Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gastrointestinal eosinophils in health, disease and functional disorders

Abstract

Eosinophils are potent innate immune cells that home to the gastrointestinal tract where they participate in host immunity to luminal pathogens, and help to maintain intestinal epithelial homeostasis. However, these cells are now recognized to have key functions in the pathogenesis of numerous other disorders of the gastrointestinal tract, including primary eosinophilic gastrointestinal disease, common functional conditions, such as dyspepsia, and also in gastrointestinal disorders in patients with allergic disease. We are just beginning to understand the potential pathological role of eosinophils in gastrointestinal disease, and it is increasingly likely that gastroenterologists and histopathologists will need to account for the presence of gastrointestinal eosinophils and relate their presence to gastrointestinal symptoms. This Review discusses the role of gastrointestinal eosinophils in health and disease, including their associations with functional and allergic disorders.

Key Points

  • Eosinophils are potent innate immune cells; they are numerous in the gastrointestinal tract in health and disease

  • Eosinophils have an established role in host defense against helminth infection

  • Primary eosinophilic disorders of the gastrointestinal tract are known to exist

  • Patients with atopy and allergy have gastrointestinal symptoms that may be associated with eosinophils

  • The eosinophil–mast-cell axis may have an important role in functional gastrointestinal disorders

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The eosinophil–mast-cell axis.
Figure 2: Primary and secondary EGIDs.
Figure 3: Eosinophils in eosinophilic gastrointestinal disorders.

Similar content being viewed by others

References

  1. Klion, A. D. & Nutman, T. B. The role of eosinophils in host defence against helminth parasites. J. Allergy Clin. Immunol. 113, 30–37 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Kay, A. B. Eosinophils and asthma. N. Engl. J. Med. 324, 1514–1515 (1991).

    CAS  PubMed  Google Scholar 

  3. Bousquet, J. et al. Eosinophilic inflammation in asthma. N. Engl. J. Med. 323, 1033–1039 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Corrigan, C. J. & Kay, A. B. T cells and eosinophils in the pathogenesis of asthma. Immunol. Today 13, 501–507 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Rothenberg, M. E. Eosinophilic gastrointestinal disorders (EGID). J. Allergy Clin. Immunol. 113, 11–28 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Kato, M. et al. Eosinophil infiltration and degranulation in normal human tissue. Anat. Rec. 252, 418–425 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. DeBrosse, C. W., Case, J. W., Putnam, P. E., Collins, M. H. & Rothenberg, M. E. Quantity and distribution of eosinophils in the gastrointestinal tract of children. Pediatr. Dev. Pathol. 9, 210–218 (2006).

    Article  PubMed  Google Scholar 

  8. Mishra, A., Hogan, S. P., Lee, J. J., Foster, P. S. & Rothenberg, M. E. Fundamental signals that regulate eosinophil homing to the gastrointestinal tract. J. Clin. Invest. 103, 1719–1727 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Clutterbuck, E., Hirst, E. M. & Sanderson, C. J. Human interleukin-5 (IL-5) regulates the production of eosinophils in human bone marrow cultures: comparison and interaction with IL-1, IL-3, IL-6, and GMCSF. Blood 73, 1504–1512 (1989).

    Article  CAS  PubMed  Google Scholar 

  10. Yamaguchi, Y. et al. Highly purified murine interleukin 5 (IL-5) stimulates eosinophil function and prolongs in vitro survival. IL-5 as an eosinophil chemotactic factor. J. Exp. Med. 167, 1737–1742 (1988).

    Article  CAS  PubMed  Google Scholar 

  11. Yamaguchi, Y. et al. Purified interleukin 5 supports the terminal differentiation and proliferation of murine eosinophilic precursors. J. Exp. Med. 167, 43–56 (1988).

    Article  CAS  PubMed  Google Scholar 

  12. Collins, P. D., Marleau, S., Griffiths-Johnson, D. A., Jose, P. J. & Williams, T. J. Cooperation between interleukin-5 and the chemokine eotaxin to induce eosinophil accumulation in vivo. J. Exp. Med. 182, 1169–1174 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Tai, P. C., Sun, L. & Spry, C. J. Effects of IL-5, granulocyte/macrophage colony-stimulating factor (GM-CSF) and IL-3 on the survival of human blood eosinophils in vitro. Clin. Exp. Immunol. 85, 312–316 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Takafuji, S., Ohtoshi, T., Takizawa, H., Tadokoro, K. & Ito, K. Eosinophil degranulation in the presence of bronchial epithelial cells. Effect of cytokines and role of adhesion. J. Immunol. 156, 3980–3985 (1996).

    CAS  PubMed  Google Scholar 

  15. Dent, L. A., Strath, M., Mellor, A. L. & Sanderson, C. J. Eosinophilia in transgenic mice expressing interleukin 5. J. Exp. Med. 172, 1425–1431 (1990).

    Article  CAS  PubMed  Google Scholar 

  16. Matthews, A. N. et al. Eotaxin is required for the baseline level of tissue eosinophils. Proc. Natl Acad. Sci. USA 95, 6273–6278 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Humbles, A. A. et al. The murine CCR3 receptor regulates both the role of eosinophils and mast cells in allergen-induced airway inflammation and hyperresponsiveness. Proc. Natl Acad. Sci. USA 99, 1479–1484 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bochner, B. S. Road signs guiding leukocytes along the inflammation superhighway. J. Allergy Clin. Immunol. 106, 817–828 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Carlos, T. M. & Harlan, J. M. Leukocyte-endothelial adhesion molecules. Blood 84, 2068–2101 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Brandt, E. B. et al. The alpha4 beta7-integrin is dynamically expressed on murine eosinophils and involved in eosinophil trafficking to the intestine. Clin. Exp. Allergy 36, 543–553 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Forbes, E. et al. ICAM-1-dependent pathways regulate colonic eosinophilic inflammation. J. Leukoc. Biol. 80, 330–341 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Yousefi, S. et al. Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat. Med. 14, 949–953 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Straumann, A. et al. Cytokine expression in healthy and uninflamed mucosa; probing the role of eosinophils in the digestive tract. Inflamm. Bowel Dis. 11, 720–726 (2005).

    Article  PubMed  Google Scholar 

  24. Ying, S. et al. Expression of IL-4 and IL-5 mRNA and protein product by CD4+ and CD8+ T cells, eosinophils, and mast cells in bronchial biopsies obtained from atopic and nonatopic (intrinsic) asthmatics. J. Immunol. 158, 3539–3544 (1997).

    CAS  PubMed  Google Scholar 

  25. Padigel, U. M. et al. Eosinophils can function as antigen-presenting cells to induce primary and secondary immune responses to Strongyloides stercoralis. Infect. Immun. 74, 3232–3238 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shi, H. Z. Eosinophils function as antigen-presenting cells. J. Leukoc. Biol. 76, 520–527 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Rothenberg, M. E. & Hogan, S. P. The eosinophil. Annu. Rev. Immunol. 24, 147–174 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. O'Donnell, M. C., Ackerman, S. J., Gleich, G. J. & Thomas, L. L. Activation of basophil and mast cell histamine release by eosinophil granule major basic protein. J. Exp. Med. 157, 1981–1991 (1983).

    Article  CAS  PubMed  Google Scholar 

  29. Piliponsky, A. M., Gleich, G. J., Nagler, A., Bar, I. & Levi-Schaffer, F. Non-IgE-dependent activation of human lung- and cord blood-derived mast cells is induced by eosinophil major basic protein and modulated by the membrane form of stem cell factor. Blood 101, 1898–1904 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Patella, V. et al. Eosinophil granule proteins activate human heart mast cells. J. Immunol. 157, 1219–1225 (1996).

    CAS  PubMed  Google Scholar 

  31. Horigome, K., Bullock, E. D. & Johnson, E. M. Jr. Effects of nerve growth factor on rat peritoneal mast cells. Survival promotion and immediate-early gene induction. J. Biol. Chem. 269, 2695–2702 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Durcan, N. et al. Eosinophil-mediated cholinergic nerve remodeling. Am. J. Respir. Cell Mol. Biol. 34, 775–786 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Kingham, P. J., McLean, W. G., Sawatzky, D. A., Walsh, M. T. & Costello, R. W. Adhesion-dependent interactions between eosinophils and cholinergic nerves. Am. J. Physiol. Lung Cell Mol. Physiol. 282, L1229–L1238 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Jacoby, D. B., Gleich, G. J. & Fryer, A. D. Human eosinophil major basic protein is an endogenous allosteric antagonist at the inhibitory muscarinic M2 receptor. J. Clin. Invest. 91, 1314–1318 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Morgan, R. K. et al. Diverse effects of eosinophil cationic granule proteins on IMR-32 nerve cell signaling and survival. Am. J. Respir. Cell Mol. Biol. 33, 169–177 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Weinstock, J. V., Blum, A., Walder, J. & Walder, R. Eosinophils from granulomas in murine schistosomiasis mansoni produce substance P. J. Immunol. 141, 961–966 (1988).

    CAS  PubMed  Google Scholar 

  37. Camilleri, M., Coulie, B. & Tack, J. F. Visceral hypersensitivity: facts, speculations, and challenges. Gut 48, 125–131 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Quigley, E. M. Disturbances of motility and visceral hypersensitivity in irritable bowel syndrome: biological markers or epiphenomenon. Gastroenterol. Clin. North Am. 34, 221–233 (2005).

    Article  PubMed  Google Scholar 

  39. Stenfeldt, A. L. & Wennerås, C. Danger signals derived from stressed and necrotic epithelial cells activate human eosinophils. Immunology 112, 605–614 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Guajardo, J. R. et al. Eosinophil-associated gastrointestinal disorders: a world-wide-web based registry. J. Pediatr. 141, 576–581 (2002).

    Article  PubMed  Google Scholar 

  41. Furuta, G. T. et al. Eosinophilic esophagitis in children and adults: a systematic review and consensus recommendations for diagnosis and treatment. Gastroenterology 133, 1342–1363 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Blanchard, C., Wang. N. & Rothenberg, M. E. Eosinophilic esophagitis: pathogenesis, genetics, and therapy. J. Allergy Clin. Immunol. 118, 1054–1059 (2006).

    Article  PubMed  Google Scholar 

  43. Dobbins, J. W., Sheahan, D. G. & Behar, J. Eosinophilic gastroenteritis with esophageal involvement. Gastroenterology 72, 1312–1316 (1977).

    Article  CAS  PubMed  Google Scholar 

  44. Dellon, E. S., Aderoju, A., Woosley, J. T., Sandler, R. S. & Shaheen, N. J. Variability in diagnostic criteria for eosinophilic esophagitis: a systematic review. Am. J. Gastroenterol. 102, 1–14 (2007).

    Article  Google Scholar 

  45. Ronkainen, J. et al. Prevalence of oesophageal eosinophils and eosinophilic oesophagitis in adults: the population-based Kalixanda study. Gut 56, 615–620 (2007).

    Article  PubMed  Google Scholar 

  46. Kephart, G. M. et al. Marked deposition of eosinophil-derived neurotoxin in adult patients with eosinophilic esophagitis. Am. J. Gastroenterol. doi:10.1038/ajg.2009.584.

    Article  CAS  Google Scholar 

  47. Straumann, A., Bauer, M., Fischer, B., Blaser, K. & Simon, H. U. Idiopathic eosinophilic esophagitis is associated with a T(H)2-type allergic inflammatory response. J. Allergy Clin. Immunol. 108, 954–961 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Stein, M. L. et al. Anti-IL-5 (mepolizumab) therapy for eosinophilic esophagitis. J. Allergy Clin. Immunol. 118, 1312–1319 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Straumann, A. et al. Anti-interleukin-5 antibody treatment (mepolizumab) in active eosinophilic esophagitis: a randomized, placebo-controlled, double-blind trial. Gut 59, 21–30 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Blanchard, C. et al. Eotaxin-3 and a uniquely conserved gene-expression profile in eosinophilic esophagitis. J. Clin. Invest. 116, 536–547 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Talley, N. J., Shorter, R. G., Phillips, S. F. & Zinsmeister, A. R. Eosinophilic gastroenteritis: a clinicopathological study of patients with disease of the mucosa, muscle layer, and subserosal tissues. Gut 31, 54–58 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Desreumaux, P. et al. Interleukin 3, granulocyte-macrophage colony-stimulating factor, and interleukin 5 in eosinophilic gastroenteritis. Gastroenterology 110, 768–774 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Weller, P. F. & Bubley, G. J. The idiopathic hypereosinophilic syndrome. Blood 83, 2759–2779 (1994).

    Article  CAS  PubMed  Google Scholar 

  54. Seefeld, U., Krejs, G. J., Siebenmann, R. E. & Blum, A. L. Esophageal histology in gastroesophageal reflux. Morphometric findings in suction biopsies. Am. J. Dig. Dis. 22, 956–964 (1977).

    Article  CAS  PubMed  Google Scholar 

  55. Winter, H. S. et al. Intraepithelial eosinophils: a new diagnostic criterion for reflux esophagitis. Gastroenterology 83, 818–823 (1982).

    Article  CAS  PubMed  Google Scholar 

  56. Brown, L. F., Goldman, H. & Antonioli, D. A. Intraepithelial eosinophils in endoscopic biopsies of adults with reflux esophagitis. Am. J. Surg. Pathol. 8, 899–905 (1984).

    Article  CAS  PubMed  Google Scholar 

  57. Parfitt, J. R., Gregor, J. C., Suskin, N. G., Jawa, H. A. & Driman, D. K. Eosinophilic esophagitis in adults: distinguishing features from gastroesophageal reflux disease: a study of 41 patients. Mod. Pathol. 19, 90–96 (2006).

    Article  PubMed  Google Scholar 

  58. Vandezande, L. M. et al. Interleukin-5 immunoreactivity and mRNA expression in gut mucosa from patients with food allergy. Clin. Exp. Allergy 29, 652–659 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Schade, R. P. et al. Differences in antigen-specific T-cell responses between infants with atopic dermatitis with and without cow's milk allergy: relevance of TH2 cytokines. J. Allergy Clin. Immunol. 106, 1155–1162 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. André, F., Pène, J. & André, C. Interleukin-4 and interferon-gamma production by peripheral blood mononuclear cells from food-allergic patients. Allergy 51, 350–355 (1996).

    PubMed  Google Scholar 

  61. Laan, M. P. et al. CD4+ cells proliferate after peanut-extract-specific and CD8+ cells proliferate after polyclonal stimulation of PBMC of children with atopic dermatitis. Clin. Exp. Allergy 28, 35–44 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Schwab, D. et al. Functional and morphologic characterization of eosinophils in the lower intestinal mucosa of patients with food allergy. Am. J. Gastroenterol. 98, 1525–1534 (2003).

    Article  PubMed  Google Scholar 

  63. Rona, R. J. et al. The prevalence of food allergy: a meta-analysis. J. Allergy Clin. Immunol. 120, 638–646 (2007).

    Article  PubMed  Google Scholar 

  64. Young, E., Stoneham, M. D., Petruckevitch, A., Barton, J. & Rona, R. A. population study of food intolerance. Lancet 343, 1127–1130 (1994).

    Article  CAS  PubMed  Google Scholar 

  65. Ben-Horin, S. et al. Characterizing the circulating, gliadin-specific CD4+ memory T cells in patients with celiac disease: linkage between memory function, gut homing and Th1 polarization. J. Leukoc. Biol. 79, 676–685 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Beyer, K. et al. Human milk-specific mucosal lymphocytes of the gastrointestinal tract display a TH2 cytokine profile. J. Allergy Clin. Immunol. 109, 707–713 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Hare, N. D. & Fasano, M. B. Clinical manifestations of food allergy: differentiating true allergy from food intolerance. Postgrad. Med. 120, e1–e5 (2008).

    Article  Google Scholar 

  68. Pearlman, E. et al. The role of eosinophils and neutrophils in helminth-induced keratitis. Invest. Ophthalmol. Vis. Sci. 39, 1176–1182 (1998).

    CAS  PubMed  Google Scholar 

  69. Hagan, P., Wilkins, H. A., Blumenthal, U. J., Hayes, R. J. & Greenwood, B. M. Eosinophilia and resistance to Schistosoma haematobium in man. Parasite Immunol. 7, 625–632 (1985).

    Article  CAS  PubMed  Google Scholar 

  70. Sturrock, R. F. et al. Observations on possible immunity to reinfection among Kenyan schoolchildren after treatment for Schistosoma mansoni. Trans. R. Soc. Trop. Med. Hyg. 77, 363–371 (1983).

    Article  CAS  PubMed  Google Scholar 

  71. Lehrer, R. I. et al. Antibacterial properties of eosinophil major basic protein and eosinophil cationic protein. J. Immunol. 142, 4428–4434 (1989).

    CAS  PubMed  Google Scholar 

  72. Persson, T. et al. Bactericidal activity of human eosinophilic granulocytes against Escherichia coli. Infect. Immun. 69, 3591–3596 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wong, C. K., Cheung, P. F., Ip, W. K. & Lam, C. W. Intracellular signaling mechanisms regulating toll-like receptor-mediated activation of eosinophils. Am. J. Respir. Cell Mol. Biol. 37, 85–96 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Löscher, T. & Saathoff, E. Eosinophilia during intestinal infection. Best Pract. Res. Clin. Gastroenterol. 22, 511–536 (2008).

    Article  PubMed  CAS  Google Scholar 

  75. Carvalho, A. T. et al. Immunohistochemical study of intestinal eosinophils in inflammatory bowel disease. J. Clin. Gastroenterol. 36, 120–125 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Sarin, S. K. et al. Significance of eosinophil and mast cell counts in rectal mucosa in ulcerative colitis. A prospective controlled study. Dig. Dis. Sci. 32, 363–367 (1987).

    Article  CAS  PubMed  Google Scholar 

  77. Willoughby, C. P., Piris, J. & Truelove, S. C. Tissue eosinophils in ulcerative colitis. Scand. J. Gastroenterol. 14, 395–399 (1979).

    CAS  PubMed  Google Scholar 

  78. Carlson, M., Raab, Y., Peterson, C., Hällgren, R. & Venge, P. Increased intraluminal release of eosinophil granule proteins EPO, ECP, EPX, and cytokines in ulcerative colitis and proctitis in segmental perfusion. Am. J. Gastroenterol. 94, 1876–1883 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Raab, Y., Fredens, K., Gerdin, B. & Hällgren, R. Eosinophil activation in ulcerative colitis: studies on mucosal release and localization of eosinophil granule constituents. Dig. Dis. Sci. 43, 1061–1070 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Heatley, R. V. & James, P. D. Eosinophils in the rectal mucosa, a simple method for predicting the outcome of ulcerative proctocolitis. Gut 20, 787–791 (1978).

    Article  Google Scholar 

  81. Lampinen, M. et al. Eosinophil granulocytes are activated during the remission phase of ulcerative colitis. Gut 54, 1714–1720 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bischoff, S. C. et al. Quantitative assessment of intestinal eosinophils and mast cells in inflammatory bowel disease. Histopathology 28, 1–13 (1996).

    Article  CAS  PubMed  Google Scholar 

  83. Al-Haddad, S. & Riddell, R. H. The role of eosinophils in inflammatory bowel disease. Gut 54, 1674–1675 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Stenfeldt, A. L. & Wennerås, C. Danger signals derived from stressed and necrotic epithelial cells activate human eosinophils. Immunology 112, 605–614 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wahl, S. M. Transforming growth factor beta: the good, the bad, and the ugly. J. Exp. Med. 180, 1587–1590 (1994).

    Article  CAS  PubMed  Google Scholar 

  86. Xu, X. et al. Mast cells and eosinophils have a potential profibrogenic role in Crohn disease. Scand. J. Gastroenterol. 39, 440–447 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Gelbmann, C. M. et al. Strictures in Crohn's disease are characterised by an accumulation of mast cells colocalised with laminin but not with fibronectin or vitronectin. Gut 45, 210–217 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Noth, I., Strek, M. E. & Leff, A. R. Churg–Strauss syndrome. Lancet 361, 587–594 (2003).

    Article  PubMed  Google Scholar 

  89. Nakamura, Y. et al. Multiple perforated ulcers of the small intestine associated with allergic granulomatous angiitis: report of a case. Surg. Today 32, 541–546 (2002).

    Article  PubMed  Google Scholar 

  90. Sharma, M. C., Safaya, R. & Sidhu, B. S. Perforation of small intestine caused by Churg–Strauss syndrome. J. Clin. Gastroenterol. 23, 232–235 (1996).

    Article  CAS  PubMed  Google Scholar 

  91. Schoretsanitis, G. N., Wakely, D. M., Maddox, T. & Wastell, C. A case of Churg–Strauss vasculitis complicated by small bowel necrosis. Postgrad. Med. J. 69, 828–831 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. DeSchryver-Kecskemeti, K. & Clouse, R. E. A previously unrecognized subgroup of “eosinophilic gastroenteritis”: association with connective tissue diseases. Am. J. Surg. Pathol. 8, 171–180 (1984).

    Article  CAS  PubMed  Google Scholar 

  93. Buchman, A. L., Wolf, D. & Gramlich, T. Eosinophilic gastrojejunitis associated with connective tissue disease. South. Med. J. 89, 327–330 (1996).

    Article  CAS  PubMed  Google Scholar 

  94. Barbie, D. A., Mangi, A. A. & Lauwers, G. Y. Eosinophilic gastroenteritis associated with systemic lupus erythematosus. J. Clin. Gastroenterol. 38, 883–886 (2004).

    Article  PubMed  Google Scholar 

  95. Walker, C., Kaegi, M. K., Braun, P. & Blaser, K. Activated T cells and eosinophilia in bronchoalveolar lavages from subjects with asthma correlated with disease severity. J. Allergy Clin. Immunol. 88, 935–942 (1991).

    Article  CAS  PubMed  Google Scholar 

  96. Ying, S. et al. Expression of IL-4 and IL-5 mRNA and protein product by CD4+ and CD8+ T cells, eosinophils, and mast cells in bronchial biopsies obtained from atopic and nonatopic (intrinsic) asthmatics. J. Immunol. 158, 3539–3544 (1997).

    CAS  PubMed  Google Scholar 

  97. Humbert, M. et al. IL-4 and IL-5 mRNA and protein in bronchial biopsies from patients with atopic and nonatopic asthma: evidence against “intrinsic” asthma being a distinct immunopathologic entity. Am. J. Respir. Crit. Care Med. 154, 1497–1504 (1996).

    Article  CAS  PubMed  Google Scholar 

  98. Wallaert, B. et al. Immunoreactivity for interleukin 3 and 5 granulocyte/macrophage colony-stimulating factor of intestinal mucosa in bronchial asthma. J. Exp. Med. 182, 1897–1904 (1995).

    Article  CAS  PubMed  Google Scholar 

  99. Pires, G. V. et al. Small bowel of patients with asthma and allergic rhinitis: absence of inflammation despite the presence of major cellular components of allergic inflammation. Allergy Asthma Proc. 25, 253–259 (2004).

    PubMed  Google Scholar 

  100. Onbasi, K. et al. Eosinophil infiltration of the oesophageal mucosa in patients with pollen allergy during the season. Clin. Exp. Allergy 35, 1423–1431 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Arisawa, T. et al. Endoscopic and histological features of the large intestine in patients with atopic dermatitis. J. Clin. Biochem. Nutr. 40, 24–30 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Zeibecoglou, K. et al. Increased mature and immature CCR3 messenger RNA+ eosinophils in bone marrow from patients with atopic asthma compared with atopic and nonatopic control subjects. J. Allergy Clin. Immunol. 103, 99–106 (1999).

    Article  CAS  PubMed  Google Scholar 

  103. Benard, A. et al. Increased intestinal permeability in bronchial asthma. J. Allergy Clin. Immunol. 97, 1173–1178 (1996).

    Article  CAS  PubMed  Google Scholar 

  104. Tibble, J. A., Sigthorsson, G., Bridger, S., Fagerhol, M. K. & Bjarnason, I. Surrogate markers of intestinal inflammation are predictive of relapse in patients with inflammatory bowel disease. Gastroenterology 119, 15–22 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. D'Incà, R. et al. Intestinal permeability test as a predictor of clinical course in Crohn's disease. Am. J. Gastroenterol. 94, 2956–2960 (1999).

    Article  PubMed  Google Scholar 

  106. Spiller, R. C. et al. Increased rectal mucosal enteroendocrine cells, T lymphocytes, and increased gut permeability following acute Campylobacter enteritis and in post-dysenteric irritable bowel syndrome. Gut 47, 804–811 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Dunlop, S. P. et al. Abnormal intestinal permeability in subgroups of diarrhea-predominant irritable bowel syndromes. Am. J. Gastroenterol. 101, 1288–1294 (2006).

    Article  PubMed  Google Scholar 

  108. Havemann, B. D., Henderson, C. A. & El-Serag, H. B. The association between gastro-oesophageal reflux disease and asthma: a systematic review. Gut 56, 1654–1664 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Powell, N., Huntley, B., Beech, T. & Knight, W. Upper gastrointestinal symptoms and asthma: a manifestation of allergy? Gut 57, 1026–1027 (2008).

    CAS  PubMed  Google Scholar 

  110. Caffarelli, C. et al. Gastrointestinal symptoms in patients with asthma. Arch. Dis. Child. 82, 131 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Caffarelli, C. et al. Gastrointestinal symptoms in atopic eczema. Arch. Dis. Child. 78, 230–234 (1988).

    Article  Google Scholar 

  112. Powell, N. et al. Increased prevalence of gastrointestinal symptoms in patients with allergic disease. Postgrad. Med. J. 83, 182–186 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Huerta, C., Garcia Rodriguez, L. A., Wallander, M. A. & Johansson, S. Risk of irritable bowel syndrome among asthma patients. Pharmacoepidemiol. Drug Saf. 11, 31–35 (2002).

    Article  PubMed  Google Scholar 

  114. Roussos, A., Koursarakos, P., Patsopoulos, D., Gerogianni, I. & Philippou, N. Increased prevalence of irritable bowel syndrome in patients with bronchial asthma. Respir. Med. 97, 75–79 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Bradley, B. L. et al. Eosinophils, T-lymphocytes, mast cells, neutrophils, and macrophages in bronchial biopsy specimens from atopic subjects with asthma: comparison with biopsy specimens from atopic subjects without asthma and normal control subjects and relationship to bronchial hyperresponsiveness. J. Allergy Clin. Immunol. 88, 661–674 (1991).

    Article  CAS  PubMed  Google Scholar 

  116. Longstreth, G. F. et al. Functional bowel disorders. Gastroenterology 130, 1480–1491 (2006).

    Article  PubMed  Google Scholar 

  117. Jones, R. H. et al. Dyspepsia in England and Scotland. Gut 31, 401–405 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Agreus, L. Natural history of dyspepsia. Gut 50 (Suppl. 4), 2–9 (2002).

    Google Scholar 

  119. Talley, N. J. et al. Non-ulcer dyspepsia and duodenal eosinophilia: an adult endoscopic population-based case-control study. Clin. Gastroenterol. Hepatol. 5, 1175–1183 (2007).

    Article  PubMed  Google Scholar 

  120. Friesen, C. A., Sandridge, L., Andre, L., Roberts, C. C. & Abdel-Rahman, S. M. Mucosal eosinophilia and response to H1/H2 antagonist and cromolyn therapy in pediatric dyspepsia. Clin. Pediatr. (Phila.) 45, 143–147 (2006).

    Article  Google Scholar 

  121. Friesen, C. A., Zwick, D. L., Sandridge, L. & Roberts, C. C. Pediatric dyspepsia responsive to oral cromolyn: a report of eleven cases. J. Pediatr. Gastroenterol. Nutr. 17, 326–328 (1993).

    Article  CAS  PubMed  Google Scholar 

  122. Friesen, C. A. et al. Clinical efficacy and pharmacokinetics of montelukast in dyspeptic children with duodenal eosinophilia. J. Pediatr. Gastroenterol. Nutr. 38, 343–351 (2004).

    Article  PubMed  Google Scholar 

  123. Schäppi, M. G., Smith, V. V., Milla, P. J. & Lindley, K. J. Eosinophilic myenteric ganglionitis is associated with functional intestinal obstruction. Gut 52, 752–755 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  124. O'Sullivan, M. et al. Increased mast cells in the irritable bowel syndrome. Neurogastroenterol. Motil. 12, 449–457 (2000).

    Article  CAS  PubMed  Google Scholar 

  125. Piche, T. et al. Mast cells and cellularity of the colonic mucosa correlated with fatigue and depression in irritable bowel syndrome. Gut 57, 468–473 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Guilarte, M. et al. Diarrhoea-predominant IBS patients show mast cell activation and hyperplasia in the jejunum. Gut 56, 203–209 (2007).

    Article  PubMed  Google Scholar 

  127. Weston, A. P., Biddle, W. L., Bhatia, P. S. & Miner, P. B. Jr. Terminal ileal mucosal mast cells in irritable bowel syndrome. Dig. Dis. Sci. 38, 1590–1595 (1993).

    Article  CAS  PubMed  Google Scholar 

  128. Barbara, G. et al. Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. Gastroenterology 126, 693–702 (2004).

    Article  PubMed  Google Scholar 

  129. Akbar, A. et al. Increased capsaicin receptor TRPV1-expressing sensory fibres in irritable bowel syndrome and their correlation with abdominal pain. Gut 57, 923–929 (2008).

    Article  CAS  PubMed  Google Scholar 

  130. Park, J. H. et al. Mucosal mast cell counts correlate with visceral hypersensitivity in patients with diarrhoea predominant irritable bowel syndrome. J. Gastroenterol. Hepatol. 21, 71–78 (2006).

    Article  PubMed  Google Scholar 

  131. Chadwick, V. S. et al. Activation of the mucosal immune system in irritable bowel syndrome. Gastroenterology 122, 1778–1783 (2002).

    Article  PubMed  Google Scholar 

  132. Walker, M. M. et al. Duodenal mastocytosis, eosinophilia and intra-epithelial lymphocytosis as possible disease markers in the irritable bowel syndrome and functional dyspepsia. Aliment. Pharmacol. Ther. 29, 765–773 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Törnblom, H., Lindberg, G., Nyberg, B. & Veress, B. Full-thickness biopsy of the jejunum reveals inflammation and enteric neuropathy in irritable bowel syndrome. Gastroenterology 123, 1972–1979 (2002).

    Article  PubMed  Google Scholar 

  134. Langhorst, J. et al. Elevated human beta-defensin-2 levels indicate an activation of the innate immune system in patients with irritable bowel syndrome. Am. J. Gastroenterol. 104, 404–410 (2009).

    Article  CAS  PubMed  Google Scholar 

  135. Murch, S. Allergy and intestinal dysmotility—evidence of genuine causal linkage? Curr. Opin. Gastroenterol. 22, 664–668 (2006).

    Article  CAS  PubMed  Google Scholar 

  136. Akiho, H., Deng, Y., Blennerhassett, P., Kanbayashi, H. & Collins, S. M. Mechanisms underlying the maintenance of muscle hypercontractility in a model of postinfective gut dysfunction. Gastroenterology 129, 131–141 (2005).

    Article  CAS  PubMed  Google Scholar 

  137. Hogan, S. P. et al. A pathological function for eotaxin and eosinophils in eosinophilic gastrointestinal inflammation. Nat. Immunol. 2, 353–360 (2001).

    Article  CAS  PubMed  Google Scholar 

  138. Camilleri, M., Brown, M. L. & Malagelada, J. R. Relationship between impaired gastric emptying and abnormal gastrointestinal motility. Gastroenterology 91, 94–99 (1986).

    Article  CAS  PubMed  Google Scholar 

  139. Tack, J. et al. Role of impaired gastric accommodation to a meal in functional dyspepsia. Gastroenterology 115, 1346–1352 (1998).

    Article  CAS  PubMed  Google Scholar 

  140. Holtmann, G., Geobell, H. & Talley, N. J. Impaired small intestinal peristaltic reflexes and sensory thresholds are independent functional disturbances in patients with chronic unexplained dyspepsia. Am. J. Gastroenterol. 91, 485–491 (1996).

    CAS  PubMed  Google Scholar 

  141. Holtmann, G., Talley, N. J., Liebregts, T., Adam, B. & Parow, C. A placebo-controlled trial of itopride in functional dyspepsia. N. Engl. J. Med. 354, 832–840 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. Talley, N. J., Tack, J., Ptak, T., Gupta, R. & Giguère, M. Itopride in functional dyspepsia: results of two phase III multicentre, randomised, double-blind, placebo-controlled trials. Gut 57, 740–746 (2008).

    Article  CAS  PubMed  Google Scholar 

  143. Gargala, G. et al. Duodenal intraepithelial T lymphocytes in patients with functional dyspepsia. World J. Gastroenterol. 13, 2333–2338 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Knowles, C. H. et al. Safety and diagnostic yield of laparoscopically assisted full-thickness bowel biospy. Neurogastroenterol. Motil. 20, 774–779 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Désirée Lie, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the MedscapeCME-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas J. Talley.

Ethics declarations

Competing interests

The authors, the Journal Editor N. Wood and the CME questions author D. Lie declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Powell, N., Walker, M. & Talley, N. Gastrointestinal eosinophils in health, disease and functional disorders. Nat Rev Gastroenterol Hepatol 7, 146–156 (2010). https://doi.org/10.1038/nrgastro.2010.5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2010.5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing