Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The extracellular matrix of the gastrointestinal tract: a regenerative medicine platform

Key Points

  • The extracellular matrix (ECM) is an ideal therapeutic substrate for functional remodelling of damaged gastrointestinal (GI) tissue, owing to its composition and roles in tissue development, wound repair and homeostasis

  • Components of the host response have been associated with ECM-induced site-appropriate constructive and functional tissue remodelling, including angiogenesis, innervation, stem cell recruitment, antimicrobial activity and modulation of the innate immune response

  • The GI tract presents distinct challenges for regenerative medicine, such as its requirement for motility and nutrient absorption, its diverse pH conditions and its tissue-specific 3D ultrastructure

  • ECM bioscaffolds comprise structural and functional molecules that are secreted by resident cells, and ECM bioscaffolds have been prepared from the decellularization of tissues from the oesophagus, small intestine, stomach and colon

  • Despite the challenges imposed by the GI tract, the use of ECM bioscaffolds for the reconstruction and regeneration of GI tissues has shown promise in preclinical and early clinical studies

  • Several studies have highlighted the potential benefits of using tissue-specific ECM bioscaffolds to facilitate the constructive and functional regeneration of tissues of the GI tract

Abstract

The synthesis and secretion of components that constitute the extracellular matrix (ECM) by resident cell types occur at the earliest stages of embryonic development, and continue throughout life in both healthy and diseased physiological states. The ECM consists of a complex mixture of insoluble and soluble functional components that are arranged in a tissue-specific 3D ultrastructure, and it regulates numerous biological processes, including angiogenesis, innervation and stem cell differentiation. Owing to its composition and influence on embryonic development, as well as cellular and organ homeostasis, the ECM is an ideal therapeutic substrate for the repair of damaged or diseased tissues. Biologic scaffold materials that are composed of ECM have been used in various surgical and tissue-engineering applications. The gastrointestinal (GI) tract presents distinct challenges, such as diverse pH conditions and the requirement for motility and nutrient absorption. Despite these challenges, the use of homologous and heterologous ECM bioscaffolds for the focal or segmental reconstruction and regeneration of GI tissue has shown promise in early preclinical and clinical studies. This Review discusses the importance of tissue-specific ECM bioscaffolds and highlights the major advances that have been made in regenerative medicine strategies for the reconstruction of functional GI tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of extracellular matrix bioscaffold decellularization and preparation.
Figure 2: The biologically active molecular components of extracellular matrix bioscaffolds.
Figure 3: The origins, regions and layers of the major segments of the gastrointestinal tract.
Figure 4: Use of extracellular matrix bioscaffolds in gastrointestinal tissue repair and regeneration.
Figure 5: Conceptual workflow for proteomic analysis of extracellular matrix proteins.

Similar content being viewed by others

References

  1. Mecham, R. P. in Current Protocols in Cell Biology (eds Bonifacino, J.S. et al.) 10.1.1–10.1.16 (John Wiley & Sons, 2012).

    Google Scholar 

  2. Mouw, J. K., Ou, G. & Weaver, V. M. Extracellular matrix assembly: a multiscale deconstruction. Nat. Rev. Mol. Cell Biol. 15, 771–785 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Arnold, M., Soerjomataram, I., Ferlay, J. & Forman, D. Global incidence of oesophageal cancer by histological subtype in 2012. Gut 64, 381–387 (2015).

    PubMed  Google Scholar 

  4. Midwood, K. S., Williams, L. V. & Schwarzbauer, J. E. Tissue repair and the dynamics of the extracellular matrix. Int. J. Biochem. Cell Biol. 36, 1031–1037 (2004).

    CAS  PubMed  Google Scholar 

  5. Nelson, C. M. & Bissell, M. J. Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu. Rev. Cell Dev. Biol. 22, 287–309 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Calve, S., Odelberg, S. J. & Simon, H. G. A transitional extracellular matrix instructs cell behavior during muscle regeneration. Dev. Biol. 344, 259–271 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Humphrey, J. D., Dufresne, E. R. & Schwartz, M. A. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 15, 802–812 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Charras, G. & Sahai, E. Physical influences of the extracellular environment on cell migration. Nat. Rev. Mol. Cell Biol. 15, 813–824 (2014).

    CAS  PubMed  Google Scholar 

  9. Sun, Z., Guo, S. S. & Fassler, R. Integrin-mediated mechanotransduction. J. Cell Biol. 215, 445–456 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Rosso, F., Giordano, A., Barbarisi, M. & Barbarisi, A. From cell–ECM interactions to tissue engineering. J. Cell. Physiol. 199, 174–180 (2004).

    CAS  PubMed  Google Scholar 

  11. Larsen, M., Artym, V. V., Green, J. A. & Yamada, K. M. The matrix reorganized: extracellular matrix remodeling and integrin signaling. Curr. Opin. Cell Biol. 18, 463–471 (2006).

    CAS  PubMed  Google Scholar 

  12. Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002).

    CAS  PubMed  Google Scholar 

  13. Harburger, D. S. & Calderwood, D. A. Integrin signalling at a glance. J. Cell Sci. 122, 159–163 (2009).

    CAS  PubMed  Google Scholar 

  14. Alam, N. et al. The integrin-growth factor receptor duet. J. Cell. Physiol. 213, 649–653 (2007).

    CAS  PubMed  Google Scholar 

  15. Kim, S. H., Turnbull, J. & Guimond, S. Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J. Endocrinol. 209, 139–151 (2011).

    CAS  PubMed  Google Scholar 

  16. Lussier, C., Basora, N., Bouatrouss, Y. & Beaulieu, J. F. Integrins as mediators of epithelial cell–matrix interactions in the human small intestinal mucosa. Microsc. Res. Tech. 51, 169–178 (2000).

    CAS  PubMed  Google Scholar 

  17. Beaulieu, J. F. Extracellular matrix components and integrins in relationship to human intestinal epithelial cell differentiation. Prog. Histochem. Cytochem. 31, 1–78 (1997).

    CAS  PubMed  Google Scholar 

  18. Beaulieu, J. F. Integrins and human intestinal cell functions. Front. Biosci. 4, D310–D321 (1999).

    CAS  PubMed  Google Scholar 

  19. Sicari, B. M. et al. The effect of source animal age upon the in vivo remodeling characteristics of an extracellular matrix scaffold. Biomaterials 33, 5524–5533 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Tottey, S. et al. The effect of source animal age upon extracellular matrix scaffold properties. Biomaterials 32, 128–136 (2011).

    CAS  PubMed  Google Scholar 

  21. Butcher, D. T., Alliston, T. & Weaver, V. M. A tense situation: forcing tumour progression. Nat. Rev. Cancer 9, 108–122 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Linskens, M. H. et al. Cataloging altered gene expression in young and senescent cells using enhanced differential display. Nucleic Acids Res. 23, 3244–3251 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bissell, M. J., Hall, H. G. & Parry, G. How does the extracellular matrix direct gene expression? J. Theor. Biol. 99, 31–68 (1982).

    CAS  PubMed  Google Scholar 

  24. Xu, R., Boudreau, A. & Bissell, M. J. Tissue architecture and function: dynamic reciprocity via extra- and intra-cellular matrices. Cancer Metastasis Rev. 28, 167–176 (2009).

    PubMed  PubMed Central  Google Scholar 

  25. Gilkes, D. M., Bajpai, S., Chaturvedi, P., Wirtz, D. & Semenza, G. L. Hypoxia-inducible factor 1 (HIF-1) promotes extracellular matrix remodeling under hypoxic conditions by inducing P4HA1, P4HA2, and PLOD2 expression in fibroblasts. J. Biol. Chem. 288, 10819–10829 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kufaishi, H., Alarab, M., Drutz, H., Lye, S. & Shynlova, O. Static mechanical loading influences the expression of extracellular matrix and cell adhesion proteins in vaginal cells derived from premenopausal women with severe pelvic organ prolapse. Reprod. Sci. 23, 978–992 (2016).

    CAS  PubMed  Google Scholar 

  27. Dziki, J. L. et al. The effect of mechanical loading upon extracellular matrix bioscaffold-mediated skeletal muscle remodeling. Tissue Eng. Part A http://dx.doi.org/10.1089/ten.TEA.2017.0011 (2017).

  28. Lu, P., Takai, K., Weaver, V. M. & Werb, Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb. Perspect. Biol. 3, a005058 (2011).

    PubMed  PubMed Central  Google Scholar 

  29. Almalki, S. G. & Agrawal, D. K. Effects of matrix metalloproteinases on the fate of mesenchymal stem cells. Stem Cell Res. Ther. 7, 129 (2016).

    PubMed  PubMed Central  Google Scholar 

  30. Kaestner, K. Development, Differentiation, and Disease of the Luminal Gastrointestinal Tract Vol. 96 (Academic Press, 2010).

    Google Scholar 

  31. Bonnans, C., Chou, J. & Werb, Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 15, 786–801 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Simon-Assmann, P., Kedinger, M., De Arcangelis, A., Rousseau, V. & Simo, P. Extracellular matrix components in intestinal development. Experientia 51, 883–900 (1995).

    CAS  PubMed  Google Scholar 

  33. Goke, M. & Podolsky, D. K. Regulation of the mucosal epithelial barrier. Baillieres Clin. Gastroenterol. 10, 393–405 (1996).

    CAS  PubMed  Google Scholar 

  34. Goke, M., Zuk, A. & Podolsky, D. K. Regulation and function of extracellular matrix intestinal epithelial restitution in vitro. Am. J. Physiol. 271, G729–G740 (1996).

    CAS  PubMed  Google Scholar 

  35. Shimshoni, E., Yablecovitch, D., Baram, L., Dotan, I. & Sagi, I. ECM remodelling in IBD: innocent bystander or partner in crime? The emerging role of extracellular molecular events in sustaining intestinal inflammation. Gut 64, 367–372 (2015).

    CAS  PubMed  Google Scholar 

  36. Speca, S., Giusti, I., Rieder, F. & Latella, G. Cellular and molecular mechanisms of intestinal fibrosis. World J. Gastroenterol. 18, 3635–3661 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Spenle, C. et al. Dysregulation of laminins in intestinal inflammation. Pathol. Biol. (Paris) 60, 41–47 (2012).

    CAS  Google Scholar 

  38. Teller, I. C. & Beaulieu, J. F. Interactions between laminin and epithelial cells in intestinal health and disease. Expert Rev. Mol. Med. 3, 1–18 (2001).

    CAS  PubMed  Google Scholar 

  39. Worthley, D. L., Giraud, A. S. & Wang, T. C. The extracellular matrix in digestive cancer. Cancer Microenviron. 3, 177–185 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Verma, S., Kesh, K., Ganguly, N., Jana, S. & Swarnakar, S. Matrix metalloproteinases and gastrointestinal cancers: impacts of dietary antioxidants. World J. Biol. Chem. 5, 355–376 (2014).

    PubMed  PubMed Central  Google Scholar 

  41. Yamaguchi, H. et al. Stromal fibroblasts mediate extracellular matrix remodeling and invasion of scirrhous gastric carcinoma cells. PLoS ONE 9, e85485 (2014).

    PubMed  PubMed Central  Google Scholar 

  42. Okamoto, R. & Watanabe, M. Molecular and clinical basis for the regeneration of human gastrointestinal epithelia. J. Gastroenterol. 39, 1–6 (2004).

    PubMed  Google Scholar 

  43. Voytik-Harbin, S. L., Brightman, A. O., Kraine, M. R., Waisner, B. & Badylak, S. F. Identification of extractable growth factors from small intestinal submucosa. J. Cell. Biochem. 67, 478–491 (1997).

    CAS  PubMed  Google Scholar 

  44. Fogar, P. et al. Neural cell adhesion molecule (N-CAM) in gastrointestinal neoplasias. Anticancer Res. 17, 1227–1230 (1997).

    CAS  PubMed  Google Scholar 

  45. Herszenyi, L. et al. Serum cathepsin B and plasma urokinase-type plasminogen activator levels in gastrointestinal tract cancers. Eur. J. Cancer Prev. 17, 438–445 (2008).

    PubMed  Google Scholar 

  46. Zhang, H. Y. et al. Expression of adhesion molecules and mucins in human and rhesus macaque gastrointestinal epithelial cells. Histol. Histopathol. 26, 1405–1413 (2011).

    CAS  PubMed  Google Scholar 

  47. Jarvelainen, H., Sainio, A., Koulu, M., Wight, T. N. & Penttinen, R. Extracellular matrix molecules: potential targets in pharmacotherapy. Pharmacol. Rev. 61, 198–223 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Stumpf, M. et al. Collagen distribution and expression of matrix metalloproteinases 1 and 13 in patients with anastomotic leakage after large-bowel surgery. Langenbecks Arch. Surg. 386, 502–506 (2002).

    PubMed  Google Scholar 

  49. Stumpf, M. et al. Changes of the extracellular matrix as a risk factor for anastomotic leakage after large bowel surgery. Surgery 137, 229–234 (2005).

    PubMed  Google Scholar 

  50. Angotti, R. et al. Gastric transposition as a valid surgical option for esophageal replacement in pediatric patients: experience from three Italian medical centers. Gastroenterol. Rep. (Oxf.) 5, 47–51 (2016).

    Google Scholar 

  51. Rieder, F., Brenmoehl, J., Leeb, S., Scholmerich, J. & Rogler, G. Wound healing and fibrosis in intestinal disease. Gut 56, 130–139 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Mammen, J. M. & Matthews, J. B. Mucosal repair in the gastrointestinal tract. Crit. Care Med. 31, S532–S537 (2003).

    PubMed  Google Scholar 

  53. Chibishev, A., Simonovska, N. & Shikole, A. Post-corrosive injuries of upper gastrointestinal tract. Prilozi 31, 297–316 (2010).

    CAS  PubMed  Google Scholar 

  54. Olczyk, P., Mencner, L. & Komosinska-Vassev, K. The role of the extracellular matrix components in cutaneous wound healing. Biomed. Res. Int. 2014, 747584 (2014).

    PubMed  PubMed Central  Google Scholar 

  55. Cai, J. & Terasaki, P. I. Humoral theory of transplantation: mechanism, prevention, and treatment. Hum. Immunol. 66, 334–342 (2005).

    PubMed  Google Scholar 

  56. Terasaki, P. I. A personal perspective: 100-year history of the humoral theory of transplantation. Transplantation 93, 751–756 (2012).

    PubMed  Google Scholar 

  57. Chinen, J. & Buckley, R. H. Transplantation immunology: solid organ and bone marrow. J. Allergy Clin. Immunol. 125, S324–S335 (2010).

    PubMed  PubMed Central  Google Scholar 

  58. Gilbert, T. W., Sellaro, T. L. & Badylak, S. F. Decellularization of tissues and organs. Biomaterials 27, 3675–3683 (2006).

    CAS  PubMed  Google Scholar 

  59. Crapo, P. M., Gilbert, T. W. & Badylak, S. F. An overview of tissue and whole organ decellularization processes. Biomaterials 32, 3233–3243 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Keane, T. J., Londono, R., Turner, N. J. & Badylak, S. F. Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials 33, 1771–1781 (2012).

    CAS  PubMed  Google Scholar 

  61. Brown, N. H. Extracellular matrix in development: insights from mechanisms conserved between invertebrates and vertebrates. Cold Spring Harb. Perspect. Biol. 3, a005082 (2011).

    PubMed  PubMed Central  Google Scholar 

  62. Exposito, J. Y., D'Alessio, M., Solursh, M. & Ramirez, F. Sea urchin collagen evolutionarily homologous to vertebrate pro-alpha 2(I) collagen. J. Biol. Chem. 267, 15559–15562 (1992).

    CAS  PubMed  Google Scholar 

  63. Bernard, M. P. et al. Nucleotide sequences of complementary deoxyribonucleic acids for the pro alpha 1 chain of human type I procollagen. Statistical evaluation of structures that are conserved during evolution. Biochemistry 22, 5213–5223 (1983).

    CAS  PubMed  Google Scholar 

  64. van der Rest, M. & Garrone, R. Collagen family of proteins. FASEB J. 5, 2814–2823 (1991).

    CAS  PubMed  Google Scholar 

  65. Allman, A. J. et al. Xenogeneic extracellular matrix grafts elicit a TH2-restricted immune response. Transplantation 71, 1631–1640 (2001).

    CAS  PubMed  Google Scholar 

  66. Alicuben, E. T. & DeMeester, S. R. Onlay ventral hernia repairs using porcine non-cross-linked dermal biologic mesh. Hernia 18, 705–712 (2014).

    CAS  PubMed  Google Scholar 

  67. Mase, V. J. Jr et al. Clinical application of an acellular biologic scaffold for surgical repair of a large, traumatic quadriceps femoris muscle defect. Orthopedics 33, 511 (2010).

    PubMed  Google Scholar 

  68. Bejjani, G. K., Zabramski, J. & Durasis Study, G. Safety and efficacy of the porcine small intestinal submucosa dural substitute: results of a prospective multicenter study and literature review. J. Neurosurg. 106, 1028–1033 (2007).

    PubMed  Google Scholar 

  69. Longo, U. G., Lamberti, A., Petrillo, S., Maffulli, N. & Denaro, V. Scaffolds in tendon tissue engineering. Stem Cells Int. 2012, 517165 (2012).

    PubMed  Google Scholar 

  70. Salzberg, C. A. Nonexpansive immediate breast reconstruction using human acellular tissue matrix graft (AlloDerm). Ann. Plast. Surg. 57, 1–5 (2006).

    CAS  PubMed  Google Scholar 

  71. Badylak, S. F. et al. Esophageal preservation in five male patients after endoscopic inner-layer circumferential resection in the setting of superficial cancer: a regenerative medicine approach with a biologic scaffold. Tissue Eng. Part A 17, 1643–1650 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. O'Connor, L. et al. Efficacy of anal fistula plug in closure of Crohn's anorectal fistulas. Dis. Colon Rectum 49, 1569–1573 (2006).

    PubMed  Google Scholar 

  73. Swinehart, I. T. & Badylak, S. F. Extracellular matrix bioscaffolds in tissue remodeling and morphogenesis. Dev. Dyn. 245, 351–360 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Badylak, S. F. Decellularized allogeneic and xenogeneic tissue as a bioscaffold for regenerative medicine: factors that influence the host response. Ann. Biomed. Eng. 42, 1517–1527 (2014).

    PubMed  Google Scholar 

  75. Londono, R. & Badylak, S. F. Biologic scaffolds for regenerative medicine: mechanisms of in vivo remodeling. Ann. Biomed. Eng. 43, 577–592 (2015).

    PubMed  Google Scholar 

  76. Turner, N. J., Badylak, J. S., Weber, D. J. & Badylak, S. F. Biologic scaffold remodeling in a dog model of complex musculoskeletal injury. J. Surg. Res. 176, 490–502 (2012).

    CAS  PubMed  Google Scholar 

  77. Sicari, B. M. et al. A murine model of volumetric muscle loss and a regenerative medicine approach for tissue replacement. Tissue Eng. Part A 18, 1941–1948 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Agrawal, V. et al. Epimorphic regeneration approach to tissue replacement in adult mammals. Proc. Natl Acad. Sci. USA 107, 3351–3355 (2010).

    CAS  PubMed  Google Scholar 

  79. Beattie, A. J., Gilbert, T. W., Guyot, J. P., Yates, A. J. & Badylak, S. F. Chemoattraction of progenitor cells by remodeling extracellular matrix scaffolds. Tissue Eng. Part A 15, 1119–1125 (2009).

    CAS  PubMed  Google Scholar 

  80. Sarikaya, A. et al. Antimicrobial activity associated with extracellular matrices. Tissue Eng. 8, 63–71 (2002).

    PubMed  Google Scholar 

  81. Brown, B. N., Ratner, B. D., Goodman, S. B., Amar, S. & Badylak, S. F. Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine. Biomaterials 33, 3792–3802 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Daly, K. A. et al. Damage associated molecular patterns within xenogeneic biologic scaffolds and their effects on host remodeling. Biomaterials 33, 91–101 (2012).

    CAS  PubMed  Google Scholar 

  83. Badylak, S. F., Freytes, D. O. & Gilbert, T. W. Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater. 5, 1–13 (2009).

    CAS  PubMed  Google Scholar 

  84. Dearth, C. L. et al. The effect of terminal sterilization on the material properties and in vivo remodeling of a porcine dermal biologic scaffold. Acta Biomater. 33, 78–87 (2016).

    CAS  PubMed  Google Scholar 

  85. Keane, T. J., Swinehart, I. T. & Badylak, S. F. Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance. Methods 84, 25–34 (2015).

    CAS  PubMed  Google Scholar 

  86. Badylak, S. F. Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl. Immunol. 12, 367–377 (2004).

    CAS  PubMed  Google Scholar 

  87. Nagata, S., Hanayama, R. & Kawane, K. Autoimmunity and the clearance of dead cells. Cell 140, 619–630 (2010).

    CAS  PubMed  Google Scholar 

  88. Zheng, M. H. et al. Porcine small intestine submucosa (SIS) is not an acellular collagenous matrix and contains porcine DNA: possible implications in human implantation. J. Biomed. Mater. Res. B Appl. Biomater. 73, 61–67 (2005).

    CAS  PubMed  Google Scholar 

  89. Gilbert, T. W., Freund, J. M. & Badylak, S. F. Quantification of DNA in biologic scaffold materials. J. Surg. Res. 152, 135–139 (2009).

    CAS  PubMed  Google Scholar 

  90. Wong, M. L. & Griffiths, L. G. Immunogenicity in xenogeneic scaffold generation: antigen removal versus decellularization. Acta Biomater. 10, 1806–1816 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Wong, M. L., Wong, J. L., Vapniarsky, N. & Griffiths, L. G. In vivo xenogeneic scaffold fate is determined by residual antigenicity and extracellular matrix preservation. Biomaterials 92, 1–12 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Cissell, D. D., Hu, J. C., Griffiths, L. G. & Athanasiou, K. A. Antigen removal for the production of biomechanically functional, xenogeneic tissue grafts. J. Biomech. 47, 1987–1996 (2014).

    PubMed  Google Scholar 

  93. Matuska, A. M. & McFetridge, P. S. The effect of terminal sterilization on structural and biophysical properties of a decellularized collagen-based scaffold; implications for stem cell adhesion. J. Biomed. Mater. Res. B Appl. Biomater. 103, 397–406 (2015).

    PubMed  Google Scholar 

  94. Keane, T. J. & Badylak, S. F. The host response to allogeneic and xenogeneic biological scaffold materials. J. Tissue Eng. Regen. Med. 9, 504–511 (2015).

    CAS  PubMed  Google Scholar 

  95. Freytes, D. O., Tullius, R. S. & Badylak, S. F. Effect of storage upon material properties of lyophilized porcine extracellular matrix derived from the urinary bladder. J. Biomed. Mater. Res. B Appl. Biomater. 78, 327–333 (2006).

    PubMed  Google Scholar 

  96. Freytes, D. O., Tullius, R. S., Valentin, J. E., Stewart-Akers, A. M. & Badylak, S. F. Hydrated versus lyophilized forms of porcine extracellular matrix derived from the urinary bladder. J. Biomed. Mater. Res. A 87, 862–872 (2008).

    PubMed  Google Scholar 

  97. Saldin, L. T., Cramer, M. C., Velankar, S. S., White, L. J. & Badylak, S. F. Extracellular matrix hydrogels from decellularized tissues: structure and function. Acta Biomater. 49, 1–15 (2016).

    PubMed  PubMed Central  Google Scholar 

  98. Freytes, D. O., Martin, J., Velankar, S. S., Lee, A. S. & Badylak, S. F. Preparation and rheological characterization of a gel form of the porcine urinary bladder matrix. Biomaterials 29, 1630–1637 (2008).

    CAS  PubMed  Google Scholar 

  99. Wolf, M. T. et al. A hydrogel derived from decellularized dermal extracellular matrix. Biomaterials 33, 7028–7038 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Saxena, A. K., Ainoedhofer, H. & Hollwarth, M. E. Esophagus tissue engineering: in vitro generation of esophageal epithelial cell sheets and viability on scaffold. J. Pediatr. Surg. 44, 896–901 (2009).

    PubMed  Google Scholar 

  101. Saxena, A. K., Kofler, K., Ainodhofer, H. & Hollwarth, M. E. Esophagus tissue engineering: hybrid approach with esophageal epithelium and unidirectional smooth muscle tissue component generation in vitro. J. Gastrointest. Surg. 13, 1037–1043 (2009).

    PubMed  Google Scholar 

  102. Lee, M., Wu, B. M., Stelzner, M., Reichardt, H. M. & Dunn, J. C. Intestinal smooth muscle cell maintenance by basic fibroblast growth factor. Tissue Eng. Part A 14, 1395–1402 (2008).

    CAS  PubMed  Google Scholar 

  103. Araki, M. et al. Development of a new tissue-engineered sheet for reconstruction of the stomach. Artif. Organs 33, 818–826 (2009).

    CAS  PubMed  Google Scholar 

  104. Nakase, Y. et al. Tissue engineering of small intestinal tissue using collagen sponge scaffolds seeded with smooth muscle cells. Tissue Eng. 12, 403–412 (2006).

    CAS  PubMed  Google Scholar 

  105. Somara, S., Gilmont, R. R., Dennis, R. G. & Bitar, K. N. Bioengineered internal anal sphincter derived from isolated human internal anal sphincter smooth muscle cells. Gastroenterology 137, 53–61 (2009).

    CAS  PubMed  Google Scholar 

  106. Zakhem, E., Raghavan, S., Gilmont, R. R. & Bitar, K. N. Chitosan-based scaffolds for the support of smooth muscle constructs in intestinal tissue engineering. Biomaterials 33, 4810–4817 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Kim, I. Y. et al. Chitosan and its derivatives for tissue engineering applications. Biotechnol. Adv. 26, 1–21 (2008).

    CAS  PubMed  Google Scholar 

  108. Stevens, M. M. Biomaterials for bone tissue engineering. Mater. Today 11, 18–25 (2008).

    CAS  Google Scholar 

  109. O'Brien, F. J. Biomaterials & scaffolds for tissue engineering. Mater. Today 14, 88–95 (2011).

    CAS  Google Scholar 

  110. Alaribe, F. N., Manoto, S. L. & Motaung, S. C. K. M. Scaffolds from biomaterials: advantages and limitations in bone and tissue engineering. Biologia 71, 353–366 (2016).

    Google Scholar 

  111. Sarkar, K., Xue, Y. & Sant, S. in The Immune Response to Implanted Materials and Devices (ed. Corradetti, B.) 81–105 (Springer, 2017).

    Google Scholar 

  112. Zhu, Y., Leong, M. F., Ong, W. F., Chan-Park, M. B. & Chian, K. S. Esophageal epithelium regeneration on fibronectin grafted poly(L-lactide-co-caprolactone) (PLLC) nanofiber scaffold. Biomaterials 28, 861–868 (2007).

    CAS  PubMed  Google Scholar 

  113. Bitar, K. N. & Raghavan, S. Intestinal tissue engineering: current concepts and future vision of regenerative medicine in the gut. Neurogastroenterol. Motil. 24, 7–19 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Bitar, K. N., Raghavan, S. & Zakhem, E. Tissue engineering in the gut: developments in neuromusculature. Gastroenterology 146, 1614–1624 (2014).

    PubMed  Google Scholar 

  115. Speer, A. L., Sala, F. G., Matthews, J. A. & Grikscheit, T. C. Murine tissue-engineered stomach demonstrates epithelial differentiation. J. Surg. Res. 171, 6–14 (2011).

    CAS  PubMed  Google Scholar 

  116. Levin, D. E. et al. Human tissue-engineered small intestine forms from postnatal progenitor cells. J. Pediatr. Surg. 48, 129–137 (2013).

    PubMed  Google Scholar 

  117. Bitar, K. N. & Zakhem, E. Tissue engineering and regenerative medicine as applied to the gastrointestinal tract. Curr. Opin. Biotechnol. 24, 909–915 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Zisch, A. H., Lutolf, M. P. & Hubbell, J. A. Biopolymeric delivery matrices for angiogenic growth factors. Cardiovasc. Pathol. 12, 295–310 (2003).

    CAS  PubMed  Google Scholar 

  119. Lovett, M., Lee, K., Edwards, A. & Kaplan, D. L. Vascularization strategies for tissue engineering. Tissue Eng. Part B Rev. 15, 353–370 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Wenger, A. et al. Development and characterization of a spheroidal coculture model of endothelial cells and fibroblasts for improving angiogenesis in tissue engineering. Cells Tissues Organs 181, 80–88 (2005).

    PubMed  Google Scholar 

  121. Finkenzeller, G., Torio-Padron, N., Momeni, A., Mehlhorn, A. T. & Stark, G. B. In vitro angiogenesis properties of endothelial progenitor cells: a promising tool for vascularization of ex vivo engineered tissues. Tissue Eng. 13, 1413–1420 (2007).

    CAS  PubMed  Google Scholar 

  122. Rouwkema, J., Rivron, N. C. & van Blitterswijk, C. A. Vascularization in tissue engineering. Trends Biotechnol. 26, 434–441 (2008).

    CAS  PubMed  Google Scholar 

  123. Vunjak-Novakovic, G. & Radisic, M. Cell seeding of polymer scaffolds. Methods Mol. Biol. 238, 131–146 (2004).

    CAS  PubMed  Google Scholar 

  124. Dziki, J. L., Sicari, B. M., Wolf, M. T., Cramer, M. C. & Badylak, S. F. Immunomodulation and mobilization of progenitor cells by extracellular matrix bioscaffolds for volumetric muscle loss treatment. Tissue Eng. Part A 22, 1129–1139 (2016).

    CAS  PubMed  Google Scholar 

  125. Agrawal, V. et al. Recruitment of progenitor cells by an extracellular matrix cryptic peptide in a mouse model of digit amputation. Tissue Eng. Part A 17, 2435–2443 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Crapo, P. M., Tottey, S., Slivka, P. F. & Badylak, S. F. Effects of biologic scaffolds on human stem cells and implications for CNS tissue engineering. Tissue Eng. Part A 20, 313–323 (2014).

    CAS  PubMed  Google Scholar 

  127. Galvez-Monton, C. et al. Neoinnervation and neovascularization of acellular pericardial-derived scaffolds in myocardial infarcts. Stem Cell Res. Ther. 6, 108 (2015).

    PubMed  PubMed Central  Google Scholar 

  128. Zhang, X. et al. Functional neovascularization in tissue engineering with porcine acellular dermal matrix and human umbilical vein endothelial cells. Tissue Eng. Part C Methods 17, 423–433 (2011).

    PubMed  Google Scholar 

  129. Dziki, J. et al. An acellular biologic scaffold treatment for volumetric muscle loss: results of a 13-patient cohort study. NPJ Regen. Med. 1, 16008 (2016).

    PubMed  PubMed Central  Google Scholar 

  130. Fata, J. E., Werb, Z. & Bissell, M. J. Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes. Breast Cancer Res. 6, 1–11 (2004).

    CAS  PubMed  Google Scholar 

  131. Huttenlocher, A., Sandborg, R. R. & Horwitz, A. F. Adhesion in cell migration. Curr. Opin. Cell Biol. 7, 697–706 (1995).

    CAS  PubMed  Google Scholar 

  132. Cohen, M., Joester, D., Geiger, B. & Addadi, L. Spatial and temporal sequence of events in cell adhesion: from molecular recognition to focal adhesion assembly. Chembiochem 5, 1393–1399 (2004).

    CAS  PubMed  Google Scholar 

  133. Polanco, T. O., Xylas, J. & Lantis, J. C. II . Extracellular matrices (ECM) for tissue repair. Surg. Technol. Int. 28, 43–57 (2016).

    PubMed  Google Scholar 

  134. Badylak, S. F., Dziki, J. L., Sicari, B. M., Ambrosio, F. & Boninger, M. L. Mechanisms by which acellular biologic scaffolds promote functional skeletal muscle restoration. Biomaterials 103, 128–136 (2016).

    CAS  PubMed  Google Scholar 

  135. Agrawal, V. et al. An isolated cryptic peptide influences osteogenesis and bone remodeling in an adult mammalian model of digit amputation. Tissue Eng. Part A 17, 3033–3044 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Hill, R. C., Calle, E. A., Dzieciatkowska, M., Niklason, L. E. & Hansen, K. C. Quantification of extracellular matrix proteins from a rat lung scaffold to provide a molecular readout for tissue engineering. Mol. Cell Proteomics 14, 961–973 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Calle, E. A. et al. Targeted proteomics effectively quantifies differences between native lung and detergent-decellularized lung extracellular matrices. Acta Biomater. 46, 91–100 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Li, F. et al. Low-molecular-weight peptides derived from extracellular matrix as chemoattractants for primary endothelial cells. Endothelium 11, 199–206 (2004).

    CAS  PubMed  Google Scholar 

  139. Agrawal, V., Brown, B. N., Beattie, A. J., Gilbert, T. W. & Badylak, S. F. Evidence of innervation following extracellular matrix scaffold-mediated remodelling of muscular tissues. J. Tissue Eng. Regen. Med. 3, 590–600 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Davis, G. E., Bayless, K. J., Davis, M. J. & Meininger, G. A. Regulation of tissue injury responses by the exposure of matricryptic sites within extracellular matrix molecules. Am. J. Pathol. 156, 1489–1498 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Huleihel, L. et al. Matrix-bound nanovesicles within ECM bioscaffolds. Sci. Adv. 2, e1600502 (2016).

    PubMed  PubMed Central  Google Scholar 

  142. Keane, T. J. et al. Tissue-specific effects of esophageal extracellular matrix. Tissue Eng. Part A 21, 2293–2300 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Wood, L. D. & Montgomery, E. A. in Gastrointestinal Anatomy and Physiology: The Essentials (eds Reinus, J.F. & Simon, D.) 1–14 (John Wiley & Sons, 2014)

    Google Scholar 

  144. Zorn, A. M. & Wells, J. M. Vertebrate endoderm development and organ formation. Annu. Rev. Cell Dev. Biol. 25, 221–251 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Lebenthal, E. & Lee, P. C. Review article. Interactions of determinants in the ontogeny of the gastrointestinal tract: a unified concept. Pediatr. Res. 17, 19–24 (1983).

    CAS  PubMed  Google Scholar 

  146. Montgomery, R. K., Mulberg, A. E. & Grand, R. J. Development of the human gastrointestinal tract: twenty years of progress. Gastroenterology 116, 702–731 (1999).

    CAS  PubMed  Google Scholar 

  147. Schoenwolf, G. C., Bleyl, S. B., Brauer, P. R. & Francis-West, P. H. Larsen's Human Embryology 341–374 (Elsevier Health Sciences, 2014).

    Google Scholar 

  148. McLin, V. A., Henning, S. J. & Jamrich, M. The role of the visceral mesoderm in the development of the gastrointestinal tract. Gastroenterology 136, 2074–2091 (2009).

    CAS  PubMed  Google Scholar 

  149. de Santa Barbara, P., van den Brink, G. R. & Roberts, D. J. Development and differentiation of the intestinal epithelium. Cell. Mol. Life Sci. 60, 1322–1332 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Chiquet-Ehrismann, R., Kalla, P., Pearson, C. A., Beck, K. & Chiquet, M. Tenascin interferes with fibronectin action. Cell 53, 383–390 (1988).

    CAS  PubMed  Google Scholar 

  151. Beaulieu, J. F., Jutras, S., Kusakabe, M. & Perreault, N. Expression of tenascin in the developing human small intestine. Biochem. Biophys. Res. Commun. 192, 1086–1092 (1993).

    CAS  PubMed  Google Scholar 

  152. Beaulieu, J. F., Vachon, P. H. & Chartrand, S. Immunolocalization of extracellular matrix components during organogenesis in the human small intestine. Anat. Embryol. (Berl.) 183, 363–369 (1991).

    CAS  Google Scholar 

  153. Tremblay, E. & Menard, D. Differential expression of extracellular matrix components during the morphogenesis of human gastric mucosa. Anat. Rec. 245, 668–676 (1996).

    CAS  PubMed  Google Scholar 

  154. Menard, D. & Arsenault, P. Cell proliferation in developing human stomach. Anat. Embryol. (Berl.) 182, 509–516 (1990).

    CAS  Google Scholar 

  155. Simoneau, A. et al. Identification, distribution, and tissular origin of the alpha5(IV) and alpha6(IV) collagen chains in the developing human intestine. Dev. Dyn. 212, 437–447 (1998).

    CAS  PubMed  Google Scholar 

  156. Simon-Assmann, P., Bouziges, F., Freund, J. N., Perrin-Schmitt, F. & Kedinger, M. Type IV collagen mRNA accumulates in the mesenchymal compartment at early stages of murine developing intestine. J. Cell Biol. 110, 849–857 (1990).

    CAS  PubMed  Google Scholar 

  157. Sato, H. et al. The differential distribution of type IV collagen alpha chains in the subepithelial basement membrane of the human alimentary canal. Arch. Histol. Cytol. 70, 313–323 (2007).

    PubMed  Google Scholar 

  158. Beaulieu, J. F. et al. Expression of the alpha-5(IV) collagen chain in the fetal human small intestine. Gastroenterology 107, 957–967 (1994).

    CAS  PubMed  Google Scholar 

  159. Khoshnoodi, J., Pedchenko, V. & Hudson, B. G. Mammalian collagen IV. Microsc. Res. Tech. 71, 357–370 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Leinonen, A., Mariyama, M., Mochizuki, T., Tryggvason, K. & Reeders, S. T. Complete primary structure of the human type IV collagen alpha 4(IV) chain. Comparison with structure and expression of the other alpha (IV) chains. J. Biol. Chem. 269, 26172–26177 (1994).

    CAS  PubMed  Google Scholar 

  161. Wolf, M. T., Daly, K. A., Reing, J. E. & Badylak, S. F. Biologic scaffold composed of skeletal muscle extracellular matrix. Biomaterials 33, 2916–2925 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Badylak, S. F. et al. The use of xenogeneic small intestinal submucosa as a biomaterial for Achilles tendon repair in a dog model. J. Biomed. Mater. Res. 29, 977–985 (1995).

    CAS  PubMed  Google Scholar 

  163. Allen, R. A. et al. Adrenal extracellular matrix scaffolds support adrenocortical cell proliferation and function in vitro. Tissue Eng. Part A 16, 3363–3374 (2010).

    CAS  PubMed  Google Scholar 

  164. Sellaro, T. L. et al. Maintenance of human hepatocyte function in vitro by liver-derived extracellular matrix gels. Tissue Eng. Part A 16, 1075–1082 (2010).

    CAS  PubMed  Google Scholar 

  165. Sellaro, T. L., Ravindra, A. K., Stolz, D. B. & Badylak, S. F. Maintenance of hepatic sinusoidal endothelial cell phenotype in vitro using organ-specific extracellular matrix scaffolds. Tissue Eng. 13, 2301–2310 (2007).

    CAS  PubMed  Google Scholar 

  166. Zhang, Y. et al. Tissue-specific extracellular matrix coatings for the promotion of cell proliferation and maintenance of cell phenotype. Biomaterials 30, 4021–4028 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Cortiella, J. et al. Influence of acellular natural lung matrix on murine embryonic stem cell differentiation and tissue formation. Tissue Eng. Part A 16, 2565–2580 (2010).

    CAS  PubMed  Google Scholar 

  168. Shojaie, S. et al. Acellular lung scaffolds direct differentiation of endoderm to functional airway epithelial cells: requirement of matrix-bound HS proteoglycans. Stem Cell Rep. 4, 419–430 (2015).

    CAS  Google Scholar 

  169. Brennan, E. P., Tang, X. H., Stewart-Akers, A. M., Gudas, L. J. & Badylak, S. F. Chemoattractant activity of degradation products of fetal and adult skin extracellular matrix for keratinocyte progenitor cells. J. Tissue Eng. Regen. Med. 2, 491–498 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Crapo, P. M. et al. Biologic scaffolds composed of central nervous system extracellular matrix. Biomaterials 33, 3539–3547 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Bhrany, A. D. et al. Development of an esophagus acellular matrix tissue scaffold. Tissue Eng. 12, 319–330 (2006).

    CAS  PubMed  Google Scholar 

  172. Bhrany, A. D. et al. Crosslinking of an oesophagus acellular matrix tissue scaffold. J. Tissue Eng. Regen. Med. 2, 365–372 (2008).

    CAS  PubMed  Google Scholar 

  173. Keane, T. J. et al. Preparation and characterization of a biologic scaffold from esophageal mucosa. Biomaterials 34, 6729–6737 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Totonelli, G. et al. Detergent enzymatic treatment for the development of a natural acellular matrix for oesophageal regeneration. Pediatr. Surg. Int. 29, 87–95 (2013).

    PubMed  Google Scholar 

  175. Badylak, S. F., Lantz, G. C., Coffey, A. & Geddes, L. A. Small intestinal submucosa as a large diameter vascular graft in the dog. J. Surg. Res. 47, 74–80 (1989).

    CAS  PubMed  Google Scholar 

  176. Maghsoudlou, P., Totonelli, G., Loukogeorgakis, S. P., Eaton, S. & De Coppi, P. A decellularization methodology for the production of a natural acellular intestinal matrix. J. Vis. Exp. 80, e50658 (2013).

    Google Scholar 

  177. Totonelli, G. et al. A rat decellularized small bowel scaffold that preserves villus-crypt architecture for intestinal regeneration. Biomaterials 33, 3401–3410 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Lun, S. et al. A functional extracellular matrix biomaterial derived from ovine forestomach. Biomaterials 31, 4517–4529 (2010).

    CAS  PubMed  Google Scholar 

  179. Floden, E. W. et al. Biophysical characterization of ovine forestomach extracellular matrix biomaterials. J. Biomed. Mater. Res. B Appl. Biomater. 96, 67–75 (2011).

    PubMed  Google Scholar 

  180. Irvine, S. M. et al. Quantification of in vitro and in vivo angiogenesis stimulated by ovine forestomach matrix biomaterial. Biomaterials 32, 6351–6361 (2011).

    CAS  PubMed  Google Scholar 

  181. Parnigotto, P. P., Marzaro, M., Artusi, T., Perrino, G. & Conconi, M. T. Short bowel syndrome: experimental approach to increase intestinal surface in rats by gastric homologous acellular matrix. J. Pediatr. Surg. 35, 1304–1308 (2000).

    CAS  PubMed  Google Scholar 

  182. Sutherland, R. S., Baskin, L. S., Hayward, S. W. & Cunha, G. R. Regeneration of bladder urothelium, smooth muscle, blood vessels and nerves into an acellular tissue matrix. J. Urol. 156, 571–577 (1996).

    CAS  PubMed  Google Scholar 

  183. Urita, Y. et al. Regeneration of the esophagus using gastric acellular matrix: an experimental study in a rat model. Pediatr. Surg. Int. 23, 21–26 (2007).

    PubMed  Google Scholar 

  184. Keane, T. J. et al. Preparation and characterization of a biologic scaffold and hydrogel derived from colonic mucosa. J. Biomed. Mater. Res. B Appl. Biomater. 105, 291–306 (2015).

    PubMed  Google Scholar 

  185. Chen, H. J. et al. A recellularized human colon model identifies cancer driver genes. Nat. Biotechnol. 34, 845–851 (2016).

    PubMed  PubMed Central  Google Scholar 

  186. Yu, J., Peng, S., Luo, D. & March, J. C. In vitro 3D human small intestinal villous model for drug permeability determination. Biotechnol. Bioeng. 109, 2173–2178 (2012).

    CAS  PubMed  Google Scholar 

  187. Costello, C. M. et al. Synthetic small intestinal scaffolds for improved studies of intestinal differentiation. Biotechnol. Bioeng. 111, 1222–1232 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Costello, C. M. et al. 3D intestinal scaffolds for evaluating the therapeutic potential of probiotics. Mol. Pharm. 11, 2030–2039 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Shaffiey, S. A. et al. Intestinal stem cell growth and differentiation on a tubular scaffold with evaluation in small and large animals. Regen. Med. 11, 45–61 (2016).

    CAS  PubMed  Google Scholar 

  190. Londono, R. & Badylak, S. F. Regenerative medicine strategies for esophageal repair. Tissue Eng. Part B Rev. 21, 393–410 (2015).

    PubMed  PubMed Central  Google Scholar 

  191. Londono, R., Jobe, B. A., Hoppo, T. & Badylak, S. F. Esophagus and regenerative medicine. World J. Gastroenterol. 18, 6894–6899 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Strange, P. S. Small intestinal submucosa for laparoscopic repair of large paraesophageal hiatal hernias: a preliminary report. Surg. Technol. Int. 11, 141–143 (2003).

    PubMed  Google Scholar 

  193. Oelschlager, B. K., Barreca, M., Chang, L. & Pellegrini, C. A. The use of small intestine submucosa in the repair of paraesophageal hernias: initial observations of a new technique. Am. J. Surg. 186, 4–8 (2003).

    PubMed  Google Scholar 

  194. Lopes, M. F., Cabrita, A., Ilharco, J., Pessa, P. & Patricio, J. Grafts of porcine intestinal submucosa for repair of cervical and abdominal esophageal defects in the rat. J. Invest. Surg. 19, 105–111 (2006).

    PubMed  Google Scholar 

  195. Badylak, S. F. et al. Esophageal reconstruction with ECM and muscle tissue in a dog model. J. Surg. Res. 128, 87–97 (2005).

    PubMed  Google Scholar 

  196. Nieponice, A., Gilbert, T. W. & Badylak, S. F. Reinforcement of esophageal anastomoses with an extracellular matrix scaffold in a canine model. Ann. Thorac. Surg. 82, 2050–2058 (2006).

    PubMed  Google Scholar 

  197. Nieponice, A. et al. An extracellular matrix scaffold for esophageal stricture prevention after circumferential EMR. Gastrointest. Endosc. 69, 289–296 (2009).

    PubMed  Google Scholar 

  198. de la Fuente, S. G. et al. Evaluation of porcine-derived small intestine submucosa as a biodegradable graft for gastrointestinal healing. J. Gastrointest. Surg. 7, 96–101 (2003).

    PubMed  Google Scholar 

  199. Ueno, T. et al. Functional evaluation of the grafted wall with porcine-derived small intestinal submucosa (SIS) to a stomach defect in rats. Surgery 142, 376–383 (2007).

    PubMed  Google Scholar 

  200. Nishimura, T. et al. In vivo motility evaluation of the grafted gastric wall with small intestinal submucosa. Tissue Eng. Part A 16, 1761–1768 (2010).

    PubMed  Google Scholar 

  201. Chen, M. K. & Badylak, S. F. Small bowel tissue engineering using small intestinal submucosa as a scaffold. J. Surg. Res. 99, 352–358 (2001).

    CAS  PubMed  Google Scholar 

  202. Shirafkan, A., Montalbano, M., McGuire, J., Rastellini, C. & Cicalese, L. New approaches to increase intestinal length: methods used for intestinal regeneration and bioengineering. World J. Transplant. 6, 1–9 (2016).

    PubMed  PubMed Central  Google Scholar 

  203. Groos, S., Reale, E., Hunefeld, G. & Luciano, L. Changes in epithelial cell turnover and extracellular matrix in human small intestine after TPN. J. Surg. Res. 109, 74–85 (2003).

    CAS  PubMed  Google Scholar 

  204. Wang, Z. Q., Watanabe, Y. & Toki, A. Experimental assessment of small intestinal submucosa as a small bowel graft in a rat model. J. Pediatr. Surg. 38, 1596–1601 (2003).

    PubMed  Google Scholar 

  205. Wang, Z. Q. et al. Morphologic evaluation of regenerated small bowel by small intestinal submucosa. J. Pediatr. Surg. 40, 1898–1902 (2005).

    PubMed  Google Scholar 

  206. Ansaloni, L. et al. Experimental evaluation of Surgisis as scaffold for neointestine regeneration in a rat model. Transplant. Proc. 38, 1844–1848 (2006).

    CAS  PubMed  Google Scholar 

  207. Demirbilek, S., Kanmaz, T., Ozardali, I., Edali, M. N. & Yucesan, S. Using porcine small intestinal submucosa in intestinal regeneration. Pediatr. Surg. Int. 19, 588–592 (2003).

    PubMed  Google Scholar 

  208. Lee, M., Chang, P. C. & Dunn, J. C. Evaluation of small intestinal submucosa as scaffolds for intestinal tissue engineering. J. Surg. Res. 147, 168–171 (2008).

    CAS  PubMed  Google Scholar 

  209. Qin, H. H. & Dunn, J. C. Small intestinal submucosa seeded with intestinal smooth muscle cells in a rodent jejunal interposition model. J. Surg. Res. 171, e21–e26 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Cintron, J. R. et al. Treatment of fistula-in-ano using a porcine small intestinal submucosa anal fistula plug. Tech. Coloproctol. 17, 187–191 (2013).

    CAS  PubMed  Google Scholar 

  211. Schultz, D. J., Brasel, K. J., Spinelli, K. S., Rasmussen, J. & Weigelt, J. A. Porcine small intestine submucosa as a treatment for enterocutaneous fistulas. J. Am. Coll. Surg. 194, 541–543 (2002).

    PubMed  Google Scholar 

  212. Ueno, T., Oga, A., Takahashi, T. & Pappas, T. N. Small intestinal submucosa (SIS) in the repair of a cecal wound in unprepared bowel in rats. J. Gastrointest. Surg. 11, 918–922 (2007).

    PubMed  Google Scholar 

  213. Keane, T. J. et al. Restoring mucosal barrier function and modifying macrophage phenotype with an extracellular matrix hydrogel: potential therapy for ulcerative colitis. J. Crohns Colitis (2016).

  214. Hoshiba, T. et al. Decellularized extracellular matrix as an in vitro model to study the comprehensive roles of the ECM in stem cell differentiation. Stem Cells Int. 2016, 6397820 (2016).

    PubMed  Google Scholar 

  215. Hoshiba, T. & Tanaka, M. Decellularized matrices as in vitro models of extracellular matrix in tumor tissues at different malignant levels: mechanism of 5-fluorouracil resistance in colorectal tumor cells. Biochim. Biophys. Acta 1863, 2749–2757 (2016).

    CAS  PubMed  Google Scholar 

  216. Ozeki, M. et al. Evaluation of decellularized esophagus as a scaffold for cultured esophageal epithelial cells. J. Biomed. Mater. Res. A 79, 771–778 (2006).

    PubMed  Google Scholar 

  217. De Waele, J. et al. 3D culture of murine neural stem cells on decellularized mouse brain sections. Biomaterials 41, 122–131 (2015).

    CAS  PubMed  Google Scholar 

  218. Ingber, D. E. Can cancer be reversed by engineering the tumor microenvironment? Semin. Cancer Biol. 18, 356–364 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Nyga, A., Cheema, U. & Loizidou, M. 3D tumour models: novel in vitro approaches to cancer studies. J. Cell Commun. Signal. 5, 239–248 (2011).

    PubMed  PubMed Central  Google Scholar 

  220. Genovese, L. et al. Cellular localization, invasion, and turnover are differently influenced by healthy and tumor-derived extracellular matrix. Tissue Eng. Part A 20, 2005–2018 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Hosseinkhani, M. et al. Tissue engineered scaffolds in regenerative medicine. World J. Plast. Surg. 3, 3–7 (2014).

    PubMed  PubMed Central  Google Scholar 

  222. Gjorevski, N., Ranga, A. & Lutolf, M. P. Bioengineering approaches to guide stem cell-based organogenesis. Development 141, 1794–1804 (2014).

    CAS  PubMed  Google Scholar 

  223. Ahmed, M. & Ffrench-Constant, C. Extracellular matrix regulation of stem cell behavior. Curr. Stem Cell Rep. 2, 197–206 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Bitar, K. N. & Zakhem, E. Bioengineering the gut: future prospects of regenerative medicine. Nat. Rev. Gastroenterol. Hepatol. 13, 543–556 (2016).

    CAS  PubMed  Google Scholar 

  225. Pentinmikko, N. & Katajisto, P. Microenvironment directs the life of stem cells [Finnish]. Duodecim 130, 1965–1972 (2014).

    PubMed  Google Scholar 

  226. Naba, A. et al. The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol. Cell. Proteomics 11, M111.014647 (2012).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of this manuscript.

Corresponding author

Correspondence to Stephen F. Badylak.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Decellularization

A process used in tissue engineering to remove cells from a tissue or an organ, without affecting the extracellular matrix of the original tissue.

Stricture

Narrowing of a tube or channel.

Xenogeneic

Tissues or cells belonging to individuals of different species.

Allogeneic

Tissues or cells from the same species that are genetically dissimilar and immunologically incompatible.

Anorectal fistulas

Small tracts that develop between the end of the bowel and the skin near the anus.

Anastomosis

A cross-connection between adjacent channels of the body.

Matricryptic peptides

Hidden peptide residues in collagen molecules that are released after the degradation of the parent molecule.

Caustic oesophagitis

Injury to the oesophagus due to the ingestion of a strong alkali or acid.

Barrett oesophagus

A condition in which the cells of the oesophagus grow abnormally.

Oesophageal stenosis

An abnormal narrowing of the oesophagus.

Oesophageal dilatation

Stretching or widening of the oesophagus.

Oesophagoplasty

Plastic surgery for the repair or reconstruction of the oesophagus.

Diverticula

A protrusion of a hollow (or a fluid-filled) structure in the body.

Oesophageal transection

The removal of the lower end of the oesophagus with end-to-end anastomosis.

Ileostomy

A surgical procedure in which a piece of the ileum is diverted to an opening in the abdominal wall.

Celiotomy

A surgical procedure that involves a large incision through the abdominal wall to gain access to the abdominal cavity.

Onlay mesh repair

Use of a mesh material placed over a defect to repair an incision.

Matrisome

The ensemble of extracellular matrix (ECM) and ECM-associated proteins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussey, G., Keane, T. & Badylak, S. The extracellular matrix of the gastrointestinal tract: a regenerative medicine platform. Nat Rev Gastroenterol Hepatol 14, 540–552 (2017). https://doi.org/10.1038/nrgastro.2017.76

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2017.76

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing