K. & Fehon, R. G. ERM proteins and merlin: integrators at the cell cortex. Nature Rev. Mol. Cell Biol. 3, 586–599 (2002).

    CAS  Google Scholar 

  9. Gautreau, A., Louvard, D. & Arpin, M. ERM proteins and NF2 tumor suppressor: the Yin and Yang of cortical actin organization and cell growth signaling. Curr. Opin. Cell Biol. 14, 104–109 (2002).

    CAS  PubMed  Google Scholar 

  10. Tsukita, S. & Yonemura, S. Cortical actin organization: lessons from ERM (Ezrin/Radixin/Moesin) proteins. J. Biol. Chem. 274, 34507–34510 (1999).

    CAS  PubMed  Google Scholar 

  11. Turunen, O., Wahlstrom, T. & Vaheri, A. Ezrin has a COOH-terminal actin-binding site that is conserved in the ezrin protein family. J. Cell Biol. 126, 1445–1453 (1994).

    CAS  PubMed  Google Scholar 

  12. Gary, R. & Bretscher, A. Ezrin self-association involves binding of an N-terminal domain to a normally masked C-terminal domain that includes the F-actin binding site. Mol. Biol. Cell 6, 1061–1075 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Nakamura, F., Amieva, M. R. & Furthmayr, H. Phosphorylation of threonine 558 in the carboxyl-terminal actin-binding domain of moesin by thrombin activation of human platelets. J. Biol. Chem. 270, 31377–31385 (1995).

    CAS  PubMed  Google Scholar 

  14. Yonemura, S., Matsui, T. & Tsukita, S. Rho-dependent and -independent activation mechanisms of ezrin/radixin/moesin proteins: an essential role for polyphosphoinositides in vivo. J. Cell Sci. 115, 2569–2580 (2002).

    CAS  PubMed  Google Scholar 

  15. Fievet, B. T. et al. Phosphoinositide binding and phosphorylation act sequentially in the activation mechanism of ezrin. J. Cell Biol. 164, 653–659 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Belkina, N. V., Liu, Y., Hao, J. J., Karasuyama, H. & Shaw, S. LOK is a major ERM kinase in resting lymphocytes and regulates cytoskeletal rearrangement through ERM phosphorylation. Proc. Natl Acad. Sci. USA 106, 4707–4712 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Matsui, T. et al. Rho-kinase phosphorylates COOH-terminal threonines of ezrin/radixin/moesin (ERM) proteins and regulates their head-to-tail association. J. Cell Biol. 140, 647–657 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ng, T. et al. Ezrin is a downstream effector of trafficking PKC-integrin complexes involved in the control of cell motility. EMBO J. 20, 2723–2741 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Simons, P. C., Pietromonaco, S. F., Reczek, D., Bretscher, A. & Elias, L. C-terminal threonine phosphorylation activates ERM proteins to link the cell's cortical lipid bilayer to the cytoskeleton. Biochem. Biophys. Res. Commun. 253, 561–565 (1998).

    CAS  PubMed  Google Scholar 

  20. ten Klooster, J. P. et al. Mst4 and Ezrin induce brush borders downstream of the Lkb1/Strad/Mo25 polarization complex. Dev. Cell 16, 551–562 (2009).

    CAS  PubMed  Google Scholar 

  21. McCartney, B. M. & Fehon, R. G. Distinct cellular and subcellular patterns of expression imply distinct functions for the Drosophila homologues of Moesin and the neurofibromatosis 2 tumor suppressor, Merlin. J. Cell Biol. 133, 843–852 (1996).

    CAS  PubMed  Google Scholar 

  22. Hipfner, D. R., Keller, N. & Cohen, S. M. Slik Sterile-20 kinase regulates Moesin activity to promote epithelial integrity during tissue growth. Genes Dev. 18, 2243–2248 (2004). This paper shows that the Sterile 20 family kinase SLIK is required for D. melanogaster Moesin phosphorylation in vivo and that loss of this phosphorylation produces a strong Moesin-like phenotype, showing that C-terminal phosphorylation is necessary for ERM function.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hughes, S. C. & Fehon, R. G. Phosphorylation and activity of the tumor suppressor Merlin and the ERM protein Moesin are coordinately regulated by the Slik kinase. J. Cell Biol. 175, 305–313 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Verdier, V. et al. Drosophila Rho-kinase (DRok) is required for tissue morphogenesis in diverse compartments of the egg chamber during oogenesis. Dev. Biol. 297, 417–432 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Polesello, C., Delon, I., Valenti, P., Ferrer, P. & Payre, F. Dmoesin controls actin-based cell shape and polarity during Drosophila melanogaster oogenesis. Nature Cell Biol. 4, 782–789 (2002).

    CAS  PubMed  Google Scholar 

  26. Karagiosis, S. A. & Ready, D. F. Moesin contributes an essential structural role in Drosophila photoreceptor morphogenesis. Development 131, 725–732 (2004).

    CAS  PubMed  Google Scholar 

  27. Chambers, D. N. & Bretscher, A. Ezrin mutants affecting dimerization and activation. Biochemistry 44, 3926–3932 (2005).

    CAS  PubMed  Google Scholar 

  28. Yang, H. S. & Hinds, P. W. Increased Ezrin expression and activation by CDK5 coincident with acquisition of the senescent phenotype. Mol. Cell 11, 1163–1176 (2003).

    CAS  PubMed  Google Scholar 

  29. Pearson, M., Reczek, D., Bretscher, A. & Karplus, P. Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain. Cell 101, 259–270 (2000).

    CAS  PubMed  Google Scholar 

  30. Krieg, J. & Hunter, T. Identification of the two major epidermal growth factor-induced tyrosine phosphorylation sites in the microvillar core protein ezrin. J. Biol. Chem. 267, 19258–19265 (1992).

    CAS  PubMed  Google Scholar 

  31. Dransfield, D. T., Bradford, A. J. & Goldenring, J. R. Distribution of A-kinase anchoring proteins in parietal cells. Biochim. Biophys. Acta 1269, 215–220 (1995).

    PubMed  Google Scholar 

  32. McClatchey, A. I. & Fehon, R. G. Merlin and the ERM proteins — regulators of receptor distribution and signaling at the cell cortex. Trends Cell Biol. 19, 198–206 (2009).

    PubMed  PubMed Central  Google Scholar 

  33. Yonemura, S. et al. Ezrin/radixin/moesin (ERM) proteins bind to a positively charged amino acid cluster in the juxta-membrane cytoplasmic domain of CD44, CD43, and ICAM-2. J. Cell Biol. 140, 885–895 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Weinman, E. J., Hall, R. A., Friedman, P. A., Liu-Chen, L. Y. & Shenolikar, S. The association of NHERF adaptor proteins with G protein-coupled receptors and receptor tyrosine kinases. Annu. Rev. Physiol. 68, 491–505 (2006).

    CAS  PubMed  Google Scholar 

  35. Lalonde, D. & Bretscher, A. The scaffold protein PDZK1 undergoes a head-to-tail intramolecular association that negatively regulates its interaction with EBP50. Biochemistry 48, 2261–2271 (2009).

    CAS  PubMed  Google Scholar 

  36. Cheng, H. et al. Autoinhibitory interactions between the PDZ2 and C-terminal domains in the scaffolding protein NHERF1. Structure 17, 660–669 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Morales, F. C. et al. NHERF1/EBP50 head-to-tail intramolecular interaction masks association with PDZ domain ligands. Mol. Cell. Biol. 27, 2527–2537 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Smith, W. J., Nassar, N., Bretscher, A., Cerione, R. A. & Karplus, P. A. Structure of the active N-terminal domain of ezrin. Conformational and mobility changes identify keystone interactions. J. Biol. Chem. 278, 4949–4956 (2003).

    CAS  PubMed  Google Scholar 

  39. Hamada, K., Shimizu, T., Matsui, T., Tsukita, S. & Hakoshima, T. Structural basis of the membrane-targeting and unmasking mechanisms of the radixin FERM domain. EMBO J. 19, 4449–4462 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Edwards, S. D. & Keep, N. H. The 2.7 Å crystal structure of the activated FERM domain of moesin: an analysis of structural changes on activation. Biochemistry 40, 7061–7068 (2001).

    CAS  PubMed  Google Scholar 

  41. Takai, Y., Kitano, K., Terawaki, S., Maesaki, R. & Hakoshima, T. Structural basis of PSGL-1 binding to ERM proteins. Genes Cells 12, 1329–1338 (2007).

    CAS  PubMed  Google Scholar 

  42. Takai, Y., Kitano, K., Terawaki, S., Maesaki, R. & Hakoshima, T. Structural basis of the cytoplasmic tail of adhesion molecule CD43 and its binding to ERM proteins. J. Mol. Biol. 381, 634–644 (2008).

    CAS  PubMed  Google Scholar 

  43. Hamada, K., Shimizu, T., Yonemura, S., Tsukita, S. & Hakoshima, T. Structural basis of adhesion-molecule recognition by ERM proteins revealed by the crystal structure of the radixin-ICAM-2 complex. EMBO J. 22, 502–514 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Mori, T. et al. Structural basis for CD44 recognition by ERM proteins. J. Biol. Chem. 283, 29602–29612 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Terawaki, S., Kitano, K. & Hakoshima, T. Structural basis for type II membrane protein binding by ERM proteins revealed by the radixin-neutral endopeptidase 24.11 (NEP) complex. J. Biol. Chem. 282, 19854–19862 (2007).

    CAS  PubMed  Google Scholar 

  46. Finnerty, C. M. et al. The EBP50-moesin interaction involves a binding site regulated by direct masking on the FERM domain. J. Cell Sci. 117, 1547–1552 (2004).

    CAS  PubMed  Google Scholar 

  47. Terawaki, S., Maesaki, R. & Hakoshima, T. Structural basis for NHERF recognition by ERM proteins. Structure 14, 777–789 (2006).

    CAS  PubMed  Google Scholar 

  48. Jayaraman, B. & Nicholson, L. K. Thermodynamic dissection of the Ezrin FERM/CERMAD interface. Biochemistry 46, 12174–12189 (2007).

    CAS  PubMed  Google Scholar 

  49. Reczek, D. & Bretscher, A. The carboxyl-terminal region of EBP50 binds to a site in the amino-terminal domain of ezrin that is masked in the dormant molecule. J. Biol. Chem. 273, 18452–18458 (1998).

    CAS  PubMed  Google Scholar 

  50. Li, Q. et al. Self-masking in an intact ERM-merlin protein: an active role for the central α-helical domain. J. Mol. Biol. 365, 1446–1459 (2007). The first structural determination of a full-length ERM; this paper shows how head to tail folding results in inactivation of the ERM, and provides support for a model in which ERMs are activated by sequential unfolding.

    CAS  PubMed  Google Scholar 

  51. Mackay, D. J., Esch, F., Furthmayr, H. & Hall, A. Rho- and rac-dependent assembly of focal adhesion complexes and actin filaments in permeabilized fibroblasts: an essential role for ezrin/radixin/moesin proteins. J. Cell Biol. 138, 927–938 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Hirao, M. et al. Regulation mechanism of ERM (ezrin/radixin/moesin) protein/plasma membrane association: possible involvement of phosphatidylinositol turnover and Rho-dependent signaling pathway. J. Cell Biol. 135, 37–51 (1996).

    CAS  PubMed  Google Scholar 

  53. Hatzoglou, A. et al. Gem associates with Ezrin and acts via the Rho-GAP protein Gmip to down-regulate the Rho pathway. Mol. Biol. Cell 18, 1242–1252 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Reczek, D. & Bretscher, A. Identification of EPI64, a TBC/rabGAP domain-containing microvillar protein that binds to the first PDZ domain of EBP50 and E3KARP. J. Cell Biol. 153, 191–206 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Hamada, K. et al. Crystallization and preliminary crystallographic studies of RhoGDI in complex with the radixin FERM domain. Acta Crystallogr. D Biol. Crystallogr. 57, 889–890 (2001).

    CAS  PubMed  Google Scholar 

  56. D'Angelo, R. et al. Interaction of ezrin with the novel guanine nucleotide exchange factor PLEKHG6 promotes RhoG-dependent apical cytoskeleton rearrangements in epithelial cells. Mol. Biol. Cell 18, 4780–4793 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Molnar, C. & de Celis, J. F. Independent roles of Drosophila Moesin in imaginal disc morphogenesis and hedgehog signalling. Mech. Dev. 123, 337–351 (2006).

    CAS  PubMed  Google Scholar 

  58. Lee, J. H. et al. Roles of p-ERM and Rho-ROCK signaling in lymphocyte polarity and uropod formation. J. Cell Biol. 167, 327–337 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Takahashi, K. et al. Direct interaction of the Rho GDP dissociation inhibitor with ezrin/radixin/moesin initiates the activation of the Rho small G protein. J. Biol. Chem. 272, 23371–23375 (1997).

    CAS  PubMed  Google Scholar 

  60. Takahashi, K. et al. Interaction of radixin with Rho small G protein GDP/GTP exchange protein Dbl. Oncogene 16, 3279–3284 (1998).

    PubMed  Google Scholar 

  61. Formstecher, E. et al. Protein interaction mapping: a Drosophila case study. Genome Res. 15, 376–384 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Orian-Rousseau, V. et al. Hepatocyte growth factor-induced Ras activation requires ERM proteins linked to both CD44v6 and F-actin. Mol. Biol. Cell 18, 76–83 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Lamprecht, G. & Seidler, U. The emerging role of PDZ adapter proteins for regulation of intestinal ion transport. Am. J. Physiol. Gastrointest. Liver Physiol. 291, G766–G777 (2006).

    CAS  PubMed  Google Scholar 

  64. Jankovics, F., Sinka, R., Lukacsovich, T. & Erdelyi, M. Moesin crosslinks actin and cell membrane in Drosophila oocytes and is required for OSKAR anchoring. Curr. Biol. 12, 2060–2065 (2002). Together with reference 25, this paper shows an essential role for Moesin in D. melanogaster oocyte polarity.

    CAS  PubMed  Google Scholar 

  65. Micklem, D. R., Adams, J., Grunert, S. & St. Johnston, D. Distinct roles of two conserved Staufen domains in oskar mRNA localization and translation. EMBO J. 19, 1366–1377 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Maddox, A. S. & Burridge, K. RhoA is required for cortical retraction and rigidity during mitotic cell rounding. J. Cell Biol. 160, 255–265 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Charras, G. T., Hu, C. K., Coughlin, M. & Mitchison, T. J. Reassembly of contractile actin cortex in cell blebs. J. Cell Biol. 175, 477–490 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Neisch, A. & Fehon, R. G. FERMing up the plasma membrane. Dev. Cell 14, 154–156 (2008).

    CAS  PubMed  Google Scholar 

  69. Pilot, F., Philippe, J. M., Lemmers, C. & Lecuit, T. Spatial control of actin organization at adherens junctions by a synaptotagmin-like protein Btsz. Nature 442, 580–584 (2006).

    CAS  PubMed  Google Scholar 

  70. Serano, J. & Rubin, G. M. The Drosophila synaptotagmin-like protein bitesize is required for growth and has mRNA localization sequences within its open reading frame. Proc. Natl Acad. Sci. USA 100, 13368–13373 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Gobel, V., Barrett, P. L., Hall, D. H. & Fleming, J. T. Lumen morphogenesis in C. elegans requires the membrane-cytoskeleton linker erm-1. Dev. Cell 6, 865–873 (2004).

    PubMed  Google Scholar 

  72. Van Furden, D., Johnson, K., Segbert, C. & Bossinger, O. The C. elegans ezrin-radixin-moesin protein ERM-1 is necessary for apical junction remodelling and tubulogenesis in the intestine. Dev. Biol. 272, 262–276 (2004). References 71 and 72 explore ERM function in C. elegans epithelia and show that in C. elegans ERMs function in luminal morphogenesis in the gut.

    CAS  PubMed  Google Scholar 

  73. Bossinger, O., Klebes, A., Segbert, C., Theres, C. & Knust, E. Zonula adherens formation in Caenorhabditis elegans requires dlg-1, the homologue of the Drosophila gene discs large. Dev. Biol. 230, 29–42 (2001).

    CAS  PubMed  Google Scholar 

  74. Kerman, B. E., Cheshire, A. M., Myat, M. M. & Andrew, D. J. Ribbon modulates apical membrane during tube elongation through Crumbs and Moesin. Dev. Biol. 320, 278–288 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Louvet, S., Aghion, J., Santa-Maria, A., Mangeat, P. & Maro, B. Ezrin becomes restricted to outer cells following asymmetrical division in the preimplantation mouse embryo. Dev. Biol. 177, 568–579 (1996).

    CAS  PubMed  Google Scholar 

  76. Christofori, G. New signals from the invasive front. Nature 441, 444–450 (2006).

    CAS  PubMed  Google Scholar 

  77. Hunter, K. W. Ezrin, a key component in tumor metastasis. Trends Mol. Med. 10, 201–204 (2004).

    CAS  PubMed  Google Scholar 

  78. Ren, L. et al. The actin-cytoskeleton linker protein ezrin is regulated during osteosarcoma metastasis by PKC. Oncogene 28, 792–802 (2009).

    CAS  PubMed  Google Scholar 

  79. Jeanes, A., Gottardi, C. J. & Yap, A. S. Cadherins and cancer: how does cadherin dysfunction promote tumor progression? Oncogene 27, 6920–6929 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Ponta, H., Sherman, L. & Herrlich, P. A. CD44: from adhesion molecules to signalling regulators. Nature Rev. Mol. Cell Biol. 4, 33–45 (2003).

    CAS  Google Scholar 

  81. Orian-Rousseau, V. & Ponta, H. Adhesion proteins meet receptors: a common theme? Adv. Cancer Res. 101, 63–92 (2008).

    CAS  PubMed  Google Scholar 

  82. Wicki, A. et al. Tumor invasion in the absence of epithelial-mesenchymal transition: podoplanin-mediated remodeling of the actin cytoskeleton. Cancer Cell 9, 261–272 (2006).

    CAS  PubMed  Google Scholar 

  83. Polyak, K. & Weinberg, R. A. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nature Rev. Cancer 9, 265–273 (2009).

    CAS  Google Scholar 

  84. Martin-Villar, E. et al. Podoplanin binds ERM proteins to activate RhoA and promote epithelial-mesenchymal transition. J. Cell Sci. 119, 4541–4553 (2006).

    CAS  PubMed  Google Scholar 

  85. Meder, D., Shevchenko, A., Simons, K. & Fullekrug, J. Gp135/podocalyxin and NHERF-2 participate in the formation of a preapical domain during polarization of MDCK cells. J. Cell Biol. 168, 303–313 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Sizemore, S., Cicek, M., Sizemore, N., Ng, K. P. & Casey, G. Podocalyxin increases the aggressive phenotype of breast and prostate cancer cells in vitro through its interaction with ezrin. Cancer Res. 67, 6183–6191 (2007).

    CAS  PubMed  Google Scholar 

  87. Bourguignon, L. Y. Hyaluronan-mediated CD44 activation of RhoGTPase signaling and cytoskeleton function promotes tumor progression. Semin. Cancer Biol. 18, 251–259 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Schmieder, S., Nagai, M., Orlando, R. A., Takeda, T. & Farquhar, M. G. Podocalyxin activates RhoA and induces actin reorganization through NHERF1 and Ezrin in MDCK cells. J. Am. Soc. Nephrol 15, 2289–2298 (2004).

    CAS  PubMed  Google Scholar 

  89. Samarin, S. & Nusrat, A. Regulation of epithelial apical junctional complex by Rho family GTPases. Front. Biosci. 14, 1129–1142 (2009).

    CAS  Google Scholar 

  90. Yoshinaga-Ohara, N., Takahashi, A., Uchiyama, T. & Sasada, M. Spatiotemporal regulation of moesin phosphorylation and rear release by Rho and serine/threonine phosphatase during neutrophil migration. Exp. Cell Res. 278, 112–122 (2002).

    CAS  PubMed  Google Scholar 

  91. Shcherbina, A., Bretscher, A., Kenney, D. M. & Remold-O'Donnell, E. Moesin, the major ERM protein of lymphocytes and platelets, differs from ezrin in its insensitivity to calpain. FEBS Lett. 443, 31–36 (1999).

    CAS  PubMed  Google Scholar 

  92. Faure, S. et al. ERM proteins regulate cytoskeleton relaxation promoting T cell-APC conjugation. Nature Immunol. 5, 272–279 (2004).

    CAS  Google Scholar 

  93. Delon, J., Kaibuchi, K. & Germain, R. N. Exclusion of CD43 from the immunological synapse is mediated by phosphorylation-regulated relocation of the cytoskeletal adaptor moesin. Immunity 15, 691–701 (2001).

    CAS  PubMed  Google Scholar 

  94. Allenspach, E. J. et al. ERM-dependent movement of CD43 defines a novel protein complex distal to the immunological synapse. Immunity 15, 739–750 (2001).

    CAS  PubMed  Google Scholar 

  95. Roumier, A. et al. The membrane-microfilament linker ezrin is involved in the formation of the immunological synapse and in T cell activation. Immunity 15, 715–728 (2001). References 93–95 describe the role of ERMs in the formation of the immunological synapse during T cell activation.

    CAS  PubMed  Google Scholar 

  96. Shaffer, M. H. et al. Ezrin and moesin function together to promote T cell activation. J. Immunol. 182, 1021–1032 (2009).

    CAS  PubMed  Google Scholar 

  97. Ilani, T., Khanna, C., Zhou, M., Veenstra, T. D. & Bretscher, A. Immune synapse formation requires ZAP-70 recruitment by ezrin and CD43 removal by moesin. J. Cell Biol. 179, 733–746 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Hao, J. J. et al. Phospholipase C-mediated hydrolysis of PIP2 releases ERM proteins from lymphocyte membrane. J. Cell Biol. 184, 451–462 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Krieg, J. & Hunter, T. Identification of the two major epidermal growth factor-induced tyrosine phosphorylation sites in the microvillar core protein ezrin. J. Biol. Chem. 267, 19258–19265 (1992).

    CAS  PubMed  Google Scholar 

  100. Lankes, W. T. & Furthmayr, H. Moesin: a member of the protein 4.1-talin-ezrin family of proteins. Proc. Natl Acad. Sci. USA 88, 8297–8301 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Kikuchi, S. et al. Radixin deficiency causes conjugated hyperbilirubinemia with loss of Mrp2 from bile canalicular membranes. Nature Genet. 31, 320–325 (2002).

    CAS  PubMed  Google Scholar 

  102. Doi, Y. et al. Normal development of mice and unimpaired cell adhesion/cell motility/actin-based cytoskeleton without compensatory up-regulation of ezrin or radixin in moesin gene knockout. J. Biol. Chem. 274, 2315–2321 (1999).

    CAS  PubMed  Google Scholar 

  103. Tamura, A. et al. Achlorhydria by ezrin knockdown: defects in the formation/expansion of apical canaliculi in gastric parietal cells. J. Cell Biol. 169, 21–28 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Kitajiri, S. et al. Radixin deficiency causes deafness associated with progressive degeneration of cochlear stereocilia. J. Cell Biol. 166, 559–570 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Okayama, T. et al. Attenuated response to liver injury in moesin-deficient mice: impaired stellate cell migration and decreased fibrosis. Biochim. Biophys. Acta 1782, 542–548 (2008).

    CAS  PubMed  Google Scholar 

  106. Hashimoto, S. et al. Dysregulation of lung injury and repair in moesin-deficient mice treated with intratracheal bleomycin. Am. J. Physiol. Lung Cell. Mol. Physiol. 295, L566–574 (2008).

    CAS  PubMed  Google Scholar 

  107. Liu, Y., Belkina, N. V. & Shaw, S. HIV infection of T cells: actin-in and actin-out. Sci. Signal. 2, pe23 (2009).

    PubMed  Google Scholar 

  108. Barrero-Villar, M. et al. Moesin is required for HIV-1-induced CD4-CXCR4 interaction, F-actin redistribution, membrane fusion and viral infection in lymphocytes. J. Cell Sci. 122, 103–113 (2009).

    CAS  PubMed  Google Scholar 

  109. Kubo, Y. et al. Ezrin, Radixin, and Moesin (ERM) proteins function as pleiotropic regulators of human immunodeficiency virus type 1 infection. Virology 375, 130–140 (2008).

    CAS  PubMed  Google Scholar 

  110. Millan, J. & Ridley, A. J. Rho GTPases and leucocyte-induced endothelial remodelling. Biochem. J. 385, 329–337 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Doulet, N. et al. Neisseria meningitidis infection of human endothelial cells interferes with leukocyte transmigration by preventing the formation of endothelial docking structures. J. Cell Biol. 173, 627–637 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Trofatter, J. A. et al. A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Cell 72, 791–800 (1993).

    CAS  PubMed  Google Scholar 

  113. Rouleau, G. A. et al. Alteration in a new gene encoding a putative membrane-organizing protein causes neurofibromatosis type 2. Nature 363, 515–521 (1993).

    CAS  PubMed  Google Scholar 

  114. Maeda, M., Matsui, T., Imamura, M. & Tsukita, S. Expression level, subcellular distribution and rho-GDI binding affinity of merlin in comparison with Ezrin/Radixin/Moesin proteins. Oncogene 18, 4788–4797 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the members of our laboratories for their contributions and helpful discussions. We apologize for work that was omitted owing to space limitations. Work in our laboratories was supported by grants from the National Institutes of Health (A.B., R.G.F. and A.I.M.) and the US Army Neurofibromatosis Research Program (A.B. and A.I.M.).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Protein Data Bank

1EF1

1J19

1SGH

2I1J

FURTHER INFORMATION

Richard G. Fehon's homepage

Andrea I. McClatchey's homepage

Anthony Bretscher's homepage

Glossary

Immunological synapse

A large junctional structure that is formed at the cell surface between a T cell and an APC with which it is interacting. It consists of molecules required for adhesion and signalling, is important in establishing T cell adhesion and polarity, is influenced by the cytoskeleton and transduces highly controlled secretory signals, thereby allowing the directed release of cytokines or lytic granules towards the APC or target cell.

PDZ domain

(Postsynaptic density protein of 95 kDa, Discs large and Zonula occludens 1 domain). A region that is present in several scaffolding proteins and is named after the founding members of this protein family. PDZ domains bind to specific short amino acid sequences in interacting proteins.

Hypomorphic

A mutant allele that has a similar but weaker function than the wild-type allele.

Juxtamembrane region

A sequence in a transmembrane protein on the cytoplasmic side that is adjacent to a transmembrane helix.

Adherens junction

A cell–cell adhesion complex that contains cadherins and catenins that are associated with cytoplasmic actin filaments.

Atomic force microscope

A microscope that non-destructively measures the forces (at the atomic level) between a sharp probing tip (which is attached to a cantilever spring) and a sample surface. The microscope images structures at the resolution of individual atoms.

Imaginal disc

A single-cell layer epithelial structure of the D. melanogaster larva that gives rise to wings, legs and other appendages.

Brush border

The highly architecturally and functionally specialized apical domain of intestinal and renal epithelial cells. It is composed of the cytoskeleton-rich terminal web and its associated apical junctions, which form a platform from which a dense array of microvilli project. These microvilli increase the absorptive and resorptive surface areas of the gut and kidney, respectively.

Syncytial embryo

The early stage D. melanogaster embryo, in which a rapid series of nuclear replication cycles occur in the absence of cell division, resulting in a single cell with thousands of nuclei.

Synaptotagmin

One of a group of Ca2+-binding proteins that are generally understood to be involved with the secretion of granules and vesicles, especially in the nervous system.

Apical polarity complex

A protein complex consisting of PAR3 (known as Bazooka in D. melanogaster), PAR6 and atypical protein kinase C that establishes and maintains the apical membrane in polarized epithelial cells.

Epithelial to mesenchymal transformation

A morphological change that is characteristic of some developing tissues and certain forms of cancer, in which cells lose intercellular junctions and apical–basal polarity, become migratory and, in the case of cancer, become invasive.

Cadherin

A cell-type-specific calcium-dependent transmembrane adhesion protein. Cadherins promote homophilic binding and are preferentially located at adherens junctions.

Catenin

A cytoplasmic protein that is directly or indirectly linked to the cytoplasmic tail of cadherins. In this complex, catenins promote the anchoring of cadherins to actin and junction stabilization.

Osteosarcoma

A malignant tumour of the osteoid bone.

Rhabdomyosarcoma

A malignant tumour of skeletal muscle.

Podocyte

A cell in the kidney that has a crucial function in the filtration of solutes in the blood to form urine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fehon, R., McClatchey, A. & Bretscher, A. Organizing the cell cortex: the role of ERM proteins. Nat Rev Mol Cell Biol 11, 276–287 (2010). https://doi.org/10.1038/nrm2866

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2866

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing