Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulatory lymphocytes

Regulatory T cells in transplantation tolerance

Key Points

  • Regulation by CD4+CD25+ T cells is one of the mechanisms used in vivo to both induce and maintain transplantation tolerance.

  • Alloantigen-specific regulatory T (TReg) cells can be generated either in vivo or ex vivo.

  • TReg cells are found in the graft, as well as in the peripheral lymphoid tissues, after transplantation.

  • Alloantigen-specific and naturally occurring CD4+CD25+ TReg cells use similar mechanisms to control immune responsiveness in vivo.

  • Alloantigen-specific TReg cells can be augmented by exposure to alloantigen.

  • CD4+CD25+ TReg cells are one form of immunoregulation used to control responsiveness to alloantigens; the relationships between CD4+CD25+ TReg cells and other populations of regulatory cells remain to be clarified.

Abstract

The identification and characterization of regulatory T (TReg) cells that can control immune responsiveness to alloantigens have opened up exciting opportunities for new therapies in transplantation. After exposure to alloantigens in vivo, alloantigen-specific immunoregulatory activity is enriched in a population of CD4+ T cells that express high levels of CD25. In vivo, common mechanisms seem to underpin the activity of CD4+CD25+ TReg cells in both naive and manipulated hosts. However, the origin, allorecognition properties and molecular basis for the suppressive activity of CD4+CD25+ TReg cells, as well as their relationship to other populations of regulatory cells that exist after transplantation, remain a matter of debate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulatory T cells can control immune responsiveness in vivo.
Figure 2: Linked unresponsiveness as a mechanism of immunoregulation in transplantation.
Figure 3: Origin of alloantigen-specific regulatory T cells.
Figure 4: Potential effector mechanisms of regulatory T cells.
Figure 5: Potential ways of manipulating regulatory T cells in transplantation.

Similar content being viewed by others

References

  1. Bach, J. -F. Regulatory T cells under scrutiny. Nature Rev. Immunol. 3, 189–198 (2003).

    Article  CAS  Google Scholar 

  2. Wells, A., Li, X., Strom, T. & Turka, L. The role of peripheral T-cell deletion in transplantation tolerance. Philos Trans R Soc Lond B Biol Sci 356, 617–623 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wood, K. J., Jones, N., Bushell, A. & Morris, P. J. Alloantigen-induced specific immunological unresponsiveness. Philos Trans R Soc Lond B Biol Sci 356, 665–680 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gershon, R. & Kondo, K. Infectious immunological tolerance. Immunology 21, 903–914 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kilshaw, P., Brent, L. & Pinto, M. Suppressor T cells in mice made unresponsive to skin allografts. Nature 255, 489–491 (1975).

    Article  CAS  PubMed  Google Scholar 

  6. Hutchinson, I. V. Suppressor T cells in allogeneic models. Transplantation 41, 547–555 (1986).

    Article  CAS  PubMed  Google Scholar 

  7. Gilliet, M. & Liu, Y. -J. Generation of human CD8 T regulatory cells by CD40 ligand-activated plasmacytoid dendritic cells. J. Exp. Med. 195, 695–704 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhou, J., Carr, R. I., Liwski, R. S., Stadnyk, A. W. & Lee, G. T. D. Oral exposure to alloantigen generates intragraft CD8+ regulatory cells. J. Immunol. 167, 107–113 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Ciubotariu, R. et al. Specific suppression of human CD4+ TH-cell responses to pig MHC antigens by CD8+CD28 regulatory T cells. J. Immunol. 161, 5193–5202 (1998).

    CAS  PubMed  Google Scholar 

  10. Zhang, Z., Yang, L., Young, K., DuTemple, B. & Zhang, L. Identification of a previously unknown antigen-specific regulatory T cell and its mechanism of suppression. Nature Med. 6, 782–789 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Zeng, D. et al. Bone marrow NK1.1 and NK 1.1+ T cells reciprocally regulate acute graft-versus-host disease. Blood 99, 1449–1457 (1999).

    Article  Google Scholar 

  12. Seino, K. -I. et al. Requirement for natural killer T (NKT) cells in the induction of allograft tolerance. Proc. Natl Acad. Sci. USA 98, 2577–2581 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Taylor, P., Noelle, R. J. & Blazar, B. R. CD4+CD25+ immune regulatory cells are required for induction of tolerance to alloantigen via costimulatory blockade. J. Exp. Med. 193, 1311–1318 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hoffmann, P., Ermann, J., Edinger, M., Fathman, C. G. & Strober, S. Donor-type CD4+CD25+ regulatory T cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation. J. Exp. Med. 196, 389–399 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cohen, J. L., Trenado, A., Vasey, D., Klatzmann, D. & Salomon, B. L. CD4+CD25+ immunoregulatory T cells: new therapeutics for graft-versus-host disease. J. Exp. Med. 196, 401–406 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chambers, C. A. et al. The lymphoproliferative defect in CTLA-4-deficient mice is ameliorated by an inhibitory NK-cell receptor. Blood 99, 4509–4516 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995). This paper showed that the removal of CD4+CD25+ T cells from normal mice results in the spontaneous development of various autoimmune diseases. This indicates that naturally occurring regulatory T (T Reg ) cells have an important role in the maintenance of self-tolerance.

    CAS  PubMed  Google Scholar 

  18. Shevach, E. Certified professionals: CD4+CD25+ suppressor T cells. J. Exp. Med. 193, F41–F45 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hall, B., Pearce, N., Gurley, K. & Dorsch, S. Specific unresponsiveness in rats with prolonged cardiac allograft survival after treatment with cyclosporine. III. Further characterisation of the CD4+ suppressor cell and its mechanism of action. J. Exp. Med. 171, 141–157 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. Hara, M. et al. IL-10 is required for regulatory T cells to mediate tolerance to alloantigens in vivo. J. Immunol. 166, 3789–3796 (2001). A demonstration that common mechanisms are used by alloantigen-specific and naturally occurring T Reg cells to maintain tolerance in vivo.

    Article  CAS  PubMed  Google Scholar 

  21. Kingsley, C. I., Karim, M., Bushell, A. R. & Wood, K. J. CD25+CD4+ regulatory T cells prevent graft rejection: CTLA-4- and IL-10-dependent immunoregulation of alloresponses. J. Immunol. 168, 1080–1086 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Sanchez-Fueyo, A., Weber, M., Domenig, C., Strom, T. & Zheng, X. Tracking immunoregulatory mechanisms during allograft tolerance. J. Immunol. 168, 2274–2281 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Graca, L. et al. Both CD4+CD25+ and CD4+CD25 regulatory cells mediate dominant transplantation tolerance. J. Immunol. 168, 5558–5565 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Baecher-Allan, C., Brown, J., Freeman, G. & Hafler, D. CD4+CD25+ high regulatory cells in human peripheral blood. J. Immunol. 167, 1245–1253 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Levings, M., Sangregorio, R. & Roncarolo, M. -G. Human CD25+CD4+ T regulatory cells suppress naive and memory T-cell proliferation and can be expanded in vitro without loss of function. J. Exp. Med. 193, 1295–1301 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jonuleit, H., Schmidtt, E., Stassen, M., Tuettenberg, A., Knop, J. & Enk, A. H. Identification and functional characterisation of human CD4+CD25+ T cells with regulatory properties isolated from peripheral blood. J. Exp. Med. 139, 1285–1294 (2001).

    Article  Google Scholar 

  27. Ng, W. F. et al. Human CD4+CD25+ cells: a naturally occurring population of regulatory T cells. Blood 98, 2736–2744 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Stephens, L., Mottet, C., Mason, D. & Powrie, F. Human CD4+CD25+ thymocytes and peripheral T cells have immune suppressive activity in vitro. Eur. J. Immunol. 31, 1247–1254 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Taams, L. et al. Human anergic/suppressive CD4+CD25+ T cells: a highly differentiated and apoptosis-prone population. Eur. J. Immunol. 31, 1122–1131 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Waldmann, T. A. Immune receptors: targets for therapy of leukemia/lymphoma, autoimmune diseases and for the prevention of allograft rejection. Annu. Rev. Immunol. 10, 675–704 (1992). References 24–30 show that CD4+CD25+ T Reg cells are present in humans.

    Article  CAS  PubMed  Google Scholar 

  31. Vincenti, F. Interleukin-2 receptor monoclonal antibodies in renal transplantation: current use and emerging regimens. Transplant. Proc. 33, 3169–3171 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Kuniyasu, Y. et al. Naturally anergic and suppressive CD25+CD4+ T cells as a functionally and phenotypically distinct immunoregulatory T-cell subpopulation. Int. Immunol. 12, 1145–1155 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Stephens, L. & Mason, D. CD25 is a marker for CD4+ thymocytes that prevent autoimmune diabetes in rats, but peripheral T cells with this function are found in both CD25+ and CD25 subpopulations. J. Immunol. 165, 3105–3110 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Herold, K. et al. Anti-CD3 monoclonal antibody in new onset type 1 diabetes mellitus. N. Engl. J. Med. 346, 1740–1742 (2002). A clinical study showing that therapy with CD3-specific monoclonal antibodies has the potential to control the progression of diabetes.

    Article  Google Scholar 

  35. Shoskes, D. & Wood, K. Indirect presentation of MHC antigens in transplantation. Immunol. Today 15, 1–7 (1994).

    Article  Google Scholar 

  36. Lechler, R. I. & Batchelor, J. R. Restoration of immunogenicity to passenger cell-depleted kidney allografts by the addition of donor-strain dendritic cells. J. Exp. Med. 155, 31–41 (1982).

    Article  CAS  PubMed  Google Scholar 

  37. Auchincloss, H. et al. The role of 'indirect' recognition in initiating rejection of skin grafts from major histocompatibility complex class-II-deficient mice. Proc. Natl Acad. Sci. USA 90, 3373–3377 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wise, M. P., Bemelman, F., Cobbold, S. P. & Waldmann, H. Linked suppression of skin graft rejection can operate through indirect recognition. J. Immunol. 161, 5813–5816 (1998).

    CAS  PubMed  Google Scholar 

  39. Yamada, A. et al. Cutting edge: recipient MHC class II expression is required to achieve long-term survival of murine cardiac allografts after costimulatory blockade. J. Immunol. 167, 5522–5526 (2001). An elegant demonstration that the indirect pathway of allorecognition is required for long-term allograft survival.

    Article  CAS  PubMed  Google Scholar 

  40. Blancho, G. et al. Molecular and cellular events implicated in local tolerance to kidney allografts in miniature swine. Transplantation 63, 26–33 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Sayegh, M. H., Khoury, S., Hancock, W., Weiner, H. & Carpenter, C. Induction of immunity and oral tolerance with polymorphic class II major histocompatibility complex allopeptides in the rat. Proc. Natl Acad. Sci. USA 89, 7762–7766 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Niimi, M. et al. Non-depleting anti-CD4 antibody enhances the ability of oral alloantigen delivery to induce indefinite survival of cardiac allografts. Transplantation 70, 1524–1548 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Lagaaij, E. L. et al. Effect of one-HLA-DR antigen-matched and completely HLA-DR-mismatched blood transfusions on survival of heart and kidney allografts. N. Engl. J. Med. 321, 701–705 (1989).

    Article  CAS  PubMed  Google Scholar 

  44. Claas, F., de Koster, H. & van Rood, J. A molecular mechanism of T-cell downregulation by blood transfusion. Exp. Nephrol. 1, 134–138 (1993).

    CAS  PubMed  Google Scholar 

  45. Sakaguchi, S. et al. Immunologic tolerance maintained by CD25+CD4+ regulatory T cells: their common role in controlling autoimmunity, tumour immunity and transplantation tolerance. Immunol. Rev. 182, 18–32 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. van Maurik, A., Wood, K. J. & Jones, N. Impact of both donor and recipient strains on cardiac allograft survival after blockade of the CD40–CD154 costimulatory pathway. Transplantation 74, 740–743 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Honey, K., Cobbold, S. & Waldmann, H. CD40 ligand blockade induces CD4+ T-cell tolerance and linked suppression. J. Immunol. 163, 4805–4810 (1999).

    CAS  PubMed  Google Scholar 

  48. Trambley, J. et al. Asialo GM1+CD8+ T cells play a critical role in costimulation blockade-resistant allograft rejection. J. Clin. Invest. 104, 1715–1722 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jones, N. et al. CD40–CD40L-independent activation of CD8+ T cells can trigger allograft rejection. J. Immunol. 165, 1111–1118 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Ensminger, S. et al. CD8+ T cells contribute to the development of transplant ateriosclerosis despite CD154 blockade. Transplantation 69, 2609–2612 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. van Maurik, A., Wood, K. J. & Jones, N. Cutting edge: CD4+CD25+ alloantigen-specific immunoregulatory cells that can prevent CD8+ T-cell-mediated graft rejection: implications for anti-CD154 immunotherapy. J. Immunol. 169, 5401–5404 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Lin, C. -Y., Graca, L., Cobbold, S. P. & Waldmann, H. Dominant transplantation tolerance impairs CD8+ T-cell function but not expansion. Nature Immunol. 3, 1208–1213 (2002). References 51 and 52 show that CD4+CD25+ T Reg cells can prevent graft rejection by impairing the function of CD8+ T cells.

    Article  CAS  Google Scholar 

  53. Piccirillo, C. & Shevach, E. M. Cutting edge: control of CD8+ T-cell activation by CD4+CD25+ immunoregulatory cells. J. Immunol. 167, 1137–1140 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Cederbom, L., Hall, H. & Ivars, F. CD4+CD25+ regulatory T cells down-regulate costimulatory molecules on antigen-presenting cells. Eur. J. Immunol. 30, 1538–1543 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Qin, S. et al. 'Infectious' transplantation tolerance. Science 259, 974–977 (1993).

    Article  CAS  PubMed  Google Scholar 

  56. Jonuleit, H. et al. Infectious tolerance: human CD25+ regulatory T cells convey suppressor activity to conventional CD4+ T helper cells. J. Exp. Med. 196, 255–260 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dieckmann, D., Bruett, C. H., Ploettner, H., Lutz, M. B. & Schuler, G. Human CD4+CD25+ regulatory, contact-dependent T cells induce interleukin-10-producing, contact-independent type 1-like regulatory T cells. J. Exp. Med. 196, 247–253 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Onodera, K. et al. Type 2 helper T cell-type cytokines and the development of 'infectious' tolerance in rat cardiac allograft recipients. J. Immunol. 158, 1572–1581 (1997).

    CAS  PubMed  Google Scholar 

  59. Madsen, J. C., Superina, R. A., Wood, K. J. & Morris, P. J. Immunological unresponsiveness induced by recipient cells transfected with donor MHC genes. Nature 332, 161–164 (1988). Exposure to a single donor alloantigen is sufficient to induce specific unresponsiveness to a fully allogeneic graft, which provides evidence for linked unresponsiveness.

    Article  CAS  PubMed  Google Scholar 

  60. Saitovitch, D., Morris, P. & Wood, K. Recipient cells expressing single donor MHC locus products can substitute for donor-specific transfusions in the induction of transplantation tolerance when pretreatment is combined with anti-CD4 monoclonal antibody: evidence for a vital role of CD4+ T cells in the induction of tolerance to class I molecules. Transplantation 61, 1532–1538 (1996).

    Article  CAS  PubMed  Google Scholar 

  61. Wong, W., Morris, P. & Wood, K. Pretransplant administration of a single donor class I MHC molecule is sufficient for the indefinite survival of fully allogeneic cardiac allografts: evidence for linked epitope suppression. Transplantation 63, 1490–1494 (1997).

    Article  CAS  PubMed  Google Scholar 

  62. Davies, J. D., Leong, L. Y., Mellor, A., Cobbold, S. P. & Waldmann, H. T-cell suppression in transplantation tolerance through linked recognition. J. Immunol. 156, 3602–3607 (1996).

    CAS  PubMed  Google Scholar 

  63. Sonntag, K. -C. et al. Tolerance to solid organ transplants through transfer of MHC class II genes. J. Clin. Invest. 107, 65–71 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Takahashi, T. et al. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int. Immunol. 10, 1969–1980 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Thornton, A. & Shevach, E. M. Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen non-specific. J. Immunol. 164, 183–190 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Graca, L., Cobbold, S. P. & Waldmann, H. Identification of regulatory T cells in tolerated allografts. J. Exp. Med. 195, 1641–1646 (2002). This study provides evidence for T Reg cells in transplants.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zelenika, D. et al. Regulatory T cells overexpress a subset of TH2 gene transcripts. J. Immunol. 168, 1069–1079 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Iellem, A. et al. Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4+CD25+ regulatory T cells. J. Exp. Med. 194, 847–854 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Annunziato, F. et al. Phenotype, localization and mechanism of suppression of CD4+CD25+ human thymocytes. J. Exp. Med. 196, 379–387 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bystry, R., Aluvihare, V., Welch, K., Kallikourdis, M. & Betz, A. B cells and professional APCs recruit regulatory T cells. Nature Immunol. 2, 1126–1132 (2001).

    Article  CAS  Google Scholar 

  71. Sawitzki, B. et al. Gene expression associated with tolerance and rejection — expression kinetics in different transplant models. Transplantation 74, S244 (2002).

    Google Scholar 

  72. Mason, D. A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol. Today 19, 395–404 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Itoh, M. et al. Thymus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self tolerance. J. Immunol. 162, 5317–5326 (1999). A demonstration that the normal thymus continuously produces CD4+CD25+ T Reg cells that are functionally and phenotypically similar to those in the periphery. These data indicate that thymic production of T Reg cells is another important contribution of the thymus to the maintenance of self-tolerance.

    CAS  PubMed  Google Scholar 

  74. Sakaguchi, S. et al. in Novartis Foundation Symposium 252. Generation and Effector Functions of Regulatory Lymphocytes (Wiley, Europe) (in the press).

  75. Mogdigliani, Y. Establishment of tissue-specific tolerance is driven by regulatory T cells selected by thymic epithelium. Eur. J. Immunol. 26, 1807–1815 (1996).

    Article  Google Scholar 

  76. Apostolou, I., Sarukhan, A., Klein, L. & von Boehmer, H. Origin of regulatory T cells with known specificity for antigen. Nature Immunol. 3, 756–763 (2002).

    Article  CAS  Google Scholar 

  77. Taams, L. et al. Antigen-specific T-cell suppression by human CD4+CD25+ regulatory T cells. Eur. J. Immunol. 32, 1621–1630 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Hamano, K., Rawsthorne, M., Bushell, A., Morris, P. & Wood, K. Evidence that the continued presence of the organ graft and not peripheral donor microchimerism is essential for the maintenance of tolerance to alloantigen in anti-CD4-treated recipients. Transplantation 62, 856–860 (1996).

    Article  CAS  PubMed  Google Scholar 

  79. Karim, M., Steger, U., Bushell, A. & Wood, K. J. The role of the graft in establishing tolerance. Front Biosci 7, 129–154 (2002).

    Article  Google Scholar 

  80. Konieczny, B. et al. IFN-γ is critical for long-term allograft survival induced by blocking the CD28 and CD40 ligand T-cell costimulation pathways. J. Immunol. 160, 2059–2064 (1998).

    CAS  PubMed  Google Scholar 

  81. Papiernik, M., de Moreas, M., Pontoux, C., Vasseur, F. & Penit, C. Regulatory CD4 T cells: expression of IL-2R α-chain, resistance to clonal deletion and IL-2 dependency. Int. Immunol. 10, 371–378 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Larsen, P. et al. Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature 381, 434–438 (1996).

    Article  CAS  PubMed  Google Scholar 

  83. Kirk, A. et al. Treatment with humanised monoclonal antibody against CD154 prevents acute renal allograft rejection in nonhuman primates. Nature Med. 5, 686–693 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Shimizu, J., Yamazaki, S., Takahashi, T., Ishida, Y. & Sakaguchi, S. Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance. Nature Immunol. 3, 135–142 (2002). Together with reference 101, this study provides the first demonstration that GITR has a crucial role in the function of naturally occurring T Reg cells.

    Article  CAS  Google Scholar 

  85. Asseman, C., Mauze, S., Leach, M., Coffman, R. & Powrie, F. An essential role for interleukin-10 in the function of regulatory T cells which inhibit intestinal inflammation. J. Exp. Med. 190, 995–1004 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Josien, R. et al. A critical role for transforming growth factor-β in donor transfusion-induced allograft tolerance. J. Clin. Invest. 102, 1920–1926 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bickerstaff, A., VanBuskirk, A., Wakely, E. & Orosz, G. Transforming growth factor-β and interleukin-10 subvert delayed-type hypersensitivity in cardiac allograft acceptor mice. Transplantation 69, 1517–1520 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Powrie, F., Carlino, J., Leach, M. W., Mauze, S. & Coffman, R. L. A critical role for transforming growth factor-β but not interleukin-4 in the suppression of T helper type 1-mediated colitis by CD45RBlow CD4+ T cells. J. Exp. Med. 183, 2669–2674 (1996).

    Article  CAS  PubMed  Google Scholar 

  89. Nakamura, K., Kitani, A. & Strober, W. Cell contact-dependent immunosuppression by CD4+CD25+ regulatory T cells is mediated by cell surface-bound transforming growth factor-β. J. Exp. Med. 194, 629–644 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Thornton, A. & Shevach, E. CD4+CD25+ immunoregulatory T cells suppress polyclonal activation by inhibiting interleukin-2 production. J. Exp. Med. 188, 287–296 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Piccirillo, C. A. et al. CD4+CD25+ regulatory T cells can mediate suppressor function in the absence of transforming growth factor-β1 production and responsiveness. J. Exp. Med. 196, 237–246 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sullivan, T. J. et al. Lack of a role for transforming growth factor-β in cytotoxic T lymphocyte antigen-4-mediated inhibition of T-cell activation. Proc. Natl. Acad. Sci. USA 98, 2587–2592 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Walunas, T. et al. CTLA-4 can function as a negative regulator of T-cell activation. Immunity 1, 405–413 (1994).

    Article  CAS  PubMed  Google Scholar 

  94. Waterhouse, P. et al. Lymphoproliferative disorders with early lethality in mice deficient in CTLA-4. Science 270, 985–988 (1995).

    Article  CAS  PubMed  Google Scholar 

  95. Takahashi, T. et al. Immunologic self-tolerance is maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T-lymphocyte-associated antigen 4. J. Exp. Med. 192, 303–310 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Read, S., Malmstrom, V. & Powrie, F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J. Exp. Med. 192, 295–302 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Salomon, B. & Bluestone, J. Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu. Rev. Immunol. 19, 225–252 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Dieckmann, D., Plottner, H., Berchtold, S., Berger, T. & Schuler, G. Ex vivo isolation and characterisation of CD4+CD25+ T cells with regulatory properties from human blood. J. Exp. Med. 139, 1303–1310 (2001).

    Article  Google Scholar 

  99. Salomon, B. et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune disease. Immunity 12, 431–440 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Liu, Z. et al. B7 interactions with CD28 and CTLA-4 control tolerance or induction of mucosal inflammation in chronic experimental colitis. J. Immunol. 167, 1830–1838 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. McHugh, R. S. et al. CD4+CD25+ immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity 16, 311–323 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Wood, K. J. et al. in Novartis Foundation Symposium 252. Generation and Effector Functions of Regulatory Lymphocytes (Wiley, Europe) (in the press).

  103. Taams, L., Boot, E., van Eden, W. & Wauben, M. 'Anergic' T cells modulate the T-cell-activating capacity of antigen-presenting cells. J. Autoimmun. 14, 335–341 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Frasca, L., Scotta, C., Lombardi, G. & Piccolella, E. Human anergic CD4+ T cells can act as suppressor cells by affecting autologous dendritic-cell conditioning and survival. J. Immunol. 168, 1060–1068 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Gregori, S. et al. Regulatory T cells induced by 1α,25-dihydroxyvitamin D3 and mycophenolate mofetil treatment mediate transplantation tolerance. J. Immunol. 167, 1945–1953 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T-cell development by transcription factor FOXP3. Science (in the press).

  107. Ho, I. & Glimcher, L. H. Transcription factors: tantalizing times for T cells. Cell 109, S109–S120 (2003).

    Article  Google Scholar 

  108. Wildin, R., Smyk-Pearson, S. & Filipovich, H. Clinical and molecular features of the immunodysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome. J. Med. Genet. 39, 537–545 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Brunkow, M. E. et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nature Genet. 27, 68–73 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Furtado, G. C., de Lafaille, M. A. C., Kutchukhidze, N. & Lafaille, J. J. Interleukin-2 signaling is required for CD4+ regulatory T-cell function. J. Exp. Med. 196, 851–857 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wells, A. et al. Requirement for T-cell apoptosis in the induction of peripheral transplantation tolerance. Nature Med. 5, 1303–1307 (1999).

    Article  CAS  PubMed  Google Scholar 

  112. Li, Y. et al. Blocking both signal 1 and signal 2 of T-cell activation prevents apoptosis of alloreactive T cells and induction of peripheral allograft tolerance. Nature Med. 5, 1298–1302 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Opelz, G. Efficacy of rejection prophylaxis with OKT3 in renal transplantation. Collaborative transplant study. Transplantation 60, 1220–1224 (1995).

    Article  CAS  PubMed  Google Scholar 

  114. Calne, R. et al. Prope tolerance, perioperative Campath 1H, and low-dose cyclosporin monotherapy in renal allograft recipients. Lancet 351, 1701–1702 (1998).

    Article  CAS  PubMed  Google Scholar 

  115. Takatsuki, M. et al. Weaning of immunosuppression in living donor liver transplant recipients. Transplantation 72, 449–454 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Kupiec-Weglinski, J. W., Filho, M., Strom, T. & Tilney, N. Sparing of suppressor cells: a critical action of cyclosporine. Transplantation 38, 97–101 (1984).

    Article  CAS  PubMed  Google Scholar 

  117. Jones, T. R. et al. The role of the IL-2 pathway in costimulation blockade-resistant rejection of allografts. J. Immunol. 168, 1123–1130 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. Yamagiwa, S., Gray, J., Hashimoto, S. & Horwitz, D. A role of TGF-β in the generation and expansion of CD4+CD25+ regulatory T cells from human peripheral blood. J. Immunol. 166, 7282–7289 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Barrat, F. J. et al. In vitro generation of interleukin-10-producing regulatory CD4+ T cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (TH1)- and TH2-inducing cytokines. J. Exp. Med. 195, 603–616 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Taylor, A. & Namba, K. In vitro induction of CD25+CD4+ regulatory T cells by the neuropeptide α-melanocyte stimulating hormone (α-MSH). Immunol. Cell Biol. 79, 358–367 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Taylor, P. A., Lees, C. J. & Blazar, B. R. The infusion of ex vivo-activated and expanded CD4+CD25+ immune regulatory cells inhibits graft-versus-host disease lethality. Blood 99, 3493–3499 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. Arnold, B., Schonrich, G. & Hammerling, G. J. Multiple levels of peripheral tolerance. Immunol. Today 14, 12–14 (1993).

    Article  CAS  PubMed  Google Scholar 

  123. Scully, R., Qin, S., Cobbold, S. & Waldmann, H. Mechanisms in CD4 antibody-mediated transplantation tolerance: kinetics of induction, antigen dependency and role of regulatory T cells. Eur. J. Immunol. 24, 2383–2392 (1994).

    Article  CAS  PubMed  Google Scholar 

  124. Hamano, K., Fujikura, Y., Fukada, S., Esato, K. & Fukumoto, T. The effect of intrathymic injection of donor blood on the graft-versus-host reaction and cardiac allograft survival in the rat. Immunol. Cell Biol. 69, 185–189 (1991).

    Article  PubMed  Google Scholar 

  125. Khan, A., Tomita, Y. & Sykes, M. Thymic dependence of loss of tolerance in mixed allogeneic bone-marrow chimeras after depletion of donor antigen. Transplantation 62, 380–387 (1996).

    Article  CAS  PubMed  Google Scholar 

  126. Manilay, J., Pearson, D., Sergio, J., Swenson, K. & Sykes, M. Intrathymic deletion of alloreactive T cells in mixed bone-marrow chimeras prepared with a nonmyeloablative conditioning regime. Transplantation 66, 96–102 (1998).

    Article  CAS  PubMed  Google Scholar 

  127. Lombardi, G., Sidhu, S., Batchelor, R. & Lechler, R. Anergic T cells as suppressor cells in vitro. Science 264, 1587–1589 (1994).

    Article  CAS  PubMed  Google Scholar 

  128. Bishop, G., Sun, J., Sheil, A. & McCaughan, G. High dose/activation-associated tolerance: a mechanism for allograft tolerance. Transplantation 64, 1377–1382 (1997).

    Article  CAS  PubMed  Google Scholar 

  129. Lee, W. T., Yin, X. M. & Vitetta, E. S. Functional and ontogenetic analysis of murine CD45Rhi and CD45Rlo CD4+ T cells. J. Immunol. 144, 3288–3295 (1990).

    CAS  PubMed  Google Scholar 

  130. Powrie, F., Leach, M. W., Mauze, S., Caddle, L. B. & Coffman, R. L. Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in CB-17 scid mice. Int. Immunol. 5, 1461–1471 (1993).

    Article  CAS  PubMed  Google Scholar 

  131. Morrissey, P., Charrier, K., Braddy, S., Liggitt, D. & Watson, J. CD4+ T cells that express high levels of CD45RB induce wasting disease when transferred into congenic severe combined immunodeficient mice. Disease development is prevented by co-transfer of CD4+ T cells. J. Exp. Med. 178, 237–244 (1993).

    Article  CAS  PubMed  Google Scholar 

  132. Davies, J. et al. CD4+CD45RBlow-density cells from untreated mice prevent acute allograft rejection. J. Immunol. 163, 5353–5357 (1999).

    CAS  PubMed  Google Scholar 

  133. Linsley, P. S. et al. CTLA-4 is a second receptor for the B-cell activation antigen B7. J. Exp. Med. 174, 561–569 (1991).

    Article  CAS  PubMed  Google Scholar 

  134. Linsley, P. S. & Ledbetter, J. A. The role of the CD28 receptor during T-cell responses to antigen. Annu. Rev. Immunol. 11, 191–212 (1993).

    Article  CAS  PubMed  Google Scholar 

  135. Engen, J. & Allison, J. Cytotoxic T lymphocyte antigen-4 accumulation in the immunological synapse is regulated by TCR signal strength. Immunity 16, 23–35 (2002).

    Article  Google Scholar 

  136. Nocentini, G. et al. A new member of the tumour-necrosis factor/nerve growth factor receptor family inhibits T-cell receptor-induced apoptosis. Proc. Natl Acad. Sci. USA 94, 6216–6221 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Gavin, M., Clarke, S., Negrou, E., Gallegos, A. & Rudensky, A. Homeostasis and anergy of CD4+CD25+ suppressor cells in vivo. Nature Immunol. 3, 33–41 (2002).

    Article  CAS  Google Scholar 

  138. Lehmann, J. et al. Expression of the integrin αEβ7 identifies unique subsets of CD25+ as well as CD25 regulatory T cells. Proc. Natl Acad. Sci. USA 99, 13031–13036 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

K.J.W. holds a Royal Society Wolfson Research Merit Award. Work in K.J.W.'s laboratory is funded by The Wellcome Trust, the National Kidney Research Fund and the Roche Organ Transplant Research Foundation. The research of S.S. is supported by the Ministry of Education, Science, Sports and Culture, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn J. Wood.

Related links

Related links

DATABASES

LocusLink

CCL1

CCL4

CCL17

CCL22

CCR4

CCR5

CCR8

CD4

CD8

CD25

CD28

CD45

CD103

CD122

CTLA4

FOXP3

GITR

IFN-γ

IL-2

IL-10

TGF-β

OMIM

IPEX

FURTHER INFORMATION

Immune Tolerance Network

Kathryn Wood's lab

Shimon Sakaguchi's lab

Glossary

OPERATIONAL TOLERANCE

An antigen-specific unresponsiveness that is sustained in the absence of chronic immunosuppression.

NATURAL KILLER T CELLS

(NKT cells). These are distinct from conventional T cells and express natural killer-cell receptors in addition to an invariant T-cell receptor, Vα14–Jα18, which enables them to recognize glycolipids presented by CD1.

GRAFT-VERSUS-HOST DISEASE

(GVHD). An immune response mounted against the recipient of an allograft by donor T cells derived from the graft. Typically, it is seen in the context of allogeneic bone-marrow transplantation.

ORAL TOLERANCE

Oral administration of antigen or peptide with the aim of inducing specific immunological unresponsiveness.

CO-STIMULATION BLOCKADE

Inhibition of the additional or second signals that are required for the activation of T and B cells. The two pathways that have attracted interest in the setting of transplantation are the CD28 and CD154 pathways. CD28 is a key co-stimulatory signal for T cells that can be blocked by the fusion protein CTLA4–immunoglobulin, whereas CD154–CD40 interactions have a role in both T- and B-cell activation and can be inhibited by blocking monoclonal antibodies specific for CD154.

1α, 25-DIHYDROXYVITAMIN D3

The active form of the naturally occurring molecule vitamin D3, which has immunosuppressive properties owing to its ability to modify the function of dendritic cells.

MYCOPHENOLATE MOFETIL

An anti-proliferative, immunosuppressive agent.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wood, K., Sakaguchi, S. Regulatory T cells in transplantation tolerance. Nat Rev Immunol 3, 199–210 (2003). https://doi.org/10.1038/nri1027

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1027

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing