Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.
Blood production depends on haematopoietic stem cells (HSCs) and progenitor cells, which are regulated by their microenvironment or niche. New lineage-tracing models and microscopy tools are increasing the understanding of HSC specification and function, and how stem cell–niche interactions are perturbed during ageing.
The mechanically activated cation channels PIEZO1 and PIEZO2 are crucial for mechanotransduction processes in mammals. This Review discusses the structural design and gating dynamics of PIEZO channels that enable their high mechanosensitivity, and highlights their physiological and pathological relevance.
In this Tools of the Trade article, Jeroen van den Berg (van Oudenaarden lab) presents a new method based on pulse-labelling of nascent DNA to study the dynamics of DNA replication in single cells.
This study finds that microtubules act as a mechanostat during cell migration, becoming mechanically reinforced in response to compression to protect the nucleus and coordinate contractility.
The extracellular matrix (ECM) is a scaffold that supports cell structure and function. This Review discusses the compositional diversity, tissue-specific assembly and remodelling of the ECM in health and disease, and explores its potential for therapeutic targeting.
This Review outlines progress in understanding the mechanisms of DNA methylation regulation in plants. Studies in various plants have revealed novel and diverse biological functions of DNA methylation that might assist in developing epigenome editing approaches suitable for crop breeding.
Single-cell and spatial transcriptomics are transforming our understanding of cell plasticity and tissue diversity. This Review discusses technical and computational advancements and challenges in characterizing cell states and tissues during embryogenesis, tumorigenesis and immune responses, and the application of these tools to the clinic.
The autophagy–lysosome pathway eliminates damaged organelles and aggregation-prone proteins, which is particularly important in neurons, where clearance of such substrates is restricted. Autophagy or lysosome deficiencies, often exacerbated by ageing, impact neuronal function and cause neurodegenerative diseases such as Alzheimer disease or Parkinson disease.
Voltage-gated ion channels (VGICs) regulate ion permeability in multiple physiological processes, thereby representing important disease targets. This Review discusses how advances in cryo-electron microscopy have contributed to our understanding of VGIC structures and mechanisms and their interactions with drugs.
MYB-related transcription factors are found to function in chloroplast biogenesis alongside GLK in the distantly related species Marchantia polymorpha and Arabidopsis thaliana.
Nicotinamide adenine dinucleotide (NAD+) has essential roles in metabolism and can be readily supplemented, potentially to benefit human health. This Review discusses recent insights into the roles of the microbiome and cellular compartments in regulating NAD+ metabolism, and the promise and pitfalls of NAD+ supplementation.
Tau is a microtubule-binding protein that is expressed primarily in neurons. The abnormal accumulation of tau aggregates in neurons is associated with neurodegenerative diseases, known as tauopathies, such as Alzheimer disease and frontotemporal dementia. This Review discusses recent insights into the diverse cellular functions of tau, the pathology of tau aggregates and the potential for therapeutic interventions.
Paul Nurse discusses how a 1971 paper by Culotti and Hartwell inspired him to investigate the cell cycle in fission yeast, and how these genetics studies led to the discovery of cyclin-dependent kinases.
Many proteins in the mouse ovary are extremely stable; they enhance proteostasis and limit protein aggregation, thereby supporting the maintenance of the long-lived oocytes.
In a recent study, Bong et al. identify a polarized distribution of contact sites between the endoplasmic reticulum and plasma membrane in migrating cells, whereby higher density of contacts in the back of the cells prevents the formation of additional migration fronts.
This Comment discusses erroneous reporting of mass spectrometry analyses of lipids in mammalian samples, and provides recommendations for how to avoid it.