Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The IL-23–IL-17 immune axis: from mechanisms to therapeutic testing

Key Points

  • T helper 17 (TH17) cells activated by transforming growth factor-β (TGFβ) and interleukin-6 (IL-6) promote mucosal defence, barrier tissue integrity and curtail immunopathogenic responses, whereas IL-23-activated TH17 cells promote chronic tissue inflammation during infection, granuloma formation and autoimmunity.

  • Retinoic acid receptor-related orphan receptor-γt (RORγt) is a TH17 cell-specific master transcription factor. However, it does not act alone, but instead functions as part of a protein complex that regulates TH17 lineage fate. RORγt takes advantage of the open DNA conformation induced by basic leucine zipper transcription factor ATF-like (BATF) and interferon-regulatory factor 4 (IRF4) following T cell receptor stimulation. RORγt also requires the presence of inflammatory cytokine-induced signal transducer and activator of transcription 3 (STAT3) and, together, these transcription factors function as a 'rheostat' that fine-tunes a pre-established TH17 lineage programme.

  • IL-17 signalling is mediated through a distinct cytokine receptor family, which is characterized by a conserved SEF/IL-17R (SEFIR) domain in the cytoplasmic tail. All known IL-17-dependent signalling events occur through ACT1, which controls TNF receptor-associated factor (TRAF)-dependent activation of downstream signalling components (for example, mitogen-activated protein kinases) and transcription factors (for example, nuclear factor-κB (NF-κB) and CCAAT/enhancer-binding proteins (C/EBPs) and mRNA stability.

  • IL-17 signal transduction is restricted by multiple downstream events, involving inhibitory transcription factors, ubiquitylation/deubiquitylation of signalling intermediates, microRNA regulation and control of target mRNA stability.

  • In vivo, IL-17 is an essential regulator of immunity to fungi, particularly the commensal fungus Candida albicans. Humans with congenic or acquired blockade of the IL-17 signalling pathway are particularly susceptible to chronic mucosal candidiasis.

  • The therapeutic strategy of targeting IL-17 and IL-23 shows encouraging results for psoriasis, Crohn's disease, rheumatoid arthritis, psoriatic arthritis and ankylosing spondylitis.

Abstract

Following the discovery of T helper 17 (TH17) cells, the past decade has witnessed a major revision of the TH subset paradigm and substantial progress has been made in deciphering the molecular mechanisms of T cell lineage commitment and function. In this Review, we focus on the recent advances that have been made regarding the transcriptional control of TH17 cell plasticity and stability, as well as the effector functions of TH17 cells, and we highlight the mechanisms of IL-17 signalling in mesenchymal and barrier epithelial tissues. We also discuss the emerging clinical data showing that IL-17-specific and IL-23-specific antibody treatments are remarkably effective for treating many immune-mediated inflammatory diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Timeline of the discovery and elucidation of IL-17 and IL-23 biology
Figure 2: Schematics of transcription factor regulation for TH17 cell lineage specification and function.
Figure 3: IL-17 ligand and receptor family members.
Figure 4: IL-17 receptor signal transduction.

Similar content being viewed by others

References

  1. Cua, D. J. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421, 744–748 (2003). This study shows that IL-23 controls a key checkpoint for the induction of autoimmune inflammation.

    Article  CAS  PubMed  Google Scholar 

  2. Oppmann, B. et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13, 715–725 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Kastelein, R. A., Hunter, C. A. & Cua, D. J. Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation. Annu. Rev. Immunol. 25, 221–242 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Langrish, C. L. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201, 233–240 (2005). This is the first study to suggest that IL-17-producing cells are crucial mediators of autoimmunity, and it led to the proposal of the T H 17 hypothesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Murphy, C. A. et al. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J. Exp. Med. 198, 1951–1957 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Harrington, L. E. et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nature Immunol. 6, 1123–1132 (2005). This study coined the term 'T H 17' cells to describe a unique lineage that is STAT3 dependent, rather than STAT4- and STAT6-independent.

    Article  CAS  Google Scholar 

  7. Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nature Immunol. 6, 1133–1141 (2005). This is one of the first papers suggesting the existence of IL-17-producing inflammatory T cells.

    Article  CAS  Google Scholar 

  8. Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. & Coffman, R. L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136, 2348–2357 (1986). This is the landmark paper proposing the T H 1–T H 2 hypothesis.

    CAS  PubMed  Google Scholar 

  9. Mosmann, T. R. & Coffman, R. L. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 7, 145–173 (1989).

    Article  CAS  PubMed  Google Scholar 

  10. Parham, C. et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rβ1 and a novel cytokine receptor subunit, IL-23R. J. Immunol. 168, 5699–5708 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Weaver, C. T., Hatton, R. D., Mangan, P. R. & Harrington, L. E. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu. Rev. Immunol. 25, 821–852 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Ivanov, I. I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006). This study describes the discovery of a novel transcriptional regulator that controls Il17a expression and provides the definitive proof that T H 17 cells belong to a new lineage of CD4+ T H cells.

    Article  CAS  PubMed  Google Scholar 

  13. Cua, D. J. & Tato, C. M. Innate IL-17-producing cells: the sentinels of the immune system. Nature Rev. Immunol. 10, 479–489 (2010).

    Article  CAS  Google Scholar 

  14. Annunziato, F., Cosmi, L., Liotta, F., Maggi, E. & Romagnani, S. Type 17 T helper cells—origins, features and possible roles in rheumatic disease. Nature Rev. Rheumatol. 5, 325–331 (2009).

    Article  CAS  Google Scholar 

  15. Zuniga, L. A., Jain, R., Haines, C. & Cua, D. J. Th17 cell development: from the cradle to the grave. Immunol. Rev. 252, 78–88 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Kim, J. S. et al. Natural and inducible TH17 cells are regulated differently by Akt and mTOR pathways. Nature Immunol. 14, 611–618 (2013).

    Article  CAS  Google Scholar 

  17. Marks, B. R. et al. Thymic self-reactivity selects natural interleukin 17-producing T cells that can regulate peripheral inflammation. Nature Immunol. 10, 1125–1132 (2009).

    Article  CAS  Google Scholar 

  18. Zheng, Y. et al. Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445, 648–651 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. El-Behi, M. et al. The encephalitogenicity of TH17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF. Nature Immunol. 12, 568–575 (2011).

    Article  CAS  Google Scholar 

  20. Codarri, L. et al. RORγt drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nature Immunol. 12, 560–567 (2011).

    Article  CAS  Google Scholar 

  21. McGeachy, M. J. et al. TGF-β and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH-17 cell-mediated pathology. Nature Immunol. 8, 1390–1397 (2007).

    Article  CAS  Google Scholar 

  22. Hirota, K. et al. Plasticity of Th17 cells in Peyer's patches is responsible for the induction of T cell-dependent IgA responses. Nature Immunol. 14, 372–379 (2013).

    Article  CAS  Google Scholar 

  23. Esplugues, E. et al. Control of TH17 cells occurs in the small intestine. Nature 475, 514–518 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chackerian, A. A. et al. Neutralization or absence of the interleukin-23 pathway does not compromise immunity to mycobacterial infection. Infect. Immun. 74, 6092–6099 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen, Y. et al. Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. J. Clin. Invest. 116, 1317–1326 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lieberman, L. A. et al. IL-23 provides a limited mechanism of resistance to acute toxoplasmosis in the absence of IL-12. J. Immunol. 173, 1887–1893 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Mangan, P. R. et al. Transforming growth factor-β induces development of the TH17 lineage. Nature 441, 231–234 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M. & Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006). References 27–29 show the importance of TGFβ plus IL-6 in the lineage specification of T H 17 cells.

    Article  CAS  PubMed  Google Scholar 

  30. Yang, X. O. et al. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J. Biol. Chem. 282, 9358–9363 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Durant, L. et al. Diverse targets of the transcription factor STAT3 contribute to T cell pathogenicity and homeostasis. Immunity 32, 605–615 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Samoilova, E. B., Horton, J. L., Hilliard, B., Liu, T. S. & Chen, Y. IL-6-deficient mice are resistant to experimental autoimmune encephalomyelitis: roles of IL-6 in the activation and differentiation of autoreactive T cells. J. Immunol. 161, 6480–6486 (1998).

    CAS  PubMed  Google Scholar 

  33. Alonzi, T. et al. Interleukin 6 is required for the development of collagen-induced arthritis. J. Exp. Med. 187, 461–468 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Korn, T. et al. IL-21 initiates an alternative pathway to induce proinflammatory TH17 cells. Nature 448, 484–487 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nurieva, R. et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448, 480–483 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Spolski, R. & Leonard, W. J. The Yin and Yang of interleukin-21 in allergy, autoimmunity and cancer. Curr. Opin. Immunol. 20, 295–301 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sutton, C., Brereton, C., Keogh, B., Mills, K. H. & Lavelle, E. C. A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J. Exp. Med. 203, 1685–1691 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chung, Y. et al. Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity 30, 576–587 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gulen, M. F. et al. The receptor SIGIRR suppresses Th17 cell proliferation via inhibition of the interleukin-1 receptor pathway and mTOR kinase activation. Immunity 32, 54–66 (2010). This paper shows that IL-1 is a key factor that provides a key competitive advantage for in vivo T H 17 cell expansion and survival during inflammatory conditions by inducing catabolic energy pathways.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Veldhoen, M., Hocking, R. J., Flavell, R. A. & Stockinger, B. Signals mediated by transforming growth factor-β initiate autoimmune encephalomyelitis, but chronic inflammation is needed to sustain disease. Nature Immunol. 7, 1151–1156 (2006).

    Article  CAS  Google Scholar 

  41. Li, M. O., Wan, Y. Y. & Flavell, R. A. T cell-produced transforming growth factor-β1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation. Immunity 26, 579–591 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Gutcher, I. et al. Autocrine transforming growth factor-β1 promotes in vivo Th17 cell differentiation. Immunity 34, 396–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Das, J. et al. Transforming growth factor β is dispensable for the molecular orchestration of Th17 cell differentiation. J. Exp. Med. 206, 2407–2416 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Volpe, E. et al. A critical function for transforming growth factor-β, interleukin 23 and proinflammatory cytokines in driving and modulating human TH-17 responses. Nature Immunol. 9, 650–657 (2008).

    Article  CAS  Google Scholar 

  45. Manel, N., Unutmaz, D. & Littman, D. R. The differentiation of human TH-17 cells requires transforming growth factor-β and induction of the nuclear receptor RORγt. Nature Immunol. 9, 641–649 (2008).

    Article  CAS  Google Scholar 

  46. Acosta-Rodriguez, E. V., Napolitani, G., Lanzavecchia, A. & Sallusto, F. Interleukins 1β and 6 but not transforming growth factor-β are essential for the differentiation of interleukin 17-producing human T helper cells. Nature Immunol. 8, 942–949 (2007).

    Article  CAS  Google Scholar 

  47. Wilson, N. J. et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nature Immunol. 8, 950–957 (2007).

    Article  CAS  Google Scholar 

  48. Chen, Z., Tato, C. M., Muul, L., Laurence, A. & O'Shea, J. J. Distinct regulation of interleukin-17 in human T helper lymphocytes. Arthritis Rheum. 56, 2936–2946 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yang, Y. et al. T-bet is essential for encephalitogenicity of both Th1 and Th17 cells. J. Exp. Med. 206, 1549–1564 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jager, A., Dardalhon, V., Sobel, R. A., Bettelli, E. & Kuchroo, V. K. Th1, Th17, and Th9 effector cells induce experimental autoimmune encephalomyelitis with different pathological phenotypes. J. Immunol. 183, 7169–7177 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. McGeachy, M. J. et al. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nature Immunol. 10, 314–324 (2009). This paper describes the crucial roles of IL-23 for the in vivo expansion and function of T H 17 cells during inflammation.

    Article  CAS  Google Scholar 

  52. Haines, C. J. et al. Autoimmune memory T helper 17 cell function and expansion are dependent on interleukin-23. Cell Rep. 3, 1378–1388 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Ghoreschi, K. et al. Generation of pathogenic TH17 cells in the absence of TGF-β signalling. Nature 467, 967–971 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kebir, H. et al. Preferential recruitment of interferon-γ-expressing TH17 cells in multiple sclerosis. Ann. Neurol. 66, 390–402 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Hirota, K. et al. Fate mapping of IL-17-producing T cells in inflammatory responses. Nature Immunol. 12, 255–263 (2011). This elegant study used an Il17a fate-mapping strategy to demonstrate the existence of “ex-T H 17” cells driving autoimmune pathology.

    Article  CAS  Google Scholar 

  56. Lee, Y. et al. Induction and molecular signature of pathogenic TH17 cells. Nature Immunol. 13, 991–999 (2012).

    Article  CAS  Google Scholar 

  57. Duerr, R. H. et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314, 1461–1463 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu, Y. et al. A genome-wide association study of psoriasis and psoriatic arthritis identifies new disease loci. PLoS Genet. 4, e1000041 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Reveille, J. D. et al. Genome-wide association study of ankylosing spondylitis identifies non-MHC susceptibility loci. Nature Genet. 42, 123–127 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Lock, C. et al. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nature Med. 8, 500–508 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Burton, P. R. et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nature Genet. 39, 1329–1337 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Ghoreschi, K. et al. Generation of pathogenic TH17 cells in the absence of TGF-β signalling. Nature 467, 967–971 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Diveu, C. et al. IL-27 blocks RORc expression to inhibit lineage commitment of Th17 cells. J. Immunol. 182, 5748–5756 (2009). This study shows that IL-27 is an inhibitor of the T H 17 immune pathway and explores the mechanisms underlying IL-27-mediated regulation of inflammation.

    Article  CAS  PubMed  Google Scholar 

  64. Laurence, A. et al. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity 26, 371–381 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. El-behi, M. et al. Differential effect of IL-27 on developing versus committed Th17 cells. J. Immunol. 183, 4957–4967 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Veldhoen, M. et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453, 106–109 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Quintana, F. J. et al. Control of Treg and TH17 cell differentiation by the aryl hydrocarbon receptor. Nature 453, 65–71 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Apetoh, L. et al. The aryl hydrocarbon receptor interacts with c-Maf to promote the differentiation of type 1 regulatory T cells induced by IL-27. Nature Immunol. 11, 854–861 (2010).

    Article  CAS  Google Scholar 

  69. Milner, J. D. et al. Impaired TH17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 452, 773–776 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Minegishi, Y. et al. Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature 448, 1058–1062 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Ise, W. et al. The transcription factor BATF controls the global regulators of class-switch recombination in both B cells and T cells. Nature Immunol. 12, 536–543 (2011).

    Article  CAS  Google Scholar 

  72. Schraml, B. U. et al. The AP-1 transcription factor Batf controls TH17 differentiation. Nature 460, 405–409 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lohoff, M. et al. Dysregulated T helper cell differentiation in the absence of interferon regulatory factor 4. Proc. Natl Acad. Sci. USA 99, 11808–11812 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Brustle, A. et al. The development of inflammatory TH-17 cells requires interferon-regulatory factor 4. Nature Immunol. 8, 958–966 (2007).

    Article  CAS  Google Scholar 

  75. Li, P. et al. BATF–JUN is critical for IRF4-mediated transcription in T cells. Nature 490, 543–546 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ciofani, M. et al. A validated regulatory network for Th17 cell specification. Cell 151, 289–303 (2012). This study argues against the hypothesis that RORγt is the only factor that regulates the specification of the T H 17 lineage.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Oestreich, K. J. & Weinmann, A. S. Master regulators or lineage-specifying? Changing views on CD4+ T cell transcription factors. Nature Rev. Immunol. 12, 799–804 (2012).

    Article  CAS  Google Scholar 

  78. Vahedi, G. et al. STATs shape the active enhancer landscape of T cell populations. Cell 151, 981–993 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Samstein, R. M. et al. Foxp3 exploits a pre-existent enhancer landscape for regulatory T cell lineage specification. Cell 151, 153–166 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Dang, E. V. et al. Control of TH17/Treg balance by hypoxia-inducible factor 1. Cell 146, 772–784 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chen, Z. et al. The ubiquitin ligase Stub1 negatively modulates regulatory T cell suppressive activity by promoting degradation of the transcription factor Foxp3. Immunity 39, 272–285 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. van Loosdregt, J. et al. Stabilization of the transcription factor Foxp3 by the deubiquitinase USP7 increases Treg-cell-suppressive capacity. Immunity 39, 259–271 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yang, X. O. et al. Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity 29, 44–56 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wei, G. et al. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity 30, 155–167 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lee, Y. K. et al. Late developmental plasticity in the T helper 17 lineage. Immunity 30, 92–107 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Morrison, P. J. et al. Th17-cell plasticity in Helicobacter hepaticus-induced intestinal inflammation. Mucosal Immunol. 6, 1143–1156 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Iwakura, Y., Ishigame, H., Saijo, S. & Nakae, S. Functional specialization of interleukin-17 family members. Immunity 34, 149–162 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Onishi, R. & Gaffen, S. L. IL-17 and its target genes: mechanisms of IL-17 function in disease. Immunology 129, 311–321 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yao, Z. et al. Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity 3, 811–821 (1995).

    Article  CAS  PubMed  Google Scholar 

  90. Ishigame, H. et al. Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity 30, 108–119 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Novatchkova, M., Leibbrandt, A., Werzowa, J., Neubuser, A. & Eisenhaber, F. The STIR-domain superfamily in signal transduction, development and immunity. Trends Biochem. Sci. 28, 226–229 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Rickel, E. A. et al. Identification of functional roles for both IL-17RB and IL-17RA in mediating IL-25-induced activities. J. Immunol. 181, 4299–4310 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Bordon, Y. Cytokines: IL-17C joins the family firm. Nature Rev. Immunol. 11, 805 (2011).

    CAS  Google Scholar 

  94. Qian, Y. et al. The adaptor Act1 is required for interleukin 17-dependent signaling associated with autoimmune and inflammatory disease. Nature Immunol. 8, 247–256 (2007).

    Article  CAS  Google Scholar 

  95. Chang, S. H., Park, H. & Dong, C. Act1 adaptor protein is an immediate and essential signaling component of interleukin-17 receptor. J. Biol. Chem. 281, 35603–35607 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Li, X. Act1 modulates autoimmunity through its dual functions in CD40L/BAFF and IL-17 signaling. Cytokine 41, 105–113 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Liu, C. et al. Act1, a U-box E3 ubiquitin ligase for IL-17 signaling. Sci. Signal. 2, ra63 (2009).

    PubMed  PubMed Central  Google Scholar 

  98. Schwandner, R., Yamaguchi, K. & Cao, Z. Requirement of tumor necrosis factor-associated factor (TRAF)6 in interleukin 17 signal transduction. J. Exp. Med. 191, 1233–1239 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sun, D. et al. Treatment with IL-17 prolongs the half-life of chemokine CXCL1 mRNA via the adaptor TRAF5 and the splicing-regulatory factor SF2 (ASF). Nature Immunol. 12, 853–860 (2011).

    Article  CAS  Google Scholar 

  100. Herjan, T. et al. HuR is required for IL-17-induced Act1-mediated CXCL1 and CXCL5 mRNA stabilization. J. Immunol. 191, 640–649 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Bulek, K. et al. The inducible kinase IKKi is required for IL-17-dependent signaling associated with neutrophilia and pulmonary inflammation. Nature Immunol. 12, 844–852 (2011).

    Article  CAS  Google Scholar 

  102. Qu, F. et al. TRAF6-dependent Act1 phosphorylation by the IκB kinase-related kinases suppresses interleukin-17-induced NF-κB activation. Mol. Cell. Biol. 32, 3925–3937 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wang, C. et al. The psoriasis-associated D10N variant of the adaptor Act1 with impaired regulation by the molecular chaperone hsp90. Nature Immunol. 14, 72–81 (2013).

    Article  CAS  Google Scholar 

  104. Sonder, S. U. et al. IL-17-induced NF-κB activation via CIKS/Act1: physiologic significance and signaling mechanisms. J. Biol. Chem. 286, 12881–12890 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Huffmeier, U. et al. Common variants at TRAF3IP2 are associated with susceptibility to psoriatic arthritis and psoriasis. Nature Genet. 42, 996–999 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Shen, F., Ruddy, M. J., Plamondon, P. & Gaffen, S. L. Cytokines link osteoblasts and inflammation: microarray analysis of interleukin-17- and TNF-α-induced genes in bone cells. J. Leukoc. Biol. 77, 388–399 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Acosta-Rodriguez, E. V. et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nature Immunol. 8, 639–646 (2007).

    Article  CAS  Google Scholar 

  108. Yang, D. et al. β-Defensins: Linking innate immunity and adaptive immunity through dendritic and T cell CCR6. Science 286, 525–528 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. Goetz, D. H. et al. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol. Cell 10, 1033–1043 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Ruddy, M. J. et al. Functional cooperation between interleukin-17 and tumor necrosis factor-a is mediated by CCAAT/enhancer binding protein family members. J. Biol. Chem. 279, 2559–2567 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Shen, F., Hu, Z., Goswami, J. & Gaffen, S. L. Identification of common transcriptional regulatory elements in interleukin-17 target genes. J. Biol. Chem. 281, 24138–24148 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Patel, D. N. et al. Interleukin-17 stimulates C-reactive protein expression in hepatocytes and smooth muscle cells via p38 MAPK and ERK1/2-dependent NF-κB and C/EBPβ activation. J. Biol. Chem. 282, 27229–27238 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Ramji, D. P. & Foka, P. CCAAT/enhancer-binding proteins: structure, function and regulation. Biochem. J. 365, 561–575 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Shen, F. et al. IL-17 receptor signaling inhibits C/EBPβ by sequential phosphorylation of the regulatory 2 domain. Sci. Signal. 2, ra8 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Zrioual, S. et al. Genome-wide comparison between IL-17A- and IL-17F-induced effects in human rheumatoid arthritis synoviocytes. J. Immunol. 182, 3112–3120 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Shen, F. & Gaffen, S. L. Structure–function relationships in the IL-17 receptor: Implications for signal transduction and therapy. Cytokine 41, 92–104 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Karlsen, J. R., Borregaard, N. & Cowland, J. B. Induction of neutrophil gelatinase-associated lipocalin expression by co-stimulation with interleukin-17 and tumor necrosis factor-α is controlled by IκB-ζ but neither by C/EBP-β nor C/EBP-δ. J. Biol. Chem. 285, 14088–14100 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhong, B. et al. Negative regulation of IL-17-mediated signaling and inflammation by the ubiquitin-specific protease USP25. Nature Immunol. 13, 1110–1117 (2012).

    Article  CAS  Google Scholar 

  119. Garg, A. V., Ahmed, M., Vallejo, A. N., Ma, A. & Gaffen, S. L. The deubiquitinase A20 mediates feedback inhibition of interleukin-17 receptor signaling. Sci. Signal. 6, ra44 (2013). References 118 and 119 show that IL-17R signalling is restrained by multiple deubiquitylating enzymes that target TRAF6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ma, A. & Malynn, B. A. A20: linking a complex regulator of ubiquitylation to immunity and human disease. Nature Rev. Immunol. 12, 774–785 (2012).

    Article  CAS  Google Scholar 

  121. Zhu, S. et al. Modulation of experimental autoimmune encephalomyelitis through TRAF3-mediated suppression of interleukin 17 receptor signaling. J. Exp. Med. 207, 2647–2662 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Maitra, A. et al. Distinct functional motifs within the IL-17 receptor regulate signal transduction and target gene expression. Proc. Natl Acad. Sci, USA 104, 7506–7511 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Shembade, N. & Harhaj, E. W. Regulation of NF-κB signaling by the A20 deubiquitinase. Cell. Mol. Immunol. 9, 123–130 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Iha, H. et al. Inflammatory cardiac valvulitis in TAX1BP1-deficient mice through selective NF-κB activation. EMBO J. 27, 629–641 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Shembade, N. et al. The E3 ligase Itch negatively regulates inflammatory signaling pathways by controlling the function of the ubiquitin-editing enzyme A20. Nature Immunol. 9, 254–262 (2008).

    Article  CAS  Google Scholar 

  126. Garg, A. V. & Gaffen, S. L. IL-17 signaling and A20: a balancing act. Cell Cycle 12, 3459–3460 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ho, A. W. et al. The anaphase-promoting complex protein 5 (AnapC5) associates with A20 and inhibits IL-17-mediated signal transduction. PLoS ONE 8, e70168 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Shi, P. et al. Persistent stimulation with interleukin-17 desensitizes cells through SCFβ-TrCP-mediated degradation of Act1. Sci. Signal. 4, ra73 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Xie, P. TRAF molecules in cell signaling and in human diseases. J. Mol. Signal 8, 1–31 (2013).

    Article  CAS  Google Scholar 

  130. Zepp, J. A. et al. Cutting edge: TNF receptor-associated factor 4 restricts IL-17-mediated pathology and signaling processes. J. Immunol. 189, 33–37 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. O'Connell, R. M. et al. MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity 33, 607–619 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Yao, R. et al. MicroRNA-155 modulates Treg and Th17 cells differentiation and Th17 cell function by targeting SOCS1. PLoS ONE 7, e46082 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Murugaiyan, G., Beynon, V., Mittal, A., Joller, N. & Weiner, H. L. Silencing microRNA-155 ameliorates experimental autoimmune encephalomyelitis. J. Immunol. 187, 2213–2221 (2011).

    Article  CAS  PubMed  Google Scholar 

  134. Zhu, S. et al. The microRNA miR-23b suppresses IL-17-associated autoimmune inflammation by targeting TAB2, TAB3 and IKK-α. Nature Med. 18, 1077–1086 (2012). This is the first identification of an miRNA feedback loop in the IL-17R signalling pathway.

    Article  CAS  PubMed  Google Scholar 

  135. Milner, J. D. & Holland, S. M. The cup runneth over: lessons from the ever-expanding pool of primary immunodeficiency diseases. Nature Rev. Immunol. 13, 635–648 (2013).

    Article  CAS  Google Scholar 

  136. von Bernuth, H. et al. Pyogenic bacterial infections in humans with MyD88 deficiency. Science 321, 691–696 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ma, C. S. et al. Deficiency of Th17 cells in hyper IgE syndrome due to mutations in STAT3. J. Exp. Med. 205, 1551–1557 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Glocker, E. O. et al. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N. Engl. J. Med. 361, 1727–1735 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Liu, L. et al. Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J. Exp. Med. 208, 1635–1648 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. van de Veerdonk, F. L. et al. STAT1 mutations in autosomal dominant chronic mucocutaneous candidiasis. N. Engl. J. Med. 365, 54–61 (2011).

    Article  CAS  PubMed  Google Scholar 

  141. Puel, A. et al. Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J. Exp. Med. 207, 291–297 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kisand, K. et al. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J. Exp. Med. 207, 299–308 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Puel, A. et al. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science 332, 65–68 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Boisson, B. et al. A biallelic ACT1 mutation selectively abolishes interleukin-17 responses in humans with chronic mucocutaneous candidiasis. Immunity 39, 676–686 (2013). References 143 and 144 directly link mucosal C. albicans infections with the IL-17R-mediated signalling axis.

    Article  CAS  PubMed  Google Scholar 

  145. Hernández-Santos, N. & Gaffen, S. L. Th17 cells in immunity to Candida albicans. Cell Host Microbe 11, 425–435 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Stark, M. A. et al. Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity 22, 285–294 (2005).

    Article  CAS  PubMed  Google Scholar 

  147. Sherlock, J. P. et al. IL-23 induces spondyloarthropathy by acting on ROR-γt+ CD3+CD4CD8 entheseal resident T cells. Nature Med. 18, 1069–1076 (2012).

    Article  CAS  PubMed  Google Scholar 

  148. Chan, J. R. et al. IL-23 stimulates epidermal hyperplasia via TNF and IL-20R2-dependent mechanisms with implications for psoriasis pathogenesis. J. Exp. Med. 203, 2577–2587 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Tonel, G. et al. Cutting edge: A critical functional role for IL-23 in psoriasis. J. Immunol. 185, 5688–5691 (2010).

    Article  CAS  PubMed  Google Scholar 

  150. Perera, G. K., Di Meglio, P. & Nestle, F. O. Psoriasis. Annu. Rev. Pathol. 7, 385–422 (2012).

    Article  CAS  PubMed  Google Scholar 

  151. Villanova, F. et al. Characterization of innate lymphoid cells in human skin and blood demonstrates increase of NKp44+ ILC3 in psoriasis. J. Invest. Dermatol. 134, 984–991 (2014).

    Article  CAS  PubMed  Google Scholar 

  152. Guttman-Yassky, E. et al. Low expression of the IL-23/Th17 pathway in atopic dermatitis compared to psoriasis. J. Immunol. 181, 7420–7427 (2008).

    Article  CAS  PubMed  Google Scholar 

  153. Rudwaleit, M. et al. The Assessment of SpondyloArthritis International Society classification criteria for peripheral spondyloarthritis and for spondyloarthritis in general. Ann. Rheum. Dis. 70, 25–31 (2011).

    Article  CAS  PubMed  Google Scholar 

  154. van Echteld, I. et al. Identification of the most common problems by patients with ankylosing spondylitis using the international classification of functioning, disability and health. J. Rheumatol 33, 2475–2483 (2006).

    PubMed  Google Scholar 

  155. Mielants, H. et al. The evolution of spondyloarthropathies in relation to gut histology. II. Histological aspects. J. Rheumatol 22, 2273–2278 (1995).

    CAS  PubMed  Google Scholar 

  156. Cotterill, L. et al. Replication and meta-analysis of 13,000 cases defines the risk for interleukin-23 receptor and autophagy-related 16-like 1 variants in Crohn's disease. Can. J. Gastroenterol. 24, 297–302 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Lesage, S. et al. CARD15/NOD2 mutational analysis and genotype-phenotype correlation in 612 patients with inflammatory bowel disease. Am. J. Hum. Genet. 70, 845–857 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Fujino, S. et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut 52, 65–70 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Dige, A. et al. Increased levels of circulating Th17 cells in quiescent versus active Crohn's disease. J. Crohns Colitis 7, 248–255 (2013).

    Article  PubMed  Google Scholar 

  160. Leonardi, C. et al. Anti-interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis. N. Engl. J. Med. 366, 1190–1199 (2012).

    Article  CAS  PubMed  Google Scholar 

  161. Rich, P. et al. Secukinumab induction and maintenance therapy in moderate-to-severe plaque psoriasis: a randomized, double-blind, placebo-controlled, phase II regimen-finding study. Br. J. Dermatol. 168, 402–411 (2013).

    Article  CAS  PubMed  Google Scholar 

  162. Papp, K. A. et al. Brodalumab, an anti-interleukin-17-receptor antibody for psoriasis. N. Engl. J. Med. 366, 1181–1189 (2012). References 160–162 report clinical trials that reveal the remarkable efficacy of IL-17- or IL-17RA-specific antibody therapy for the treatment of psoriasis.

    Article  CAS  PubMed  Google Scholar 

  163. Papp, K. A. et al. Dose-dependent improvement in chronic plaque psoriasis following treatment with anti-IL-23p19 humanized monoclonal antibody (MK-3222). Late-breaking Research Symposium. 71st Annual Meeting of the American Academy of Dermatology (2013).

  164. Chiricozzi, A. & Krueger, J. G. IL-17 targeted therapies for psoriasis. Expert Opin. Investig. Drugs 22, 993–1005 (2013).

    Article  CAS  PubMed  Google Scholar 

  165. Sandborn, W. J. et al. Ustekinumab induction and maintenance therapy in refractory Crohn's disease. N. Engl. J. Med. 367, 1519–1528 (2012).

    Article  CAS  PubMed  Google Scholar 

  166. Hueber, W. et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn's disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut 61, 1693–1700 (2012).

    Article  CAS  PubMed  Google Scholar 

  167. Targan, S. R. et al. A randomized, double-blind, placebo-controlled study to evaluate the safety, tolerability, and efficacy of AMG 827 in subjects with moderate to severe Crohn's disease. 143, e26 (2012).

  168. Ogawa, A., Andoh, A., Araki, Y., Bamba, T. & Fujiyama, Y. Neutralization of interleukin-17 aggravates dextran sulfate sodium-induced colitis in mice. Clin. Immunol. 110, 55–62 (2004).

    Article  CAS  PubMed  Google Scholar 

  169. Patel, D. D., Lee, D. M., Kolbinger, F. & Antoni, C. Effect of IL-17A blockade with secukinumab in autoimmune diseases. Ann. Rheum. Dis. 72, Suppl. 2, iii116–iii123 (2013).

    Article  CAS  Google Scholar 

  170. Garber, K. Anti-IL-17 mAbs herald new options in psoriasis. Nature Biotech. 30, 475–477 (2012).

    Article  CAS  Google Scholar 

  171. Nakamura, R. et al. Tyk2-signaling plays an important role in host defense against Escherichia coli through IL-23-induced IL-17 production by γδ T cells. J. Immunol. 181, 2071–2075 (2008).

    Article  CAS  PubMed  Google Scholar 

  172. Ishizaki, M. et al. Tyk2 is a therapeutic target for psoriasis-like skin inflammation. Int. Immunol. 26, 257–267 (2013).

    Article  CAS  PubMed  Google Scholar 

  173. Solt, L. A. et al. Suppression of TH17 differentiation and autoimmunity by a synthetic ROR ligand. Nature 472, 491–494 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Huh, J. R. et al. Digoxin and its derivatives suppress TH17 cell differentiation by antagonizing RORγt activity. Nature 472, 486–490 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Xiao, S. et al. Small-molecule RORγt antagonists inhibit T helper 17 Cell transcriptional network by divergent mechanisms. Immunity 40, 477–489 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Lee, J. S. & Cua, D. J. The emerging landscape of RORγt biology. Immunity 40, 451–452 (2014).

    Article  CAS  PubMed  Google Scholar 

  177. Stritesky, G. L., Jameson, S. C. & Hogquist, K. A. Selection of self-reactive T cells in the thymus. Annu. Rev. Immunol. 30, 95–114 (2012).

    Article  CAS  PubMed  Google Scholar 

  178. Kronenberg, M. Toward an understanding of NKT cell biology: progress and paradoxes. Annu. Rev. Immunol. 23, 877–900 (2005).

    Article  CAS  PubMed  Google Scholar 

  179. Spits, H. et al. Innate lymphoid cells—a proposal for uniform nomenclature. Nature Rev. Immunol. 13, 145–149 (2013).

    Article  CAS  Google Scholar 

  180. Plantinga, T. S. et al. Early stop polymorphism in human DECTIN-1 is associated with increased Candida colonization in hematopoietic stem cell transplant recipients. Clin. Infect. Dis. 49, 724–732 (2009).

    Article  CAS  PubMed  Google Scholar 

  181. Minegishi, Y. et al. Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity 25, 745–755 (2006).

    Article  CAS  PubMed  Google Scholar 

  182. Prando, C. et al. Inherited IL-12p40 deficiency: genetic, immunologic, and clinical features of 49 patients from 30 kindreds. Medicine 92, 109–122 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. de Beaucoudrey, L. et al. Revisiting human IL-12Rβ1 deficiency: a survey of 141 patients from 30 countries. Medicine 89, 381–402 (2010).

    Article  CAS  PubMed  Google Scholar 

  184. Ouederni, M. et al. Clinical features of Candidiasis in patients with inherited interleukin 12 receptor β1 deficiency. Clin. Infect. Dis. 58, 204–213 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.L.G. was supported by US National Institutes of Health (NIH) grants AI107825 and DE022550. The content of this review is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Cua.

Ethics declarations

Competing interests

S.L.G. has received research grants from Novartis and Janssen, and has consulted for and received travel reimbursements and/or honouraria from Novartis, Amgen, Pfizer, Eli Lilly and Janssen. R.J. and D.J.C. are employed by Merck and Co. A.V.G. declares no competing interests.

Related links

FURTHER INFORMATION

ClinicalTrials.gov

PowerPoint slides

Supplementary information

Supplementary information S1 (table)

Summary of phase II clinical trials of clinical testing of anti-interleukin-23 (IL-23) and anti-IL-17 treatment for psoriasis (PDF 616 kb)

Glossary

Crohn's disease

A type of inflammatory bowel disease that affects any part of the gastrointestinal tract from the mouth to the anus. Symptoms include abdominal pain, bloody diarrhoea, fever and weight loss. Other complications may occur outside the gastrointestinal tract and include anaemia, skin rashes, arthritis, inflammation of the eye and an increased risk of bowel cancer.

Chromatin immunoprecipitation followed by sequencing

(ChIP–seq). A technique used to analyse the interactions between transcription factors and their target DNA. ChIP–seq combines chromatin immunoprecipitation (ChIP) with massively parallel DNA sequencing to identify the specific sequences bound by regulatory proteins.

Hyper-IgE syndrome

An inherited immune deficiency that is usually caused by mutations in signal transducer and activator of transcription 3 (STAT3) and is associated with reduced T helper 17 (TH17) cell frequency. The disease is characterized by elevated levels of serum IgE, eosinophilia, 'cold' staphylococcal abscesses, eczema, pulmonary infections and chronic mucocutaneous candidiasis.

Antimicrobial peptides

Short peptides (typically 12–50 amino acids) with bactericidal and fungicidal activities. Some may also exhibit chemotactic activities.

A20

The product of the tumour necrosis factor-α-induced protein 3 (TNFAIP3) gene. This is a zinc finger-containing protein with E3 ligase and deubiquitylase activity that downregulates signalling by multiple inflammatory effectors.

microRNAs

(miRNAs). Single-stranded RNA molecules of approximately 21–23 nucleotides in length that regulate gene expression.

Autoimmune polyendocrinopathy syndrome 1

(APS1; also known as autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) syndrome). An inherited autoimmune disorder that affects multiple endocrine tissues and is caused by mutations in the autoimmune regulator (AIRE) gene. The disease is associated with a high incidence of mucocutaneous candidiasis, which is thought to be owing to neutralizing autoantibodies against interleukin-17A (IL-17A), IL-17F and/or IL-22.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaffen, S., Jain, R., Garg, A. et al. The IL-23–IL-17 immune axis: from mechanisms to therapeutic testing. Nat Rev Immunol 14, 585–600 (2014). https://doi.org/10.1038/nri3707

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3707

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing