Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A long-awaited merger of the pathways mediating host defence and programmed cell death

This article has been updated

Key Points

  • Caspase 1 and caspase 11 control both the release of inflammatory cytokines and the execution of pyroptosis upon inflammasome activation. Caspase 1 can be activated independently of caspase 11 in response to canonical NLRP3, NLRC4 and AIM2 inflammasome triggers. Caspase 1 activation is dependent on caspase 11 in response to 'non-canonical' triggers, such as Gram-negative bacteria and the intracellular delivery of LPS into cells through various experimental means.

  • Infection with clinically significant Gram-negative bacteria triggers caspase 11 activation via an undefined non-canonical inflammasome pathway that is independent of NLRP3, NLRC4 and AIM2. Caspase 11, as well as human caspase 4 and caspase 5, bind to LPS with high specificity and affinity, and trigger this pathway. LPS-induced lethality in mice, which has long been ascribed to caspase 1, is rather mediated by caspase 11.

  • Earlier studies revealed a suppressive function for the apoptosis 'initiator' caspase 8 in inflammation in vivo. New studies show that caspase 8 is integrated into inflammatory signalling pathways downstream of RIG-I, dectin 1 and TLR4, in which caspase 8 either facilitates or attenuates inflammation. Future studies will undoubtedly elucidate the full impact of caspase 8 activity on inflammation.

  • RHIM domain interactions between RIPK3 and TRIF downstream of TLR3 and TLR4, or RIPK3 and DAI, trigger necrotic cell death that is suppressed by the activity of caspase 8 and independent of the kinase activity of RIPK1.

  • RIPK1 deubiquitylation triggers spontaneous assembly of a 2 MDa ripoptosome, with a RIPK1−FADD−caspase 8 module at its core. The ripoptosome is recruited to TLR3 via RHIM domain interactions between TRIF and RIPK1. The presence of long and short isoforms of FLICE-like inhibitory protein (FLIPL and FLIPS, respectively) within this complex regulates caspase 8 activity and dictates either cellular survival and signalling, or cell death. The decision whether cells die by apoptosis or necroptosis is determined by a balance between the activities of caspase 8 and the master orchestrator of necroptosis, RIPK3.

  • FADD and caspase 8 have crucial effects on canonical and non-canonical inflammasome pathways, the activation of which is closely tied to both inflammation and cell death. The details of how these apoptosis-associated molecules are integrated into inflammasome pathways and their impact on inflammasome function continue to unfold.

Abstract

Historically, cell death and inflammation have been closely linked, but the necessary divergence of the fields in the past few decades has enriched our molecular understanding of the signalling pathways that mediate various programmes of cell death and multiple types of inflammatory responses. The fields have now come together again demonstrating a surprising level of integration. Intimate interconnections at multiple levels are revealed between the cell death and inflammatory signal transduction pathways that are mobilized in response to the engagement of pattern recognition receptors during microbial infection. Molecules such as receptor-interacting protein kinase 1 (RIPK1), RIPK3, FAS-associated death domain protein (FADD), FLICE-like inhibitory protein (FLIP) and caspase 8 — which are associated with different forms of cell death — are incorporated into compatible and exceedingly dynamic Toll-like receptor, NOD-like receptor and RIG-I-like receptor signalling modules. These signalling modules have a high capacity to switch from inflammation to cell death, or a programmed execution of both, all in an orchestrated battle for host defence and survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two parallel pathways of caspase 1 and caspase 11 activation in response to Gram-negative bacteria.
Figure 2: The ripoptosome links TLR3 and TRIF to cell death.
Figure 3: A TRADDosome-like complex on mitochondrial membranes links RIG-I and MAVS to antiviral inflammation.
Figure 4: A centre stage for caspase 8 in canonical and non-canonical pathways of inflammasome activation.

Similar content being viewed by others

Change history

  • 27 August 2014

    Previously, the author biography incorrectly stated that the author received the "MSSM Faculty Council Award for Academic Excellence in 2011". This has now been corrected to "ISMMS Faculty Council Award for Academic Excellence in 2011".

References

  1. Wallach, D., Kang, T. B. & Kovalenko, A. Concepts of tissue injury and cell death in inflammation: a historical perspective. Nature Rev. Immunol. 14, 51–59 (2014).

    Article  CAS  Google Scholar 

  2. Janeway, C. A. Jr. Pillars article: approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol. 1989. 54: 1–13. J. Immunol. 191, 4475–4487 (2013).

    CAS  PubMed  Google Scholar 

  3. Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12, 991–1045 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Medzhitov, R. Approaching the asymptote: 20 years later. Immunity 30, 766–775 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Martinon, F., Mayor, A. & Tschopp, J. The inflammasomes: guardians of the body. Annu. Rev. Immunol. 27, 229–265 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Zychlinsky, A., Prevost, M. C. & Sansonetti, P. J. Shigella flexneri induces apoptosis in infected macrophages. Nature 358, 167–169 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Li, P. et al. Mice deficient in IL-1β-converting enzyme are defective in production of mature IL-1β and resistant to endotoxic shock. Cell 80, 401–411 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Kuida, K. et al. Altered cytokine export and apoptosis in mice deficient in interleukin-1β converting enzyme. Science 267, 2000–2003 (1995). References 7 and 8 report gene targeting of Casp1 in mice using 129 strain-derived ES cells. Because of the recently identified Casp11 passenger mutation in 129 mice (see reference 11), these mice should now be referred to as Casp1−/−Casp11129mt/129mt.

    Article  CAS  PubMed  Google Scholar 

  9. Bergsbaken, T., Fink, S. L. & Cookson, B. T. Pyroptosis: host cell death and inflammation. Nature Rev. Microbiol. 7, 99–109 (2009).

    Article  CAS  Google Scholar 

  10. Broz, P., von Moltke, J., Jones, J. W., Vance, R. E. & Monack, D. M. Differential requirement for caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing. Cell Host Microbe 8, 471–483 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kayagaki, N. et al. Non-canonical inflammasome activation targets caspase-11. Nature 479, 117–121 (2011). This study shows that the Casp11 locus in 129 mice is mutated, which attenutates caspase 11 expression. The generation of C57BL/6 Casp11 -targeted mice reveals the caspase 11 is engaged by a non-canonical inflammasome. Rescue of caspase 11 expression in Casp1−/−Casp11129mt/129mt mice confirms the essential role of caspase 1 in IL-1 β production and shows that caspase 11, rather than caspase 1, is required for non-canonical inflammasome-triggered macrophage cell death and LPS-induced endotoxaemia.

    Article  CAS  PubMed  Google Scholar 

  12. Faucheu, C. et al. A novel human protease similar to the interleukin-1 beta converting enzyme induces apoptosis in transfected cells. EMBO J. 14, 1914–1922 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kamens, J. et al. Identification and characterization of ICH-2, a novel member of the interleukin-1β-converting enzyme family of cysteine proteases. J. Biol. Chem. 270, 15250–15256 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Munday, N. A. et al. Molecular cloning and pro-apoptotic activity of ICErelII and ICErelIII, members of the ICE/CED-3 family of cysteine proteases. J. Biol. Chem. 270, 15870–15876 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Wang, S. et al. Identification and characterization of Ich-3, a member of the interleukin-1β converting enzyme (ICE)/Ced-3 family and an upstream regulator of ICE. J. Biol. Chem. 271, 20580–20587 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Wang, S. et al. Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell 92, 501–509 (1998). This paper originally reported the targeted disruption of Casp11 using 129 ES cells and showed that, similar to the 129 strain-derived supposed ' Casp1−/−' mice (references 7 and 8), 129 strain-derived Casp11−/− mice are resistant to LPS-induced endotoxaemia.

    Article  CAS  PubMed  Google Scholar 

  17. Kang, S. J. et al. Dual role of caspase-11 in mediating activation of caspase-1 and caspase-3 under pathological conditions. J. Cell Biol. 149, 613–622 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Simpson, E. M. et al. Genetic variation among 129 substrains and its importance for targeted mutagenesis in mice. Nature Genet. 16, 19–27 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Mariathasan, S. et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430, 213–218 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Broz, P. et al. Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella. J. Exp. Med. 207, 1745–1755 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Broz, P. et al. Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1. Nature 490, 288–291 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gurung, P. et al. Toll or interleukin-1 receptor (TIR) domain-containing adaptor inducing interferon-β (TRIF)-mediated caspase-11 protease production integrates Toll-like receptor 4 (TLR4) protein- and Nlrp3 inflammasome-mediated host defense against enteropathogens. J. Biol. Chem. 287, 34474–34483 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rathinam, V. A. et al. TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria. Cell 150, 606–619 (2012). References 22 and 23 follow up on the observations in reference 24 and demonstrate the TLR4–TRIF–IFNAR-dependent induction and activation of caspase 11. Caspase 11 subsequently synergizes with the assembled NLRP3 inflammasome to cleave caspase 1 and to mediate caspase 1-independent cell death.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sander, L. E. et al. Detection of prokaryotic mRNA signifies microbial viability and promotes immunity. Nature 474, 385–389 (2011). This paper reveals TRIF-dependent NLRP3 inflammasome activation upon phagocytosis of live but not dead Gram-negative bacteria in the absence of virulence factors, and in a manner dependent on prokaryotic mRNA, which is a viability-associated pathogen-associated molecular pattern. The role of TRIF is shown to be independent of Nlrp3 transcription or inflammasome 'priming'.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Case, C. L. et al. Caspase-11 stimulates rapid flagellin-independent pyroptosis in response to Legionella pneumophila. Proc. Natl Acad. Sci. USA 110, 1851–1856 (2013).

    Article  PubMed  Google Scholar 

  27. Casson, C. N. et al. Caspase-11 activation in response to bacterial secretion systems that access the host cytosol. PLoS Pathog. 9, e1003400 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Aachoui, Y. et al. Caspase-11 protects against bacteria that escape the vacuole. Science 339, 975–978 (2013). This study highlights the non-canonical caspase 11 inflammasome as an important line of defence against cytosolic bacteria that acts independently of NLRP3, NLRC4 and ASC, which constitute canonical inflammasomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nakamura, N. et al. Endosomes are specialized platforms for bacterial sensing and NOD2 signalling. Nature 509, 240–244 (2014). Two endolysosomal transporters, SLC15A3 and SLC15A4, are shown to mediate the generation of endosomal membrane tubules and the endosomal egress of bacterial components to activate the cytosolic PRR NOD2.

    Article  CAS  PubMed  Google Scholar 

  30. Meunier, E. et al. Caspase-11 activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases. Nature 509, 366–370 (2014). This study shows that guanylate-binding proteins mediate the lysis of bacteria-containing phagosomes and subsequent activation of the non-canonical caspase 11 inflammasome. This same process also recruits galectin 8 to contain bacteria in autophagosomes and limit caspase 11 activation.

    Article  CAS  PubMed  Google Scholar 

  31. Hagar, J. A., Powell, D. A., Aachoui, Y., Ernst, R. K. & Miao, E. A. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science 341, 1250–1253 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kayagaki, N. et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341, 1246–1249 (2013). References 31 and 32 reveal the existence of a cytoplasmic LPS sensor. Although unidentified in these papers, the sensor is distinct from the prototypical LPS sensor, TLR4.

    Article  CAS  PubMed  Google Scholar 

  33. Marshall, J. C. Why have clinical trials in sepsis failed? Trends Mol. Med. 20, 195–203 (2014).

    Article  PubMed  Google Scholar 

  34. Seok, J. et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl Acad. Sci. USA 110, 3507–3512 (2013).

    Article  PubMed  Google Scholar 

  35. Lin, X. Y., Choi, M. S. & Porter, A. G. Expression analysis of the human caspase-1 subfamily reveals specific regulation of the CASP5 gene by lipopolysaccharide and interferon-γ. J. Biol. Chem. 275, 39920–39926 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Kajiwara, Y. et al. A critical role for human caspase-4 in endotoxin sensitivity. J. Immunol. 193, 335–343 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wallach, D., Kang, T. B., Yang, S. H. & Kovalenko, A. The in vivo significance of necroptosis: Lessons from exploration of caspase-8 function. Cytokine Growth Factor Rev. 25, 157–165 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Oberst, A. et al. Catalytic activity of the caspase-8–FLIPL complex inhibits RIPK3-dependent necrosis. Nature 471, 363–367 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gunther, C. et al. Caspase-8 regulates TNF-α-induced epithelial necroptosis and terminal ileitis. Nature 477, 335–339 (2011). This study shows that the specific deletion of caspase 8 in the intestinal epithelium of mice leads to the spontaneous development of colitis, which occurs as a result of increased intestinal epithelial cell death that is triggered by TNF-mediated, RIPK3-dependent necroptosis. Increased RIPK3 expression and necroptosis is also found in the terminal ileum of patients with Crohn's disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ben Moshe, T. et al. Role of caspase-8 in hepatocyte response to infection and injury in mice. Hepatology 45, 1014–1024 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Ben Moshe, T. et al. Cell-autonomous and non-cell-autonomous functions of caspase-8. Cytokine Growth Factor Rev. 19, 209–217 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Kovalenko, A. et al. Caspase-8 deficiency in epidermal keratinocytes triggers an inflammatory skin disease. J. Exp. Med. 206, 2161–2177 (2009). This study shows that the specific deletion of the gene encoding caspase 8 in mouse keratinocytes, or the expression of an enzymatically inactive caspase 8 that is unable to mediate apoptosis, results in chronic skin inflammation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kaiser, W. J. et al. RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature 471, 368–372 (2011). References 38 and 43 show that RIPK3 deficiency rescues the embryonic lethality that occurs in caspase 8-deficient mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chan, F. K. et al. A role for tumor necrosis factor receptor-2 and receptor-interacting protein in programmed necrosis and antiviral responses. J. Biol. Chem. 278, 51613–51621 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Feng, S. et al. Cleavage of RIP3 inactivates its caspase-independent apoptosis pathway by removal of kinase domain. Cell Signal 19, 2056–2067 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Lin, Y., Devin, A., Rodriguez, Y. & Liu, Z. G. Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev. 13, 2514–2526 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cho, Y. S. et al. Phosphorylation-driven assembly of the RIP1–RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112–1123 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. He, S. et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-α. Cell 137, 1100–1111 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Zhang, D. W. et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325, 332–336 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Meylan, E. et al. RIP1 is an essential mediator of Toll-like receptor 3-induced NF-κ B activation. Nature Immunol. 5, 503–507 (2004). References 47–50 identify RIPK3 as the central orchestrator of necroptosis.

    Article  CAS  Google Scholar 

  51. Kaiser, W. J. & Offermann, M. K. Apoptosis induced by the toll-like receptor adaptor TRIF is dependent on its receptor interacting protein homotypic interaction motif. J. Immunol. 174, 4942–4952 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Han, K. J. et al. Mechanisms of the TRIF-induced interferon-stimulated response element and NF-κB activation and apoptosis pathways. J. Biol. Chem. 279, 15652–15661 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Sato, S. et al. Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-κ B and IFN-regulatory factor-3, in the Toll-like receptor signaling. J. Immunol. 171, 4304–4310 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Cusson-Hermance, N., Khurana, S., Lee, T. H., Fitzgerald, K. A. & Kelliher, M. A. Rip1 mediates the Trif-dependent toll-like receptor 3- and 4-induced NF-κB activation but does not contribute to interferon regulatory factor 3 activation. J. Biol. Chem. 280, 36560–36566 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Ermolaeva, M. A. et al. Function of TRADD in tumor necrosis factor receptor 1 signaling and in TRIF-dependent inflammatory responses. Nature Immunol. 9, 1037–1046 (2008).

    Article  CAS  Google Scholar 

  56. He, S., Liang, Y., Shao, F. & Wang, X. Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway. Proc. Natl Acad. Sci. USA 108, 20054–20059 (2011).

    Article  PubMed  Google Scholar 

  57. Kaiser, W. J. et al. Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J. Biol. Chem. 288, 31268–31279 (2013). References 56 and 57 show that TRIF mediates TLR3- and TLR4-induced necrosis in a RIPK3-dependent manner. In this paper, necrosis is additionally shown to be independent of RIPK1 expression or kinase activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kalai, M. et al. Tipping the balance between necrosis and apoptosis in human and murine cells treated with interferon and dsRNA. Cell Death Differ. 9, 981–994 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Ma, Y., Temkin, V., Liu, H. & Pope, R. M. NF-κB protects macrophages from lipopolysaccharide-induced cell death: the role of caspase 8 and receptor-interacting protein. J. Biol. Chem. 280, 41827–41834 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Feoktistova, M. et al. cIAPs block Ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol. Cell 43, 449–463 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tenev, T. et al. The Ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol. Cell 43, 432–448 (2011). References 60 and 61 show that CIAP inhibition leads to the spontaneous assembly of a RIPK1-centred ripoptosome that mediates cell death. In reference 59, the ripoptosome is shown to contain TRIF, which recruits the complex to TLR3 upon stimulation with the TLR3 ligand poly(I:C).

    Article  CAS  PubMed  Google Scholar 

  62. Bertrand, M. J. et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol. Cell 30, 689–700 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Dillon, C. P. et al. RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3. Cell 157, 1189–1202 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kaiser, W. J. et al. RIP1 suppresses innate immune necrotic as well as apoptotic cell death during mammalian parturition. Proc. Natl Acad. Sci. USA 111, 7753–7758 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Rickard, J. A. et al. RIPK1 regulates RIPK3-MLKL-driven systemic inflammation and emergency hematopoiesis. Cell 157, 1175–1188 (2014). References 63–65 reveal a novel suppressive function of RIPK1 in postnatally protecting mice against inflammation and cell death.

    Article  CAS  PubMed  Google Scholar 

  66. Newton, K. et al. Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis. Science 343, 1357–1360 (2014). This study uses mice expressing catalytically inactive RIPK3 to reveal the necessity of RIPK3 kinase activity for necroptosis and associated pathology, and also for protection against FADD- or caspase 8-mediated apoptosis and embryonic lethality. Unlike RIPK1-deficient mice, mice with a catalytically inactive RIPK1 are viable.

    Article  CAS  PubMed  Google Scholar 

  67. Berger, S. B. et al. Cutting Edge: RIP1 kinase activity is dispensable for normal development but is a key regulator of inflammation in SHARPIN-deficient mice. J. Immunol. 192, 5476–5480 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Polykratis, A. et al. Cutting Edge: RIPK1 kinase inactive mice are viable and protected from TNF-induced necroptosis in vivo. J. Immunol. http://dx.doi.org/10.4049/jimmunol.1400590 (2014). References 66–68 show that kinase activity is dispensable for the postnatal repressive functions of RIPK1.

  69. Philip, N. H. & Brodsky, I. E. Cell death programs in Yersinia immunity and pathogenesis. Front. Cell. Infect. Microbiol. 2, 149 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Philip, N. H. et al. Caspase-8 mediates caspase-1 processing and innate immune defense in response to bacterial blockade of NF-κB and MAPK signaling. Proc. Natl Acad. Sci. USA http://dx.doi.org/10.1073/pnas.1403252111 (2014).

  71. Weng, D. et al. Caspase-8 and RIP kinases regulate bacteria-induced innate immune responses and cell death. Proc. Natl Acad. Sci. USA http://dx.doi.org/10.1073/pnas.1403477111 (2014). References 70 and 71 show that TLR4–TRIF-initiated, RIPK1–FADD–caspase 8-mediated cell death and caspase 1 activation are crucial host responses against the activity of the virulence factor YopJ, which is expressed by Yersinia species.

  72. Linkermann, A. & Green, D. R. Necroptosis. N. Engl. J. Med. 370, 455–465 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kariko, K., Ni, H., Capodici, J., Lamphier, M. & Weissman, D. mRNA is an endogenous ligand for Toll-like receptor 3. J. Biol. Chem. 279, 12542–12550 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Cavassani, K. A. et al. TLR3 is an endogenous sensor of tissue necrosis during acute inflammatory events. J. Exp. Med. 205, 2609–2621 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Goubau, D., Deddouche, S. & Reis e Sousa, C. Cytosolic sensing of viruses. Immunity 38, 855–869 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Lei, Y. et al. MAVS-mediated apoptosis and its inhibition by viral proteins. PloS ONE 4, e5466 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yu, C. Y., Chiang, R. L., Chang, T. H., Liao, C. L. & Lin, Y. L. The interferon stimulator mitochondrial antiviral signaling protein facilitates cell death by disrupting the mitochondrial membrane potential and by activating caspases. J. Virol. 84, 2421–2431 (2010). References 76 and 77 show that MAVS, which is better known for its roles in initiating an antiviral type I IFN response, can also initiate antiviral apoptosis.

    Article  CAS  PubMed  Google Scholar 

  78. Brubaker, S. W., Gauthier, A. E., Mills, E. W., Ingolia, N. T. & Kagan, J. C. A bicistronic MAVS transcript highlights a class of truncated variants in antiviral immunity. Cell 156, 800–811 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Balachandran, S., Thomas, E. & Barber, G. N. A FADD-dependent innate immune mechanism in mammalian cells. Nature 432, 401–405 (2004). This paper provides the first evidence that FADD is important for protective antiviral cellular responses, including the production of type I IFNs.

    Article  CAS  PubMed  Google Scholar 

  80. Kawai, T. et al. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nature Immunol. 6, 981–988 (2005).

    Article  CAS  Google Scholar 

  81. Michallet, M. C. et al. TRADD protein is an essential component of the RIG-like helicase antiviral pathway. Immunity 28, 651–661 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Takahashi, K. et al. Roles of caspase-8 and caspase-10 in innate immune responses to double-stranded RNA. J. Immunol. 176, 4520–4524 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Rajput, A. et al. RIG-I RNA helicase activation of IRF3 transcription factor is negatively regulated by caspase-8-mediated cleavage of the RIP1 protein. Immunity 34, 340–351 (2011). This study shows that after viral infection, caspase 8 is recruited to the mitochondrial RIG-I complex where it mediates RIPK1 cleavage and the generation of an inhibitory RIPK1 fragment that attenuates RIG-I signalling.

    Article  CAS  PubMed  Google Scholar 

  84. Sears, N., Sen, G. C., Stark, G. R. & Chattopadhyay, S. Caspase-8-mediated cleavage inhibits IRF-3 protein by facilitating its proteasome-mediated degradation. J. Biol. Chem. 286, 33037–33044 (2011). This paper shows that caspase 8 is activated by RIG-I signalling and mediates IRF3 cleavage thus inhibiting the expression of select antiviral genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Budd, R. C., Yeh, W. C. & Tschopp, J. cFLIP regulation of lymphocyte activation and development. Nature Rev. Immunol. 6, 196–204 (2006).

    Article  CAS  Google Scholar 

  86. Peter, M. E. The flip side of FLIP. Biochem. J. 382, e1–e3 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cai, X., Chiu, Y. H. & Chen, Z. J. The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. Mol. Cell 54, 289–296 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Paludan, S. R. & Bowie, A. G. Immune sensing of DNA. Immunity 38, 870–880 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Unterholzner, L. The interferon response to intracellular DNA: why so many receptors? Immunobiology 218, 1312–1321 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Fernandes-Alnemri, T. et al. The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nature Immunol. 11, 385–393 (2010).

    Article  CAS  Google Scholar 

  91. Jones, J. W. et al. Absent in melanoma 2 is required for innate immune recognition of Francisella tularensis. Proc. Natl Acad. Sci. USA 107, 9771–9776 (2010).

    Article  PubMed  Google Scholar 

  92. Pierini, R. et al. AIM2/ASC triggers caspase-8-dependent apoptosis in Francisella-infected caspase-1-deficient macrophages. Cell Death Differ. 19, 1709–1721 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sagulenko, V. et al. AIM2 and NLRP3 inflammasomes activate both apoptotic and pyroptotic death pathways via ASC. Cell Death Differ. 20, 1149–1160 (2013). References 92 and 93 report that AIM2- and NLRP3-dependent apoptosis occurs in the absence of both caspase 1 and caspase 11, and correlates with caspase 8 activation upon binding to ASC within ASC–inflammasome 'specks'.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Takaoka, A. et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448, 501–505 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Kaiser, W. J., Upton, J. W. & Mocarski, E. S. Receptor-interacting protein homotypic interaction motif-dependent control of NF-κB activation via the DNA-dependent activator of IFN regulatory factors. J. Immunol. 181, 6427–6434 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Rebsamen, M. et al. DAI/ZBP1 recruits RIP1 and RIP3 through RIP homotypic interaction motifs to activate NF-κB. EMBO Rep. 10, 916–922 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Upton, J. W., Kaiser, W. J. & Mocarski, E. S. Virus inhibition of RIP3-dependent necrosis. Cell Host Microbe 7, 302–313 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Upton, J. W., Kaiser, W. J. & Mocarski, E. S. DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe 11, 290–297 (2012). This paper shows that DAI can partner with RIPK3 through RHIM domain interactions to mediate virus-induced necroptosis independently of TRIF or RIPK1 kinase activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bruey, J. M. et al. Bcl-2 and Bcl-XL regulate proinflammatory caspase-1 activation by interaction with NALP1. Cell 129, 45–56 (2007). This paper identifies an interaction of NLRP1 with anti-apoptotic BCL-2 and BCL-X L that is lost upon NLRP1 ligand stimulation. BCL-2 and BCL-X L are shown to modulate muramyl dipeptide-induced IL-1 β secretion, and these findings are confirmed in Bcl2−/− and Bcl2 -transgenic mice.

    Article  CAS  PubMed  Google Scholar 

  100. Shimada, K. et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 36, 401–414 (2012). Thi study shows that BCL-2 negatively regulates the NLRP3 inflammasome by preserving mitochondrial function and thereby indirectly preventing the release of oxidized mitochondrial DNA during apoptosis, which is shown to bind to and activate NLRP3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Vince, J. E. et al. Inhibitor of apoptosis proteins limit RIP3 kinase-dependent interleukin-1 activation. Immunity 36, 215–227 (2012). This paper shows that the cell death-inducing ripoptosome and RIPK3 can lead to NLRP3 inflammasome activation and IL-1 β production when IAPs are inhibited by SMAC mimetics.

    Article  CAS  PubMed  Google Scholar 

  102. Kang, T. B., Yang, S. H., Toth, B., Kovalenko, A. & Wallach, D. Caspase-8 blocks kinase RIPK3-mediated activation of the NLRP3 inflammasome. Immunity 38, 27–40 (2013). This paper uses mice in which caspase 8 is specifically deleted in DCs to demonstrate a role for RIPK1 and RIPK3, as well as MLKL and PGAM5, in LPS-induced activation of the NLRP3 inflammasome.

    Article  CAS  PubMed  Google Scholar 

  103. Sun, L. et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148, 213–227 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Wang, Z., Jiang, H., Chen, S., Du, F. & Wang, X. The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell 148, 228–243 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Zhao, J. et al. Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc. Natl Acad. Sci. USA 109, 5322–5327 (2012). References 103–105 identify MLKL and PGAM5 as downstream effectors of the RIPK1–RIPK3 necrosome.

    Article  PubMed  Google Scholar 

  106. Murphy, J. M. et al. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity 39, 443–453 (2013). This study uses MLKL-deficient mice and crystal structure-guided mutations in MLKL to confirm its crucial role in RIPK3-mediated necroptosis. PGAM5 is found to be dispensable, in line with the findings of references 107 and 108.

    Article  CAS  PubMed  Google Scholar 

  107. Remijsen, Q. et al. Depletion of RIPK3 or MLKL blocks TNF-driven necroptosis and switches towards a delayed RIPK1 kinase-dependent apoptosis. Cell Death Dis. 5, e1004 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tait, S. W. et al. Widespread mitochondrial depletion via mitophagy does not compromise necroptosis. Cell Rep. 5, 878–885 (2013). By removing mitochondria via mitophagy, this study shows that TNF-induced necroptosis proceeds normally, despite the loss of mitochondrial PGAM5 expression and necroptosis-associated ROS production.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Chen, X. et al. Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death. Cell Res. 24, 105–121 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Dondelinger, Y. et al. RIPK3 contributes to TNFR1-mediated RIPK1 kinase-dependent apoptosis in conditions of cIAP1/2 depletion or TAK1 kinase inhibition. Cell Death Differ. 20, 1381–1392 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wang, H. et al. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol. Cell 54, 133–146 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Cai, Z. et al. Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nature Cell Biol. 16, 55–65 (2014). References 109–112 show that necroptosis follows the plasma membrane translocation of RIPK3-phosphorylated MLKL and that oligomerized MLKL disrupts plasma membrane integrity.

    Article  CAS  PubMed  Google Scholar 

  113. Newton, K., Sun, X. & Dixit, V. M. Kinase RIP3 is dispensable for normal NF-κBs, signaling by the B-cell and T-cell receptors, tumor necrosis factor receptor 1, and Toll-like receptors 2 and 4. Mol. Cell. Biol. 24, 1464–1469 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Bauernfeind, F. G. et al. Cutting edge: NF-κB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J. Immunol. 183, 787–791 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Shenderov, K. et al. Cutting Edge: Endoplasmic reticulum stress licenses macrophages to produce mature IL-1β in response to TLR4 stimulation through a caspase-8- and TRIF-dependent pathway. J. Immunol. 192, 2029–2033 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Bossaller, L. et al. Cutting edge: FAS (CD95) mediates noncanonical IL-1β and IL-18 maturation via caspase-8 in an RIP3-independent manner. J. Immunol. 189, 5508–5512 (2012). Thus study shows that caspase 8 activation upon FAS ligation can mediate pro-IL-1 β expression and processing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Gringhuis, S. I. et al. Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1β via a noncanonical caspase-8 inflammasome. Nature Immunol. 13, 246–254 (2012). This paper shows that caspase 8 associated with a CARD9–BCL-10–MALT1 scaffold (assembled following dectin 1–SYK signalling) can mediate pro-IL-1 β processing.

    Article  CAS  Google Scholar 

  118. Maelfait, J. et al. Stimulation of Toll-like receptor 3 and 4 induces interleukin-1β maturation by caspase-8. J. Exp. Med. 205, 1967–1973 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Gurung, P. et al. FADD and caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes. J. Immunol. 192, 1835–1846 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Man, S. M. et al. Salmonella infection induces recruitment of caspase-8 to the inflammasome to modulate IL-1β production. J. Immunol. 191, 5239–5246 (2013). References 115, 118, 119 and 120 show that FADD and caspase 8 act downstream of TLR4 to mediate pro-IL-1 β expression and processing in response to canonical and non-canonical inflammasome triggers.

    Article  CAS  PubMed  Google Scholar 

  121. Menu, P. et al. ER stress activates the NLRP3 inflammasome via an UPR-independent pathway. Cell Death Dis. 3, e261 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Andersson, U. & Tracey, K. J. HMGB1 is a therapeutic target for sterile inflammation and infection. Annu. Rev. Immunol. 29, 139–162 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wu, Y. H. et al. Participation of c-FLIP in NLRP3 and AIM2 inflammasome activation. Cell Death Differ. 21, 451–461 (2014).

    Article  CAS  PubMed  Google Scholar 

  124. Oberst, A. & Green, D. R. It cuts both ways: reconciling the dual roles of caspase 8 in cell death and survival. Nature Rev. Mol. Cell Biol. 12, 757–763 (2011).

    Article  CAS  Google Scholar 

  125. Clarke, P. G. & Clarke, S. Nineteenth century research on cell death. Exp. Oncol. 34, 139–145 (2012).

    CAS  PubMed  Google Scholar 

  126. Galluzzi, L. et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 19, 107–120 (2012).

    Article  CAS  PubMed  Google Scholar 

  127. Tait, S. W. & Green, D. R. Mitochondria and cell death: outer membrane permeabilization and beyond. Nature Rev. Mol. Cell Biol. 11, 621–632 (2010).

    Article  CAS  Google Scholar 

  128. Tait, S. W. & Green, D. R. Mitochondrial regulation of cell death. Cold Spring Harb. Perspect. Biol. 5, a00870 (2013).

    Article  CAS  Google Scholar 

  129. Brennan, M. A. & Cookson, B. T. Salmonella induces macrophage death by caspase-1-dependent necrosis. Mol. Microbiol. 38, 31–40 (2000).

    Article  CAS  PubMed  Google Scholar 

  130. Aachoui, Y., Sagulenko, V., Miao, E. A. & Stacey, K. J. Inflammasome-mediated pyroptotic and apoptotic cell death, and defense against infection. Curr. Opin. Microbiol. 16, 319–326 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Vandenabeele, P., Galluzzi, L., Vanden Berghe, T. & Kroemer, G. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nature Rev. Mol. Cell Biol. 11, 700–714 (2010).

    Article  CAS  Google Scholar 

  132. Zhou, W. & Yuan, J. SnapShot: Necroptosis. Cell 158, 464–464.e1 (2014).

    Article  CAS  PubMed  Google Scholar 

  133. Li, J. et al. The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell 150, 339–350 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Green, D. R., Ferguson, T., Zitvogel, L. & Kroemer, G. Immunogenic and tolerogenic cell death. Nature Rev. Immunol. 9, 353–363 (2009).

    Article  CAS  Google Scholar 

  135. Kaczmarek, A., Vandenabeele, P. & Krysko, D. V. Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity 38, 209–223 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. Poon, I. K., Lucas, C. D., Rossi, A. G. & Ravichandran, K. S. Apoptotic cell clearance: basic biology and therapeutic potential. Nature Rev. Immunol. 14, 166–180 (2014).

    Article  CAS  Google Scholar 

  137. Brereton, C. F. & Blander, J. M. The unexpected link between infection-induced apoptosis and a TH17 immune response. J. Leukoc. Biol. 89, 565–576 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Campisi, L., Cummings, R. J. & Blander, J. M. Death-defining immune responses after apoptosis. Am. J. Transplant 14, 1488–1498 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Torchinsky, M. B., Garaude, J., Martin, A. P. & Blander, J. M. Innate immune recognition of infected apoptotic cells directs TH17 cell differentiation. Nature 458, 78–82 (2009).

    Article  CAS  PubMed  Google Scholar 

  140. Muzio, M. et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 85, 817–827 (1996).

    Article  CAS  PubMed  Google Scholar 

  141. Salvesen, G. S. & Riedl, S. J. Caspase mechanisms. Adv. Exp. Med. Biol. 615, 13–23 (2008).

    Article  CAS  PubMed  Google Scholar 

  142. Sakamaki, K. et al. Ex vivo whole-embryo culture of caspase-8-deficient embryos normalize their aberrant phenotypes in the developing neural tube and heart. Cell Death Differ. 9, 1196–1206 (2002).

    Article  CAS  PubMed  Google Scholar 

  143. Varfolomeev, E. E. et al. Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 9, 267–276 (1998).

    Article  CAS  PubMed  Google Scholar 

  144. Yeh, W. C. et al. FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science 279, 1954–1958 (1998).

    Article  CAS  PubMed  Google Scholar 

  145. Zhang, J., Cado, D., Chen, A., Kabra, N. H. & Winoto, A. Fas-mediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/Mort1. Nature 392, 296–300 (1998).

    Article  CAS  PubMed  Google Scholar 

  146. Yeh, W. C. et al. Requirement for Casper (c-FLIP) in regulation of death receptor-induced apoptosis and embryonic development. Immunity 12, 633–642 (2000).

    Article  CAS  PubMed  Google Scholar 

  147. Dillon, C. P. et al. Survival function of the FADD-CASPASE-8-cFLIPL complex. Cell Rep. 1, 401–407 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kang, T. B. et al. Mutation of a self-processing site in caspase-8 compromises its apoptotic but not its nonapoptotic functions in bacterial artificial chromosome-transgenic mice. J. Immunol. 181, 2522–2532 (2008).

    Article  CAS  PubMed  Google Scholar 

  149. Zhang, H. et al. Functional complementation between FADD and RIP1 in embryos and lymphocytes. Nature 471, 373–376 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kelliher, M. A. et al. The death domain kinase RIP mediates the TNF-induced NF-κB signal. Immunity 8, 297–303 (1998).

    Article  CAS  PubMed  Google Scholar 

  151. Orozco, S. et al. RIPK1 both positively and negatively regulates RIPK3 oligomerization and necroptosis. Cell Death Differ. http://dx.doi.org/10.1038/cdd.2014.76 (2014).

  152. Micheau, O. & Tschopp, J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114, 181–190 (2003).

    Article  CAS  PubMed  Google Scholar 

  153. Vandenabeele, P., Declercq, W., Van Herreweghe, F. & Vanden Berghe, T. The role of the kinases RIP1 and RIP3 in TNF-induced necrosis. Sci. Signal. 3, re4 (2010).

    Article  CAS  PubMed  Google Scholar 

  154. Gerlach, B. et al. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471, 591–596 (2011).

    Article  CAS  PubMed  Google Scholar 

  155. O'Donnell, M. A., Hase, H., Legarda, D. & Ting, A. T. NEMO inhibits programmed necrosis in an NFκB-independent manner by restraining RIP1. PloS ONE 7, e41238 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Wang, L., Du, F. & Wang, X. TNF-α induces two distinct caspase-8 activation pathways. Cell 133, 693–703 (2008).

    Article  CAS  PubMed  Google Scholar 

  157. O'Donnell, M. A. et al. Caspase 8 inhibits programmed necrosis by processing CYLD. Nature Cell Biol. 13, 1437–1442 (2011).

    Article  CAS  PubMed  Google Scholar 

  158. Beug, S. T., Cheung, H. H., LaCasse, E. C. & Korneluk, R. G. Modulation of immune signalling by inhibitors of apoptosis. Trends Immunol. 33, 535–545 (2012).

    Article  CAS  PubMed  Google Scholar 

  159. Li, L. et al. A small molecule Smac mimic potentiates TRAIL- and TNFα-mediated cell death. Science 305, 1471–1474 (2004).

    Article  CAS  PubMed  Google Scholar 

  160. Tseng, P. H. et al. Different modes of ubiquitination of the adaptor TRAF3 selectively activate the expression of type I interferons and proinflammatory cytokines. Nature Immunol. 11, 70–75 (2010).

    Article  CAS  Google Scholar 

  161. Jiang, X. et al. Ubiquitin-induced oligomerization of the RNA sensors RIG-I and MDA5 activates antiviral innate immune response. Immunity 36, 959–973 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Zeng, W. et al. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 141, 315–330 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Hou, F. et al. MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 146, 448–461 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Xu, H. et al. Structural basis for the prion-like MAVS filaments in antiviral innate immunity. Elife 3, e01489 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Yoneyama, M. & Fujita, T. RNA recognition and signal transduction by RIG-I-like receptors. Immunol. Rev. 227, 54–65 (2009).

    Article  CAS  PubMed  Google Scholar 

  166. von Moltke, J., Ayres, J. S., Kofoed, E. M., Chavarria-Smith, J. & Vance, R. E. Recognition of bacteria by inflammasomes. Annu. Rev. Immunol. 31, 73–106 (2013).

    Article  CAS  PubMed  Google Scholar 

  167. Shi, J. et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature http://dx.doi.org/10.1038/nature13683 (2014). This is the first report identifying the inflammatory caspases — mouse caspase 11 and human caspases 4 and 5 — as intracellular receptors for cytoplasmic LPS.

Download references

Acknowledgements

J.M.B. is supported by the US National Institutes of Health (grants AI095245 and DK072201), the Burroughs Wellcome Trust Fund, the American Cancer Society, the Leukemia and Lymphoma Society, and the Irma-Hirschl and Monique Weill-Caulier Charitable Trust Funds.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary information S1 (box)

The inflammasome (PDF 652 kb)

Supplementary information S2 (box)

Cytosolic receptors for microbial DNA and RNA (PDF 656 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blander, J. A long-awaited merger of the pathways mediating host defence and programmed cell death. Nat Rev Immunol 14, 601–618 (2014). https://doi.org/10.1038/nri3720

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3720

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing