Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms and efficacy of dietary FODMAP restriction in IBS

Key Points

  • The underlying pathophysiology of IBS is complex and the efficacy of medical treatment is variable

  • Prebiotic carbohydrates selectively increase numbers of specific bacteria (for example, bifidobacteria) that could influence gastrointestinal health

  • Short-chain fermentable carbohydrates (termed FODMAPs) are known to induce gastrointestinal symptoms and do so through their effects on luminal water handling and colonic gas production

  • Evidence suggests fermentable carbohydrate restriction (low FODMAP diet) is effective for IBS symptoms; however, data are limited to uncontrolled or retrospective studies, one controlled trial and three randomized, controlled trials

  • Further randomized trials are required to confirm the efficacy of fermentable carbohydrate restriction in IBS management and to further examine the effects on the gut microbiota and dietary quality

  • Placebo-controlled trials are difficult to undertake in studies of dietary advice

Abstract

IBS is a debilitating condition that markedly affects quality of life. The chronic nature, high prevalence and associated comorbidities contribute to the considerable economic burden of IBS. The pathophysiology of IBS is not completely understood and evidence to guide management is variable. Interest in dietary intervention continues to grow rapidly. Ileostomy and MRI studies have demonstrated that some fermentable carbohydrates increase ileal luminal water content and breath hydrogen testing studies have demonstrated that some carbohydrates also increase colonic hydrogen production. The effects of fermentable carbohydrates on gastrointestinal symptoms have also been well described in blinded, controlled trials. Dietary restriction of fermentable carbohydrates (popularly termed the 'low FODMAP diet') has received considerable attention. An emerging body of research now demonstrates the efficacy of fermentable carbohydrate restriction in IBS; however, limitations still exist with this approach owing to a limited number of randomized trials, in part due to the fundamental difficulty of placebo control in dietary trials. Evidence also indicates that the diet can influence the gut microbiota and nutrient intake. Fermentable carbohydrate restriction in people with IBS is promising, but the effects on gastrointestinal health require further investigation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms by which short-chain fermentable carbohydrates might induce symptoms in IBS.

Similar content being viewed by others

References

  1. Yao, C. K., Gibson, P. R. & Shepherd, S. J. Design of clinical trials evaluating dietary interventions in patients with functional gastrointestinal disorders. Am. J. Gastroenterol. 108, 748–758 (2013).

    CAS  PubMed  Google Scholar 

  2. Lovell, R. M. & Ford, A. C. Global prevalence of and risk factors for irritable bowel syndrome: a meta-analysis. Clin. Gastroenterol. Hepatol. 10, 712–721 (2012).

    PubMed  Google Scholar 

  3. Longstreth, G. F. et al. Functional bowel disorders. Gastroenterology 130, 1480–1491 (2006).

    PubMed  Google Scholar 

  4. Halder, S. L. et al. Natural history of functional gastrointestinal disorders: a 12-year longitudinal population-based study. Gastroenterology 133, 799–807 (2007).

    PubMed  Google Scholar 

  5. Sperber, A. D., Shvartzman, P., Friger, M. & Fich, A. A comparative reappraisal of the Rome II and Rome III diagnostic criteria: are we getting closer to the 'true' prevalence of irritable bowel syndrome? Eur. J. Gastroenterol. Hepatol. 19, 441–447 (2007).

    PubMed  Google Scholar 

  6. Drossman, D. A. et al. U. S. householder survey of functional gastrointestinal disorders. Prevalence, sociodemography, and health impact. Dig. Dis. Sci. 38, 1569–1580 (1993).

    CAS  PubMed  Google Scholar 

  7. Halpin, S. J. & Ford, A. C. Prevalence of symptoms meeting criteria for irritable bowel syndrome in inflammatory bowel disease: systematic review and meta-analysis. Am. J. Gastroenterol. 107, 1474–1482 (2012).

    PubMed  Google Scholar 

  8. Hungin, A. P., Whorwell, P. J., Tack, J. & Mearin, F. The prevalence, patterns and impact of irritable bowel syndrome: an international survey of 40,000 subjects. Aliment. Pharmacol. Ther. 17, 643–650 (2003).

    CAS  PubMed  Google Scholar 

  9. Gralnek, I. M., Hays, R. D., Kilbourne, A., Naliboff, B. & Mayer, E. A. The impact of irritable bowel syndrome on health-related quality of life. Gastroenterology 119, 654–660 (2000).

    CAS  PubMed  Google Scholar 

  10. Maxion-Bergemann, S., Thielecke, F., Abel, F. & Bergemann, R. Costs of irritable bowel syndrome in the UK and US. Pharmacoeconomics 24, 21–37 (2006).

    PubMed  Google Scholar 

  11. Sandler, R. S. et al. The burden of selected digestive diseases in the United States. Gastroenterology 122, 1500–1511 (2002).

    PubMed  Google Scholar 

  12. Chey, W. Y., Jin, H. O., Lee, M. H., Sun, S. W. & Lee, K. Y. Colonic motility abnormality in patients with irritable bowel syndrome exhibiting abdominal pain and diarrhea. Am. J. Gastroenterol. 96, 1499–1506 (2001).

    CAS  PubMed  Google Scholar 

  13. King, T. S., Elia, M. & Hunter, J. O. Abnormal colonic fermentation in irritable bowel syndrome. Lancet 352, 1187–1189 (1998).

    CAS  PubMed  Google Scholar 

  14. Serra, J., Azpiroz, F. & Malagelada, J. R. Impaired transit and tolerance of intestinal gas in the irritable bowel syndrome. Gut 48, 14–19 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ludidi, S. et al. Rectal hypersensitivity as hallmark for irritable bowel syndrome: defining the optimal cutoff. Neurogastroenterol. Motil. 24, 729–733 (2012).

    CAS  PubMed  Google Scholar 

  16. Camilleri, M. & Di Lorenzo, C. Brain-gut axis: from basic understanding to treatment of IBS and related disorders. J. Pediatr. Gastroenterol. Nutr. 54, 446–453 (2012).

    PubMed  PubMed Central  Google Scholar 

  17. Villani, A. C. et al. Genetic risk factors for post-infectious irritable bowel syndrome following a waterborne outbreak of gastroenteritis. Gastroenterology 138, 1502–1513 (2010).

    CAS  PubMed  Google Scholar 

  18. Levy, R. L. et al. Irritable bowel syndrome in twins: heredity and social learning both contribute to etiology. Gastroenterology 121, 799–804 (2001).

    CAS  PubMed  Google Scholar 

  19. Chitkara, D. K., van Tilburg, M. A., Blois-Martin, N. & Whitehead, W. E. Early life risk factors that contribute to irritable bowel syndrome in adults: a systematic review. Am. J. Gastroenterol. 103, 765–774 (2008).

    PubMed  Google Scholar 

  20. Whitehead, W. E., Crowell, M. D., Robinson, J. C., Heller, B. R. & Schuster, M. M. Effects of stressful life events on bowel symptoms: subjects with irritable bowel syndrome compared with subjects without bowel dysfunction. Gut 33, 825–830 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Bailey, M. T. et al. Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation. Brain Behav. Immun. 25, 397–407 (2011).

    CAS  PubMed  Google Scholar 

  22. Alonso, C. et al. Acute experimental stress evokes a differential gender-determined increase in human intestinal macromolecular permeability. Neurogastroenterol. Motil. 24, 740–746 (2012).

    CAS  PubMed  Google Scholar 

  23. Simrén, M. et al. Intestinal microbiota in functional bowel disorders: a Rome foundation report. Gut 62, 159–176 (2012).

    PubMed  Google Scholar 

  24. Malinen, E. et al. Analysis of the fecal microbiota of irritable bowel syndrome patients and healthy controls with real-time PCR. Am. J. Gastroenterol. 100, 373–382 (2005).

    CAS  PubMed  Google Scholar 

  25. Rajilic-Stojanovic, M. et al. Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology 141, 1792–1801 (2011).

    CAS  PubMed  Google Scholar 

  26. Chassard, C. et al. Functional dysbiosis within the gut microbiota of patients with constipated-irritable bowel syndrome. Aliment. Pharmacol. Ther. 35, 828–838 (2012).

    CAS  PubMed  Google Scholar 

  27. Duboc, H. et al. Increase in fecal primary bile acids and dysbiosis in patients with diarrhea-predominant irritable bowel syndrome. Neurogastroenterol. Motil. 24, 513–520 (2012).

    CAS  PubMed  Google Scholar 

  28. Balsari, A., Ceccarelli, A., Dubini, F., Fesce, E. & Poli, G. The fecal microbial population in the irritable bowel syndrome. Microbiologica 5, 185–194 (1982).

    CAS  PubMed  Google Scholar 

  29. Parkes, G. C. et al. Distinct microbial populations exist in the mucosa-associated microbiota of sub-groups of irritable bowel syndrome. Neurogastroenterol. Motil. 24, 31–39 (2012).

    CAS  PubMed  Google Scholar 

  30. Kerckhoffs, A. P. et al. Lower Bifidobacteria counts in both duodenal mucosa-associated and fecal microbiota in irritable bowel syndrome patients. World J. Gastroenterol. 15, 2887–2892 (2009).

    PubMed  PubMed Central  Google Scholar 

  31. Codling, C., O'Mahony, L., Shanahan, F., Quigley, E. M. & Marchesi, J. R. A molecular analysis of fecal and mucosal bacterial communities in irritable bowel syndrome. Dig. Dis. Sci. 55, 392–397 (2010).

    PubMed  Google Scholar 

  32. Carroll, I. M., Ringel-Kulka, T., Siddle, J. P. & Ringel, Y. Alterations in composition and diversity of the intestinal microbiota in patients with diarrhea-predominant irritable bowel syndrome. Neurogastroenterol. Motil. 24, 521–530 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Jeffery, I. B. et al. An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut 61, 997–1006 (2012).

    PubMed  Google Scholar 

  34. Whelan, K. Probiotics and prebiotics in the management of irritable bowel syndrome: a review of recent clinical trials and systematic reviews. Curr. Opin. Clin. Nutr. Metab. Care 14, 581–587 (2011).

    PubMed  Google Scholar 

  35. Meyrat, P., Safroneeva, E. & Schoepfer, A. M. Rifaximin treatment for the irritable bowel syndrome with a positive lactulose hydrogen breath test improves symptoms for at least 3 months. Aliment. Pharmacol. Ther. 36, 1084–1093 (2012).

    CAS  PubMed  Google Scholar 

  36. Camilleri, M. & Mayer, E. A. Developing irritable bowel syndrome guidelines through meta-analyses: does the emperor really have new clothes? Gastroenterology 137, 766–769 (2009).

    PubMed  Google Scholar 

  37. Monsbakken, K. W., Vandvik, P. O. & Farup, P. G. Perceived food intolerance in subjects with irritable bowel syndrome—etiology, prevalence and consequences. Eur. J. Clin. Nutr. 60, 667–672 (2006).

    CAS  PubMed  Google Scholar 

  38. Hayes, P., Corish, C., O'Mahony, E. & Quigley, E. M. A dietary survey of patients with irritable bowel syndrome. J. Hum. Nutr. Diet http://dx.doi.org/10.1111/jhn.12114.

  39. Halpert, A. et al. What patients know about irritable bowel syndrome (IBS) and what they would like to know. National Survey on Patient Educational Needs in IBS and development and validation of the Patient Educational Needs Questionnaire (PEQ). Am. J. Gastroenterol. 102, 1972–1982 (2007).

    PubMed  Google Scholar 

  40. Saito, Y. A., Locke, G. R. 3rd, Weaver, A. L., Zinsmeister, A. R. & Talley, N. J. Diet and functional gastrointestinal disorders: a population-based case-control study. Am. J. Gastroenterol. 100, 2743–2748 (2005).

    PubMed  Google Scholar 

  41. Bohn, L., Storsrud, S. & Simrén, M. Nutrient intake in patients with irritable bowel syndrome compared with the general population. Neurogastroenterol. Motil. 25, 23–30 (2013).

    CAS  PubMed  Google Scholar 

  42. Ligaarden, S. C., Lydersen, S. & Farup, P. G. Diet in subjects with irritable bowel syndrome: a cross-sectional study in the general population. BMC Gastroenterol. 12, 61 (2012).

    PubMed  PubMed Central  Google Scholar 

  43. Eswaran, S., Muir, J. & Chey, W. D. Fiber and functional gastrointestinal disorders. Am. J. Gastroenterol. 108, 718–727 (2013).

    CAS  PubMed  Google Scholar 

  44. National Institute for Health and Clinical Excellence. Irritable bowel syndrome in adults: diagnosis and management of irritable bowel syndrome in primary care. National Institute for Health and Clinical Excellence [online], (2013).

  45. Simrén, M. et al. Food-related gastrointestinal symptoms in the irritable bowel syndrome. Digestion 63, 108–115 (2001).

    PubMed  Google Scholar 

  46. Reding, K. W., Cain, K. C., Jarrett, M. E., Eugenio, M. D. & Heitkemper, M. M. Relationship between patterns of alcohol consumption and gastrointestinal symptoms among patients with irritable bowel syndrome. Am. J. Gastroenterol. 108, 270–276 (2013).

    PubMed  PubMed Central  Google Scholar 

  47. Biesiekierski, J. R. et al. Gluten causes gastrointestinal symptoms in subjects without celiac disease: a double-blind randomized placebo-controlled trial. Am. J. Gastroenterol. 106, 508–514 (2011).

    CAS  PubMed  Google Scholar 

  48. Biesiekierski, J. R. et al. No effects of gluten in patients with self-reported non-celiac gluten sensitivity after dietary reduction of fermentable, poorly absorbed, short-chain carbohydrates. Gastroenterology 145, 320–328 (2013).

    CAS  PubMed  Google Scholar 

  49. Cummings, J. H. & Stephen, A. M. Carbohydrate terminology and classification. Eur. J. Clin. Nutr. 61 (Suppl. 1), S5–S18 (2007).

    CAS  PubMed  Google Scholar 

  50. Roberfroid, M. B. Inulin-type fructans: functional food ingredients. J. Nutr. 137 (Suppl. 11), 2493S–2502S (2007).

    CAS  PubMed  Google Scholar 

  51. Bach Knudsen, K. E. & Hessov, I. Recovery of inulin from Jerusalem artichoke (Helianthus tuberosus L.) in the small intestine of man. Br. J. Nutr. 74, 101–113 (1995).

    CAS  PubMed  Google Scholar 

  52. Muir, J. G. et al. Fructan and free fructose content of common Australian vegetables and fruit. J. Agric. Food Chem. 55, 6619–6627 (2007).

    CAS  PubMed  Google Scholar 

  53. Muir, J. G. et al. Measurement of short-chain carbohydrates in common Australian vegetables and fruits by high-performance liquid chromatography (HPLC). J. Agric. Food Chem. 57, 554–565 (2009).

    CAS  PubMed  Google Scholar 

  54. van Loo, J., Coussement, P., de Leenheer, L., Hoebregs, H. & Smits, G. On the presence of inulin and oligofructose as natural ingredients in the western diet. Crit. Rev. Food Sci. Nutr. 35, 525–552 (1995).

    CAS  PubMed  Google Scholar 

  55. Whelan, K. et al. Fructan content of commonly consumed wheat, rye and gluten-free breads. Int. J. Food Sci. Nutr. 62, 498–503 (2011).

    CAS  PubMed  Google Scholar 

  56. Dunn, S. et al. Validation of a food frequency questionnaire to measure intakes of inulin and oligofructose. Eur. J. Clin. Nutr. 65, 402–408 (2011).

    CAS  PubMed  Google Scholar 

  57. Niness, K. R. Inulin and oligofructose: what are they? J. Nutr. 129 (Suppl. 7), 1402S–1406S (1999).

    CAS  PubMed  Google Scholar 

  58. Roberfroid, M. et al. Prebiotic effects: metabolic and health benefits. Br. J. Nutr. 104 (Suppl 2), S1–S63 (2010).

    CAS  PubMed  Google Scholar 

  59. Moshfegh, A. J., Friday, J. E., Goldman, J. P. & Ahuja, J. K. Presence of inulin and oligofructose in the diets of Americans. J. Nutr. 129 (Suppl. 7), 1407S–1411S (1999).

    CAS  PubMed  Google Scholar 

  60. Staudacher, H. M. et al. Fermentable carbohydrate restriction reduces luminal bifidobacteria and gastrointestinal symptoms in patients with irritable bowel syndrome. J. Nutr. 142, 1510–1518 (2012).

    CAS  PubMed  Google Scholar 

  61. Macfarlane, G. T., Steed, H. & Macfarlane, S. Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. J. Appl. Microbiol. 104, 305–344 (2008).

    CAS  PubMed  Google Scholar 

  62. Biesiekierski, J. R. et al. Quantification of fructans, galacto-oligosacharides and other short-chain carbohydrates in processed grains and cereals. J. Hum. Nutr. Diet 24, 154–176 (2011).

    CAS  PubMed  Google Scholar 

  63. Kuo, T. M., Van Middlesworth, J. F. & Wolf, W. J. Content of raffinose oligosaccharides and sucrose in various plant seeds. J. Agric. Food Chem. 36, 32–36 (1988).

    CAS  Google Scholar 

  64. Sangwan, V., Tomar, S. K., Singh, R. R. B., Singh, A. K. & Ali, B. Galactooligosaccharides: Novel components of designer foods. J. Food Sci. 76, R103–R111 (2011).

    CAS  PubMed  Google Scholar 

  65. Lomer, M. C., Parkes, G. C. & Sanderson, J. D. Review article: lactose intolerance in clinical practice: myths and realities. Aliment. Pharmacol. Ther. 27, 93–103 (2008).

    CAS  PubMed  Google Scholar 

  66. Yang, J. et al. Prevalence and presentation of lactose intolerance and effects on dairy product intake in healthy subjects and patients with irritable bowel syndrome. Clin. Gastroenterol. Hepatol. 11, 262–268 (2013).

    PubMed  Google Scholar 

  67. Wilder-Smith, C. H., Materna, A., Wermelinger, C. & Schuler, J. Fructose and lactose intolerance and malabsorption testing: the relationship with symptoms in functional gastrointestinal disorders. Aliment. Pharmacol. Ther. 37, 1074–1083 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Barrett, J. S., Irving, P. M., Shepherd, S. J., Muir, J. G. & Gibson, P. R. Comparison of the prevalence of fructose and lactose malabsorption across chronic intestinal disorders. Aliment. Pharmacol. Ther. 30, 165–174 (2009).

    CAS  PubMed  Google Scholar 

  69. Matthews, S. B., Waud, J. P., Roberts, A. G. & Campbell, A. K. Systemic lactose intolerance: a new perspective on an old problem. Postgrad. Med. J. 81, 167–173 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Larsson, S. C., Bergkvist, L. & Wolk, A. Milk and lactose intakes and ovarian cancer risk in the Swedish Mammography Cohort. Am. J. Clin. Nutr. 80, 1353–1357 (2004).

    CAS  PubMed  Google Scholar 

  71. Jones, H. F., Butler, R. N. & Brooks, D. A. Intestinal fructose transport and malabsorption in humans. Am. J. Physiol. Gastrointest. Liver Physiol. 300, G202–G206 (2011).

    CAS  PubMed  Google Scholar 

  72. Rumessen, J. J. & Gudmandhoyer, E. Absorption capacity of fructose in healthy-adults—comparison with sucrose and its constituent monosaccharides. Gut 27, 1161–1168 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Truswell, A. S., Seach, J. M. & Thorburn, A. W. Incomplete absorption of pure fructose in healthy subjects and the facilitating effect of glucose. Am. J. Clin. Nutr. 48, 1424–1430 (1988).

    CAS  PubMed  Google Scholar 

  74. Bate, J. P., Irving, P. M., Barrett, J. S. & Gibson, P. R. Benefits of breath hydrogen testing after lactulose administration in analysing carbohydrate malabsorption. Eur. J. Gastroenterol. Hepatol. 22, 318–326 (2010).

    CAS  PubMed  Google Scholar 

  75. Marriott, B. P., Cole, N. & Lee, E. National estimates of dietary fructose intake increased from 1977 to 2004 in the United States. J. Nutr. 139, 1228S–1235S (2009).

    CAS  PubMed  Google Scholar 

  76. Fordtran, J. S., Rector, F. C., Locklear, T. W. & Ewton, M. F. Water and solute movement in the small intestine of patients with sprue. J. Clin. Invest. 46, 287–298 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Fordtran, J. S., Rector, F. C., Ewton, M. F., Soter, N. & Kinney, J. Permeability characteristics of human small intestine. J. Clin. Invest. 44, 1935–1944 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Hyams, J. S. Sorbitol intolerance: an unappreciated cause of functional gastrointestinal complaints. Gastroenterology 84, 30–33 (1983).

    CAS  PubMed  Google Scholar 

  79. Yao, C. K. et al. Dietary sorbitol and mannitol: food content and distinct absorption patterns between healthy individuals and patients with irritable bowel syndrome. J. Hum. Nutr. Diet http://dx.doi.org/10.1111/jhn.12144.

  80. Hartemink, R., Schoustra, S. E. & Rombouts, F. M. Degradation of guar gum by intestinal bacteria. Bioscience Microflora 18, 17–25 (1999).

    CAS  Google Scholar 

  81. Flint, H. J., Scott, K. P., Duncan, S. H., Louis, P. & Forano, E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3, 289–306 (2012).

    PubMed  PubMed Central  Google Scholar 

  82. Slavin, J. L., Brauer, P. M. & Marlett, J. A. Neutral detergent fiber, hemicellulose and cellulose digestibility in human subjects. J. Nutr. 111, 287–297 (1981).

    CAS  PubMed  Google Scholar 

  83. Marlett, J. A. & Fischer, M. H. The active fraction of psyllium seed husk. Proc. Nutr. Soc. 62, 207–209 (2003).

    CAS  PubMed  Google Scholar 

  84. Slaughter, S. L., Ellis, P. R., Jackson, E. C. & Butterworth, P. J. The effect of guar galactomannan and water availability during hydrothermal processing on the hydrolysis of starch catalysed by pancreatic alpha-amylase. Biochim. Biophys. Acta 1571, 55–63 (2002).

    CAS  PubMed  Google Scholar 

  85. Hernot, D. C. et al. In vitro fermentation profiles, gas production rates, and microbiota modulation as affected by certain fructans, galactooligosaccharides and polydextrose. J. Agric. Food Chem. 57, 1354–1361 (2009).

    CAS  PubMed  Google Scholar 

  86. Scott, K. P., Gratz, S. W., Sheridan, P. O., Flint, H. J. & Duncan, S. H. The influence of diet on the gut microbiota. Pharmacol. Res. 69, 52–60 (2013).

    CAS  PubMed  Google Scholar 

  87. Wong, J. M., de Souza, R., Kendall, C. W., Emam, A. & Jenkins, D. J. Colonic health: fermentation and short chain fatty acids. J. Clin. Gastroenterol. 40, 235–243 (2006).

    CAS  PubMed  Google Scholar 

  88. Rumessen, J. J. & Gudmand-Hoyer, E. Functional bowel disease: malabsorption and abdominal distress after ingestion of fructose, sorbitol, and fructose-sorbitol mixtures. Gastroenterology 95, 694–700 (1988).

    CAS  PubMed  Google Scholar 

  89. Jain, N. K., Rosenberg, D. B., Ulahannan, M. J., Glasser, M. J. & Pitchumoni, C. S. Sorbitol intolerance in adults. Am. J. Gastroenterol. 80, 678–681 (1985).

    CAS  PubMed  Google Scholar 

  90. Evans, P. R., Piesse, C., Bak, Y. T. & Kellow, J. E. Fructose-sorbitol malabsorption and symptom provocation in irritable bowel syndrome: relationship to enteric hypersensitivity and dysmotility. Scand. J. Gastroenterol. 33, 1158–1163 (1998).

    CAS  PubMed  Google Scholar 

  91. Ripoll, C., Flourie, B., Megnien, S., Hermand, O. & Janssens, M. Gastrointestinal tolerance to an inulin-rich soluble roasted chicory extract after consumption in healthy subjects. Nutrition 26, 799–803 (2010).

    CAS  PubMed  Google Scholar 

  92. Shepherd, S. J., Parker, F. C., Muir, J. G. & Gibson, P. R. Dietary triggers of abdominal symptoms in patients with irritable bowel syndrome: randomized placebo-controlled evidence. Clin. Gastroenterol. Hepatol. 6, 765–771 (2008).

    CAS  PubMed  Google Scholar 

  93. Fernandez-Ban´ares, F. et al. Sugar malabsorption in functional bowel disease: Clinical implications. Am. J. Gastroenterol. 88, 2044–2050 (1993).

    Google Scholar 

  94. Manichanh, C. et al. Anal gas evacuation and colonic microbiota in patients with flatulence: effect of diet. Gut http://gut.bmj.com/content/early/2013/06/12/gutjnl-2012-303013.long.

  95. Alles, M. S. et al. Fate of fructo-oligosaccharides in the human intestine. Br. J. Nutr. 76, 211–221 (1996).

    CAS  PubMed  Google Scholar 

  96. Pedersen, A., Sandstrom, B. & Van Amelsvoort, J. M. The effect of ingestion of inulin on blood lipids and gastrointestinal symptoms in healthy females. Br. J. Nutr. 78, 215–222 (1997).

    CAS  PubMed  Google Scholar 

  97. Olesen, M. & Gudmand-Hoyer, E. Efficacy, safety, and tolerability of fructooligosaccharides in the treatment of irritable bowel syndrome. Am. J. Clin. Nutr. 72, 1570–1575 (2000).

    CAS  PubMed  Google Scholar 

  98. Goetze, O. et al. Effect of a prebiotic mixture on intestinal comfort and general wellbeing in health. Br. J. Nutr. 100, 1077–1085 (2008).

    CAS  PubMed  Google Scholar 

  99. Andersson, D. E. & Nygren, A. Four cases of long-standing diarrhoea and colic pains cured by fructose-free diet—a pathogenetic discussion. Acta Med. Scand. 203, 87–92 (1978).

    CAS  PubMed  Google Scholar 

  100. McMichael, H. B., Webb, J. & Dawson, A. M. Lactase deficiency in adults—a cause of functional diarrhoea. Lancet 1, 717–720 (1965).

    CAS  PubMed  Google Scholar 

  101. Kim, Y., Park, S. C., Wolf, B. W. & Hertzler, S. R. Combination of erythritol and fructose increases gastrointestinal symptoms in healthy adults. Nutr. Res. 31, 836–841 (2011).

    CAS  PubMed  Google Scholar 

  102. Beyer, P. L., Caviar, E. M. & McCallum, R. W. Fructose intake at current levels in the United States may cause gastrointestinal distress in normal adults. J. Am. Diet Assoc. 105, 1559–1566 (2005).

    CAS  PubMed  Google Scholar 

  103. Sanders, S. W., Tolman, K. G. & Reitberg, D. P. Effect of a single dose of lactase on symptoms and expired hydrogen after lactose challenge in lactose-intolerant subjects. Clin. Pharm. 11, 533–538 (1992).

    CAS  PubMed  Google Scholar 

  104. Ladas, S. D., Grammenos, I., Tassios, P. S. & Raptis, S. A. Coincidental malabsorption of lactose, fructose, and sorbitol ingested at low doses is not common in normal adults. Dig. Dis. Sci. 45, 2357–2362 (2000).

    CAS  PubMed  Google Scholar 

  105. Zhu, Y. et al. Bloating and distention in irritable bowel syndrome: The role of gas production and visceral sensation after lactose ingestion in a population with lactase deficiency. Am. J. Gastroenterol. 108, 1516–1525 (2013).

    CAS  PubMed  Google Scholar 

  106. Hertzler, S. R. & Savaiano, D. A. Colonic adaptation to daily lactose feeding in lactose maldigesters reduces lactose intolerance. Am. J. Clin. Nutr. 64, 232–236 (1996).

    CAS  PubMed  Google Scholar 

  107. Berghouse, L. et al. Comparison between the bacterial and oligosaccharide content of ileostomy effluent in subjects taking diets rich in refined or unrefined carbohydrate. Gut 25, 1071–1077 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Langkilde, A. M., Andersson, H., Schweizer, T. F. & Wursch, P. Digestion and absorption of sorbitol, maltitol and isomalt from the small bowel. A study in ileostomy subjects. Eur. J. Clin. Nutr. 48, 768–775 (1994).

    CAS  PubMed  Google Scholar 

  109. Barrett, J. S. et al. Dietary poorly absorbed, short-chain carbohydrates increase delivery of water and fermentable substrates to the proximal colon. Aliment. Pharmacol. Ther. 31, 874–882 (2010).

    CAS  PubMed  Google Scholar 

  110. Marciani, L. et al. Postprandial changes in small bowel water content in healthy subjects and patients with irritable bowel syndrome. Gastroenterology 138, 469–477.e1 (2010).

    PubMed  Google Scholar 

  111. Murray K. et al., Differential effects of FODMAPs (fermentable oligo-, di-, mono-saccharides and polyols) on small and large intestinal contents in healthy subjects shown by MRI. Am. J. Gastroenterol. http://dx.doi.org/10.1038/ajg.2013.386.

  112. Ong, D. K. et al. Manipulation of dietary short chain carbohydrates alters the pattern of gas production and genesis of symptoms in irritable bowel syndrome. J. Gastroenterol. Hepatol. 25, 1366–1373 (2010).

    CAS  PubMed  Google Scholar 

  113. Madsen, J. L., Linnet, J. & Rumessen, J. J. Effect of nonabsorbed amounts of a fructose-sorbitol mixture on small intestinal transit in healthy volunteers. Dig. Dis. Sci. 51, 147–153 (2006).

    CAS  PubMed  Google Scholar 

  114. Martinez, C. et al. The jejunum of diarrhea-predominant irritable bowel syndrome shows molecular alterations in the tight junction signaling pathway that are associated with mucosal pathobiology and clinical manifestations. Am. J. Gastroenterol. 107, 736–746 (2012).

    CAS  PubMed  Google Scholar 

  115. Shepherd, S. J. & Gibson, P. R. Fructose malabsorption and symptoms of irritable bowel syndrome: guidelines for effective dietary management. J. Am. Diet Assoc. 106, 1631–1639 (2006).

    PubMed  Google Scholar 

  116. Gearry, R. B. et al. Reduction of dietary poorly absorbed short-chain carbohydrates (FODMAPs) improves abdominal symptoms in patients with inflammatory bowel disease-a pilot study. J. Crohns Colitis 3, 8–14 (2009).

    PubMed  Google Scholar 

  117. Østgaard, H., Hausken, T., Gundersen, D. & El-Salhy, M. Diet and effects of diet management on quality of life and symptoms in patients with irritable bowel syndrome. Mol. Med. Rep. 5, 1382–1390 (2012).

    PubMed  Google Scholar 

  118. Mazzawi, T., Hausken, T., Gundersen, D. & El-Salhy, M. Effects of dietary guidance on the symptoms, quality of life and habitual dietary intake of patients with irritable bowel syndrome. Mol. Med. Rep. 8, 845–852 (2013).

    CAS  PubMed  Google Scholar 

  119. de Roest, R. H. et al. The low FODMAP diet improves gastrointestinal symptoms in patients with irritable bowel syndrome: a prospective study. Int. J. Clin. Pract. 67, 895–903 (2013).

    CAS  PubMed  Google Scholar 

  120. Staudacher, H. M., Whelan, K., Irving, P. M. & Lomer, M. C. Comparison of symptom response following advice for a diet low in fermentable carbohydrates (FODMAPs) versus standard dietary advice in patients with irritable bowel syndrome. J. Hum. Nutr. Diet 24, 487–495 (2011).

    CAS  PubMed  Google Scholar 

  121. Halmos, E. P. et al. A diet low in FODMAPs reduces symptoms of irritable bowel syndrome. Gastroenterology 146, 67–75 (2014).

    CAS  PubMed  Google Scholar 

  122. Irvine, E. J. et al. Design of treatment trials for functional gastrointestinal disorders. Gastroenterology 130, 1538–1551 (2006).

    PubMed  Google Scholar 

  123. McKenzie, Y. A. et al. British Dietetic Association evidence-based guidelines for the dietary management of irritable bowel syndrome in adults. J. Hum. Nutr. Diet 25, 260–274 (2012).

    CAS  PubMed  Google Scholar 

  124. Halland, M. & Talley, N. J. New treatments for IBS. Nat. Rev. Gastroenterol. Hepatol. 10, 13–23 (2013).

    CAS  PubMed  Google Scholar 

  125. Croagh, C., Shepherd, S. J., Berryman, M., Muir, J. G. & Gibson, P. R. Pilot study on the effect of reducing dietary FODMAP intake on bowel function in patients without a colon. Inflamm. Bowel Dis. 13, 1522–1528 (2007).

    PubMed  Google Scholar 

  126. Halmos, E. P. et al. Diarrhoea during enteral nutrition is predicted by the poorly absorbed short-chain carbohydrate (FODMAP) content of the formula. Aliment. Pharmacol. Ther. 32, 925–933 (2010).

    CAS  PubMed  Google Scholar 

  127. Biesierkierski, J. R. et al. Gluten causes gastrointestinal symptoms in subjects without celiac disease: a double-blind randomized placebo-controlled trial. Am. J. Gastroenterol. 106, 508–514 (2011).

    Google Scholar 

  128. Brinkworth, G. D., Noakes, M., Clifton, P. M. & Bird, A. R. Comparative effects of very low-carbohydrate, high-fat and high-carbohydrate, low-fat weight-loss diets on bowel habit and faecal short-chain fatty acids and bacterial populations. Br. J. Nutr. 101, 1493–1502 (2009).

    CAS  PubMed  Google Scholar 

  129. Fava, F. et al. The type and quantity of dietary fat and carbohydrate alter faecal microbiome and short-chain fatty acid excretion in a metabolic syndrome 'at-risk' population. Int. J. Obes (Lond.) 37, 216–223 (2012).

    Google Scholar 

  130. Russell, W. R. et al. High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. Am. J. Clin. Nutr. 93, 1062–1072 (2011).

    CAS  PubMed  Google Scholar 

  131. Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Russell, D. A., Ross, R. P., Fitzgerald, G. F. & Stanton, C. Metabolic activities and probiotic potential of bifidobacteria. Int. J. Food Microbiol. 149, 88–105 (2011).

    CAS  PubMed  Google Scholar 

  133. Tuohy, K. M., Conterno, L., Gasperotti, M. & Viola, R. Up-regulating the human intestinal microbiome using whole plant foods, polyphenols, and/or fiber. J. Agric. Food Chem. 60, 8776–8782 (2012).

    CAS  PubMed  Google Scholar 

  134. Connolly, M. L., Tuohy, K. M. & Lovegrove, J. A. Wholegrain oat-based cereals have prebiotic potential and low glycaemic index. Br. J. Nutr. 108, 2198–2206 (2012).

    CAS  PubMed  Google Scholar 

  135. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Ze, X., Le Mougen, F., Duncan, S. H., Louis, P. & Flint, H. J. Some are more equal than others: the role of “keystone” species in the degradation of recalcitrant substrates. Gut Microbes 4, 236–240 (2013).

    PubMed  PubMed Central  Google Scholar 

  137. Claesson, M. J. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 488, 178–184 (2012).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

H. M. Staudacher is funded by the National Institute for Health Research.

Author information

Authors and Affiliations

Authors

Contributions

H. M. Staudacher and K. Whelan researched data for and wrote the article. All authors made equal contributions to discussion of content and reviewing/editing the manuscript before submission.

Corresponding author

Correspondence to Kevin Whelan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staudacher, H., Irving, P., Lomer, M. et al. Mechanisms and efficacy of dietary FODMAP restriction in IBS. Nat Rev Gastroenterol Hepatol 11, 256–266 (2014). https://doi.org/10.1038/nrgastro.2013.259

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2013.259

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing