Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bile acid receptors as targets for drug development

Key Points

  • The discovery of dedicated bile acid receptors and further research defined multiple bile acid signalling routes affecting bile acid synthesis, lipid synthesis, gluconeogenesis, inflammation, liver fibrosis and cancer

  • Steroidal and nonsteroidal agonists of bile acid receptors have been developed as potential treatments for cholestatic and metabolic liver diseases, including primary biliary cirrhosis, primary sclerosing cholangitis and NASH

  • Randomized, placebo-controlled clinical trials for the treatment of primary biliary cirrhosis and NASH with the farnesoid X receptor (FXR) agonist obeticholic acid are the first clinical trials initiated

  • Future indications for FXR and TGR5 agonists include genetic cholestatic syndromes, intrahepatic cholestasis of pregnancy, atherosclerosis, IBS, bile-reflux oesophagitis, IBD, hepatocellular and colon carcinoma

Abstract

The intracellular nuclear receptor farnesoid X receptor and the transmembrane G protein-coupled receptor TGR5 respond to bile acids by activating transcriptional networks and/or signalling cascades. These cascades affect the expression of a great number of target genes relevant for bile acid, cholesterol, lipid and carbohydrate metabolism, as well as genes involved in inflammation, fibrosis and carcinogenesis. Pregnane X receptor, vitamin D receptor and constitutive androstane receptor are additional nuclear receptors that respond to bile acids, albeit to a more restricted set of species of bile acids. Recognition of dedicated bile acid receptors prompted the development of semi-synthetic bile acid analogues and nonsteroidal compounds that target these receptors. These agents hold promise to become a new class of drugs for the treatment of chronic liver disease, hepatocellular cancer and extrahepatic inflammatory and metabolic diseases. This Review discusses the relevant bile acid receptors, the new drugs that target bile acid signalling and their possible applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Enterohepatic actions of FXR.
Figure 2: TGR5-expressing tissues and targets.
Figure 3: Steroidal and nonsteroidal agonists of FXR and TGR5.
Figure 4: Potential targets of FXR and TGR5 agonists in NASH.
Figure 5: Bile acid receptor activation after Roux-en-Y gastric bypass surgery.

Similar content being viewed by others

References

  1. Hagey, L. R. et al. Ursodeoxycholic acid in the Ursidae: biliary bile acids of bears, pandas, and related carnivores. J. Lipid Res. 34, 1911–1917 (1993).

    CAS  PubMed  Google Scholar 

  2. Maton, P. N., Murphy, G. M. & Dowling, R. H. Ursodeoxycholic acid treatment of gallstones. Dose-response study and possible mechanism of action. Lancet 2, 1297–1301 (1977).

    CAS  PubMed  Google Scholar 

  3. Poupon, R. et al. Is ursodeoxycholic acid an effective treatment for primary biliary cirrhosis? Lancet 1, 834–836 (1987).

    CAS  PubMed  Google Scholar 

  4. Salen, G., Meriwether, T. W. & Nicolau, G. Chenodeoxycholic acid inhibits increased cholesterol and cholestanol synthesis in patients with cerebrotendinous xanthomatosis. Biochem. Med. 14, 57–74 (1975).

    CAS  PubMed  Google Scholar 

  5. Hench, P. S. Effect of jaundice on rheumatoid arthritis. Br. Med. J. 2, 394–398 (1938).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Russell, D. W. The enzymes, regulation, and genetics of bile acid synthesis. Annu. Rev. Biochem. 72, 137–174 (2003).

    CAS  PubMed  Google Scholar 

  7. Ridlon, J. M., Kang, D. J. & Hylemon, P. B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 47, 241–259 (2006).

    CAS  PubMed  Google Scholar 

  8. Dawson, P. A., Lan, T. & Rao, A. Bile acid transporters. J. Lipid Res. 50, 2340–2357 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hofmann, A. F. Biliary secretion and excretion in health and disease: current concepts. Ann. Hepatol. 6, 15–27 (2007).

    CAS  PubMed  Google Scholar 

  10. Borgstrom, B., Dahlqvist, A., Lundh, G. & Sjovall, J. Studies of intestinal digestion and absorption in the human. J. Clin. Invest. 36, 1521–1536 (1957).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Forman, B. M. et al. Identification of a nuclear receptor that is activated by farnesol metabolites. Cell 81, 687–693 (1995).

    CAS  PubMed  Google Scholar 

  12. Seol, W., Choi, H. S. & Moore, D. D. Isolation of proteins that interact specifically with the retinoid X receptor: two novel orphan receptors. Mol. Endocrinol. 9, 72–85 (1995).

    CAS  PubMed  Google Scholar 

  13. Shefer, S., Hauser, S., Bekersky, I. & Mosbach, E. H. Feedback regulation of bile acid biosynthesis in the rat. J. Lipid Res. 10, 646–655 (1969).

    CAS  PubMed  Google Scholar 

  14. Goodwin, B. et al. A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol. Cell 6, 517–526 (2000).

    CAS  PubMed  Google Scholar 

  15. Seol, W., Choi, H. S. & Moore, D. D. An orphan nuclear hormone receptor that lacks a DNA binding domain and heterodimerizes with other receptors. Science 272, 1336–1339 (1996).

    CAS  PubMed  Google Scholar 

  16. Inagaki, T. et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell. Metab. 2, 217–225 (2005).

    CAS  PubMed  Google Scholar 

  17. Houten, S. M., Watanabe, M. & Auwerx, J. Endocrine functions of bile acids. EMBO J. 25, 1419–1425 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Huang, W. et al. Nuclear receptor-dependent bile acid signaling is required for normal liver regeneration. Science 312, 233–236 (2006).

    CAS  PubMed  Google Scholar 

  19. Inagaki, T. et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc. Natl Acad. Sci. USA 103, 3920–3925 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Alemi, F. et al. The receptor TGR5 mediates the prokinetic actions of intestinal bile acids and is required for normal defecation in mice. Gastroenterology 144, 145–154 (2013).

    CAS  PubMed  Google Scholar 

  21. Higuchi, H., Grambihler, A., Canbay, A., Bronk, S. F. & Gores, G. J. Bile acids up-regulate death receptor 5/TRAIL-receptor 2 expression via a c-Jun N.-terminal kinase-dependent pathway involving Sp1. J. Biol. Chem. 279, 51–60 (2004).

    CAS  PubMed  Google Scholar 

  22. Allen, K., Jaeschke, H. & Copple, B. L. Bile acids induce inflammatory genes in hepatocytes: a novel mechanism of inflammation during obstructive cholestasis. Am. J. Pathol. 178, 175–186 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Baes, M. et al. A new orphan member of the nuclear hormone receptor superfamily that interacts with a subset of retinoic acid response elements. Mol. Cell Biol. 14, 1544–1552 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Makishima, M. et al. Vitamin D receptor as an intestinal bile acid sensor. Science 296, 1313–1316 (2002).

    CAS  PubMed  Google Scholar 

  25. Choi, H. S. et al. Differential transactivation by two isoforms of the orphan nuclear hormone receptor CAR. J. Biol. Chem. 272, 23565–23571 (1997).

    CAS  PubMed  Google Scholar 

  26. Maruyama, T. et al. Identification of membrane-type receptor for bile acids (M-BAR). Biochem. Biophys. Res. Commun. 298, 714–719 (2002).

    CAS  PubMed  Google Scholar 

  27. Kawamata, Y. et al. A G protein-coupled receptor responsive to bile acids. J. Biol. Chem. 278, 9435–9440 (2003).

    CAS  PubMed  Google Scholar 

  28. Otte, K. et al. Identification of farnesoid X receptor beta as a novel mammalian nuclear receptor sensing lanosterol. Mol. Cell Biol. 23, 864–872 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang, Y., Kast-Woelbern, H. R. & Edwards, P. A. Natural structural variants of the nuclear receptor farnesoid X receptor affect transcriptional activation. J. Biol. Chem. 278, 104–110 (2003).

    CAS  PubMed  Google Scholar 

  30. Bookout, A. L. et al. Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell 126, 789–799 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Li, Z., Kruijt, J. K., van der Sluis, R. J., Van Berkel, T. J. & Hoekstra, M. Nuclear receptor atlas of female mouse liver parenchymal, endothelial, and Kupffer cells. Physiol. Genomics 45, 268–275 (2013).

    CAS  PubMed  Google Scholar 

  32. Fickert, P. et al. Farnesoid X receptor critically determines the fibrotic response in mice but is expressed to a low extent in human hepatic stellate cells and periductal myofibroblasts. Am. J. Pathol. 175, 2392–2405 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Bishop-Bailey, D., Walsh, D. T. & Warner, T. D. Expression and activation of the farnesoid X receptor in the vasculature. Proc. Natl Acad. Sci. USA 101, 3668–3673 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee, H. et al. FXR regulates organic solute transporters α and β in the adrenal gland, kidney, and intestine. J. Lipid Res. 47, 201–214 (2006).

    CAS  PubMed  Google Scholar 

  35. Cariou, B. et al. The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice. J. Biol. Chem. 281, 11039–11049 (2006).

    CAS  PubMed  Google Scholar 

  36. Jiang, T. et al. Farnesoid X receptor modulates renal lipid metabolism, fibrosis, and diabetic nephropathy. Diabetes 56, 2485–2493 (2007).

    CAS  PubMed  Google Scholar 

  37. Abel, U. et al. Synthesis and pharmacological validation of a novel series of non-steroidal FXR agonists. Bioorg. Med. Chem. Lett. 20, 4911–4917 (2010).

    CAS  PubMed  Google Scholar 

  38. Sayin, S. I. et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-β-muricholic acid, a naturally occurring FXR antagonist. Cell. Metab. 17, 225–235 (2013).

    CAS  PubMed  Google Scholar 

  39. Beraza, N. et al. Nor-ursodeoxycholic acid reverses hepatocyte-specific nemo-dependent steatohepatitis. Gut 60, 387–396 (2011).

    CAS  PubMed  Google Scholar 

  40. Gardmo, C., Tamburro, A., Modica, S. & Moschetta, A. Proteomics for the discovery of nuclear bile acid receptor FXR targets. Biochim. Biophys. Acta 1812, 836–841 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Jung, D. & Kullak-Ublick, G. A. Hepatocyte nuclear factor 1 α: a key mediator of the effect of bile acids on gene expression. Hepatology 37, 622–631 (2003).

    CAS  PubMed  Google Scholar 

  42. Jung, D., Mangelsdorf, D. J. & Meyer, U. A. Pregnane X receptor is a target of farnesoid X receptor. J. Biol. Chem. 281, 19081–19091 (2006).

    CAS  PubMed  Google Scholar 

  43. Inoue, J. et al. PPARα gene expression is up-regulated by LXR and PXR activators in the small intestine. Biochem. Biophys. Res. Commun. 371, 675–678 (2008).

    CAS  PubMed  Google Scholar 

  44. Renga, B. et al. Farnesoid X receptor suppresses constitutive androstane receptor activity at the multidrug resistance protein-4 promoter. Biochim. Biophys. Acta 1809, 157–165 (2011).

    CAS  PubMed  Google Scholar 

  45. Beilke, L. D. et al. Constitutive androstane receptor-mediated changes in bile acid composition contributes to hepatoprotection from lithocholic acid-induced liver injury in mice. Drug Metab. Dispos. 37, 1035–1045 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Claudel, T., Staels, B. & Kuipers, F. The Farnesoid X receptor: a molecular link between bile acid and lipid and glucose metabolism. Arterioscler. Thromb. Vasc. Biol. 25, 2020–2030 (2005).

    CAS  PubMed  Google Scholar 

  47. Wang, Y. D., Chen, W. D., Moore, D. D. & Huang, W. FXR: a metabolic regulator and cell protector. Cell Res. 18, 1087–1095 (2008).

    CAS  PubMed  Google Scholar 

  48. Pircher, P. C. et al. Farnesoid X receptor regulates bile acid-amino acid conjugation. J. Biol. Chem. 278, 27703–27711 (2003).

    CAS  PubMed  Google Scholar 

  49. Ananthanarayanan, M., Balasubramanian, N., Makishima, M., Mangelsdorf, D. J. & Suchy, F. J. Human bile salt export pump promoter is transactivated by the farnesoid X receptor/bile acid receptor. J. Biol. Chem. 276, 28857–28865 (2001).

    CAS  PubMed  Google Scholar 

  50. Boyer, J. L. et al. Upregulation of a basolateral FXR-dependent bile acid efflux transporter OSTα-OSTβ in cholestasis in humans and rodents. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G1124–G1130 (2006).

    CAS  PubMed  Google Scholar 

  51. Fiorucci, S. et al. The nuclear receptor SHP mediates inhibition of hepatic stellate cells by FXR and protects against liver fibrosis. Gastroenterology 127, 1497–1512 (2004).

    CAS  PubMed  Google Scholar 

  52. Kim, I. et al. Spontaneous hepatocarcinogenesis in farnesoid X receptor-null mice. Carcinogenesis 28, 940–946 (2007).

    CAS  PubMed  Google Scholar 

  53. Deuschle, U. et al. FXR controls the tumor suppressor NDRG2 and FXR agonists reduce liver tumor growth and metastasis in an orthotopic mouse xenograft model. PLoS ONE 7, e43044 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Jiang, Y. et al. Farnesoid X receptor inhibits gankyrin in mouse livers and prevents development of liver cancer. Hepatology 57, 1098–1106 (2013).

    CAS  PubMed  Google Scholar 

  55. Wistuba, W., Gnewuch, C., Liebisch, G., Schmitz, G. & Langmann, T. Lithocholic acid induction of the FGF19 promoter in intestinal cells is mediated by PXR. World J. Gastroenterol. 13, 4230–4235 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Schmidt, D. R. et al. Regulation of bile acid synthesis by fat-soluble vitamins A and D. J. Biol. Chem. 285, 14486–14494 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Schreuder, T. C. et al. The hepatic response to FGF19 is impaired in patients with nonalcoholic fatty liver disease and insulin resistance. Am. J. Physiol. Gastrointest Liver Physiol. 298, G440–G445 (2010).

    CAS  PubMed  Google Scholar 

  58. Triantis, V., Saeland, E., Bijl, N., Oude-Elferink, R. P. & Jansen, P. L. Glycosylation of fibroblast growth factor receptor 4 is a key regulator of fibroblast growth factor 19-mediated down-regulation of cytochrome P450 7A1. Hepatology 52, 656–666 (2010).

    CAS  PubMed  Google Scholar 

  59. Wu, X. et al. Co-receptor requirements for fibroblast growth factor-19 signaling. J. Biol. Chem. 282, 29069–29072 (2007).

    CAS  PubMed  Google Scholar 

  60. Kir, S., Zhang, Y., Gerard, R. D., Kliewer, S. A. & Mangelsdorf, D. J. Nuclear receptors HNF4α and LRH-1 cooperate in regulating Cyp7a1 in vivo. J. Biol. Chem. 287, 41334–41341 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kim, I. et al. Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine. J. Lipid Res. 48, 2664–2672 (2007).

    CAS  PubMed  Google Scholar 

  62. Potthoff, M. J. et al. FGF15/19 regulates hepatic glucose metabolism by inhibiting the CREB-PGC-1α pathway. Cell. Metab. 13, 729–738 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Kir, S. et al. FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. Science 331, 1621–1624 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Miyata, M., Sakaida, Y., Matsuzawa, H., Yoshinari, K. & Yamazoe, Y. Fibroblast growth factor 19 treatment ameliorates disruption of hepatic lipid metabolism in farnesoid X receptor (Fxr)-null mice. Biol. Pharm. Bull. 34, 1885–1889 (2011).

    CAS  PubMed  Google Scholar 

  65. Choi, M. et al. Identification of a hormonal basis for gallbladder filling. Nat. Med. 12, 1253–1255 (2006).

    CAS  PubMed  Google Scholar 

  66. Drafahl, K. A., McAndrew, C. W., Meyer, A. N., Haas, M. & Donoghue, D. J. The receptor tyrosine kinase FGFR4 negatively regulates NF-κB signaling. PLoS ONE 5, e14412 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Uriarte, I. et al. Identification of fibroblast growth factor 15 as a novel mediator of liver regeneration and its application in the prevention of post-resection liver failure in mice. Gut 62, 899–910 (2013).

    CAS  PubMed  Google Scholar 

  68. Zweers, S. J. et al. The human gallbladder secretes fibroblast growth factor 19 into bile: towards defining the role of fibroblast growth factor 19 in the enterobiliary tract. Hepatology 55, 575–583 (2012).

    CAS  PubMed  Google Scholar 

  69. Nicholes, K. et al. A mouse model of hepatocellular carcinoma: ectopic expression of fibroblast growth factor 19 in skeletal muscle of transgenic mice. Am. J. Pathol. 160, 2295–2307 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Lin, B. C. & Desnoyers, L. R. FGF19 and cancer. Adv. Exp. Med. Biol. 728, 183–194 (2012).

    CAS  PubMed  Google Scholar 

  71. Wu, X. et al. Separating mitogenic and metabolic activities of fibroblast growth factor 19 (FGF19). Proc. Natl Acad. Sci. USA 107, 14158–14163 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Keitel, V. et al. The membrane-bound bile acid receptor TGR5 is localized in the epithelium of human gallbladders. Hepatology 50, 861–870 (2009).

    CAS  PubMed  Google Scholar 

  73. Keitel, V. et al. The bile acid receptor TGR5 (Gpbar-1) acts as a neurosteroid receptor in brain. Glia 58, 1794–1805 (2010).

    PubMed  Google Scholar 

  74. Keitel, V. et al. The G.-protein coupled bile salt receptor TGR5 is expressed in liver sinusoidal endothelial cells. Hepatology 45, 695–704 (2007).

    CAS  PubMed  Google Scholar 

  75. Sato, H. et al. Anti-hyperglycemic activity of a TGR5 agonist isolated from Olea europaea. Biochem. Biophys. Res. Commun. 362, 793–798 (2007).

    CAS  PubMed  Google Scholar 

  76. Sato, H. et al. Novel potent and selective bile acid derivatives as TGR5 agonists: biological screening, structure-activity relationships, and molecular modeling studies. J. Med. Chem. 51, 1831–1841 (2008).

    CAS  PubMed  Google Scholar 

  77. Pols, T. W., Noriega, L. G., Nomura, M., Auwerx, J. & Schoonjans, K. The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation. J. Hepatol. 54, 1263–1272 (2011).

    CAS  PubMed  Google Scholar 

  78. Pols, T. W. et al. TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading. Cell. Metab. 14, 747–757 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang, Y. D., Chen, W. D., Yu, D., Forman, B. M. & Huang, W. The G-protein-coupled bile acid receptor, Gpbar1 (TGR5), negatively regulates hepatic inflammatory response through antagonizing nuclear factor κ light-chain enhancer of activated B cells (NF-κB) in mice. Hepatology 54, 1421–1432 (2011).

    CAS  PubMed  Google Scholar 

  80. Katsuma, S., Hirasawa, A. & Tsujimoto, G. Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. Biochem. Biophys. Res. Commun. 329, 386–390 (2005).

    CAS  PubMed  Google Scholar 

  81. Thomas, C. et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell. Metab. 10, 167–177 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Watanabe, M. et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439, 484–489 (2006).

    CAS  PubMed  Google Scholar 

  83. Jansen, P. L. et al. Alterations of hormonally active fibroblast growth factors after Roux-en-Y gastric bypass surgery. Dig. Dis. 29, 48–51 (2011).

    PubMed  Google Scholar 

  84. Li, T. et al. The G protein-coupled bile acid receptor, TGR5, stimulates gallbladder filling. Mol. Endocrinol. 25, 1066–1071 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Beuers, U. et al. The biliary HCO3 umbrella: a unifying hypothesis on pathogenetic and therapeutic aspects of fibrosing cholangiopathies. Hepatology 52, 1489–1496 (2010).

    CAS  PubMed  Google Scholar 

  86. Zhang, H. et al. Rat pregnane X receptor: molecular cloning, tissue distribution, and xenobiotic regulation. Arch. Biochem. Biophys. 368, 14–22 (1999).

    CAS  PubMed  Google Scholar 

  87. Kliewer, S. A. et al. An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway. Cell 92, 73–82 (1998).

    CAS  PubMed  Google Scholar 

  88. Lehmann, J. M. et al. The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions. J. Clin. Invest. 102, 1016–1023 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Bertilsson, G. et al. Identification of a human nuclear receptor defines a new signaling pathway for CYP3A induction. Proc. Natl Acad. Sci. USA 95, 12208–12213 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Lamba, V. et al. PXR (NR1I2): splice variants in human tissues, including brain, and identification of neurosteroids and nicotine as PXR activators. Toxicol. Appl. Pharmacol. 199, 251–265 (2004).

    CAS  PubMed  Google Scholar 

  91. Vogel, S. M. et al. Lithocholic acid is an endogenous inhibitor of MDM4 and MDM2. Proc. Natl Acad. Sci. USA 109, 16906–16910 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Wang, Y. M., Ong, S. S., Chai, S. C. & Chen, T. Role of CAR and PXR in xenobiotic sensing and metabolism. Expert Opin. Drug Metab. Toxicol. 8, 803–817 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Kast, H. R. et al. Regulation of multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane X receptor, farnesoid X-activated receptor, and constitutive androstane receptor. J. Biol. Chem. 277, 2908–2915 (2002).

    CAS  PubMed  Google Scholar 

  94. Ihunnah, C. A., Jiang, M. & Xie, W. Nuclear receptor PXR, transcriptional circuits and metabolic relevance. Biochim. Biophys. Acta 1812, 956–963 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Wallace, K. et al. The PXR is a drug target for chronic inflammatory liver disease. J. Steroid Biochem. Mol. Biol. 120, 137–148 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Li, T. & Chiang, J. Y. Mechanism of rifampicin and pregnane X receptor inhibition of human cholesterol 7 α-hydroxylase gene transcription. Am. J. Physiol. Gastrointest. Liver Physiol. 288, G74–G84 (2005).

    CAS  PubMed  Google Scholar 

  97. Cheng, J., Shah, Y. M. & Gonzalez, F. J. Pregnane X receptor as a target for treatment of inflammatory bowel disorders. Trends Pharmacol. Sci. 33, 323–330 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhou, J. et al. Hepatic fatty acid transporter Cd36 is a common target of LXR, PXR, and PPARγ in promoting steatosis. Gastroenterology 134, 556–567 (2008).

    CAS  PubMed  Google Scholar 

  99. Jonker, J. W., Liddle, C. & Downes, M. FXR and PXR: potential therapeutic targets in cholestasis. J. Steroid Biochem. Mol. Biol. 130, 147–158 (2012).

    CAS  PubMed  Google Scholar 

  100. Norman, A. W. Minireview: vitamin D receptor: new assignments for an already busy receptor. Endocrinology 147, 5542–5548 (2006).

    CAS  PubMed  Google Scholar 

  101. Han, S. & Chiang, J. Y. Mechanism of vitamin D receptor inhibition of cholesterol 7α-hydroxylase gene transcription in human hepatocytes. Drug Metab. Dispos. 37, 469–478 (2009).

    CAS  PubMed  Google Scholar 

  102. Adachi, R. et al. Structural determinants for vitamin D receptor response to endocrine and xenobiotic signals. Mol. Endocrinol. 18, 43–52 (2004).

    CAS  PubMed  Google Scholar 

  103. Huhtakangas, J. A., Olivera, C. J., Bishop, J. E., Zanello, L. P. & Norman, A. W. The vitamin D receptor is present in caveolae-enriched plasma membranes and binds 1α,25(OH)2-vitamin D3 in vivo and in vitro. Mol. Endocrinol. 18, 2660–2671 (2004).

    CAS  PubMed  Google Scholar 

  104. Han, S., Li, T., Ellis, E., Strom, S. & Chiang, J. Y. A novel bile acid-activated vitamin D receptor signaling in human hepatocytes. Mol. Endocrinol. 24, 1151–1164 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. D'Aldebert, E. et al. Bile salts control the antimicrobial peptide cathelicidin through nuclear receptors in the human biliary epithelium. Gastroenterology 136, 1435–1443 (2009).

    CAS  PubMed  Google Scholar 

  106. Saini, S. P. et al. A novel constitutive androstane receptor-mediated and CYP3A-independent pathway of bile acid detoxification. Mol. Pharmacol. 65, 292–300 (2004).

    CAS  PubMed  Google Scholar 

  107. Chang, T. K. Activation of pregnane X receptor (PXR) and constitutive androstane receptor (CAR) by herbal medicines. AAPS J. 11, 590–601 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Moore, L. B. et al. Pregnane X receptor (PXR), constitutive androstane receptor (CAR), and benzoate X receptor (BXR) define three pharmacologically distinct classes of nuclear receptors. Mol. Endocrinol. 16, 977–986 (2002).

    CAS  PubMed  Google Scholar 

  109. Miao, J., Fang, S., Bae, Y. & Kemper, J. K. Functional inhibitory cross-talk between constitutive androstane receptor and hepatic nuclear factor-4 in hepatic lipid/glucose metabolism is mediated by competition for binding to the DR1 motif and to the common coactivators, GRIP-1 and PGC-1α. J. Biol. Chem. 281, 14537–14546 (2006).

    CAS  PubMed  Google Scholar 

  110. Uppal, H. et al. Combined loss of orphan receptors PXR and CAR heightens sensitivity to toxic bile acids in mice. Hepatology 41, 168–176 (2005).

    CAS  PubMed  Google Scholar 

  111. Pellicciari, R. et al. 6α-ethyl-chenodeoxycholic acid (6-ECDCA), a potent and selective FXR agonist endowed with anticholestatic activity. J. Med. Chem. 45, 3569–3572 (2002).

    CAS  PubMed  Google Scholar 

  112. Pellicciari, R. et al. Discovery of 6α-ethyl-23(S)-methylcholic acid (S-EMCA, INT-777) as a potent and selective agonist for the TGR5 receptor, a novel target for diabesity. J. Med. Chem. 52, 7958–7961 (2009).

    CAS  PubMed  Google Scholar 

  113. Rizzo, G. et al. Functional characterization of the semisynthetic bile acid derivative INT-767, a dual farnesoid X receptor and TGR5 agonist. Mol. Pharmacol. 78, 617–630 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Baghdasaryan, A. et al. Dual farnesoid X receptor/TGR5 agonist INT-767 reduces liver injury in the Mdr2−/− (Abcb4−/−) mouse cholangiopathy model by promoting biliary HCO3 output. Hepatology 54, 1303–1312 (2011).

    CAS  PubMed  Google Scholar 

  115. Adorini, L., Pruzanski, M. & Shapiro, D. Farnesoid X receptor targeting to treat nonalcoholic steatohepatitis. Drug Discov. Today 17, 988–997 (2012).

    CAS  PubMed  Google Scholar 

  116. Hartman, H. B. et al. Activation of farnesoid X receptor prevents atherosclerotic lesion formation in LDLR−/− and apoE−/− mice. J. Lipid Res. 50, 1090–1100 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Mencarelli, A., Renga, B., Distrutti, E. & Fiorucci, S. Antiatherosclerotic effect of farnesoid X receptor. Am. J. Physiol. Heart Circ. Physiol. 296, H272–H281 (2009).

    CAS  PubMed  Google Scholar 

  118. Urizar, N. L. et al. A natural product that lowers cholesterol as an antagonist ligand for FXR. Science 296, 1703–1706 (2002).

    CAS  PubMed  Google Scholar 

  119. Zhang, Y. et al. FXR deficiency causes reduced atherosclerosis in Ldlr−/− mice. Arterioscler Thromb. Vasc Biol. 26, 2316–2321 (2006).

    CAS  PubMed  Google Scholar 

  120. Guo, G. L. et al. Effects of FXR in foam-cell formation and atherosclerosis development. Biochim. Biophys. Acta 1761, 1401–1409 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Bennett, B. J. et al. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell. Metab. 17, 49–60 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Marinozzi, M. et al. Pyrazole[3,4-e][1 4]thiazepin-7-one derivatives as a novel class of farnesoid X receptor (FXR) agonists. Bioorg. Med. Chem. 20, 3429–3445 (2012).

    CAS  PubMed  Google Scholar 

  123. Herbert, M. R. et al. Synthesis and SAR of 2-aryl-3-aminomethylquinolines as agonists of the bile acid receptor TGR5. Bioorg. Med. Chem. Lett. 20, 5718–5721 (2010).

    CAS  PubMed  Google Scholar 

  124. Sakamoto, S. et al. Glucuronidation converting methyl 1-(3,4-dimethoxyphenyl)-3-(3-ethylvaleryl)-4-hydroxy-6, 7,8-trimethoxy-2-naphthoat e (S-8921) to a potent apical sodium-dependent bile acid transporter inhibitor, resulting in a hypocholesterolemic action. J. Pharmacol. Exp. Ther. 322, 610–618 (2007).

    CAS  PubMed  Google Scholar 

  125. Kobayashi, M. et al. Prevention and treatment of obesity, insulin resistance, and diabetes by bile acid-binding resin. Diabetes 56, 239–247 (2007).

    CAS  PubMed  Google Scholar 

  126. European Association for the Study of the Liver. EASL Clinical Practice Guidelines: management of cholestatic liver diseases. J. Hepatol. 51, 237–267 (2009).

  127. Beuers, U. et al. Tauroursodeoxycholic acid inserts the apical conjugate export pump, Mrp2, into canalicular membranes and stimulates organic anion secretion by protein kinase C-dependent mechanisms in cholestatic rat liver. Hepatology 33, 1206–1216 (2001).

    CAS  PubMed  Google Scholar 

  128. Garcia-Marin, J. J., Dumont, M., Corbic, M., de Couet, G. & Erlinger, S. Effect of acid-base balance and acetazolamide on ursodeoxycholate-induced biliary bicarbonate secretion. Am. J. Physiol. 248, G20–G27 (1985).

    CAS  PubMed  Google Scholar 

  129. Kurz, A. K., Graf, D., Schmitt, M., Vom Dahl, S. & Haussinger, D. Tauroursodesoxycholate-induced choleresis involves p38(MAPK) activation and translocation of the bile salt export pump in rats. Gastroenterology 121, 407–419 (2001).

    CAS  PubMed  Google Scholar 

  130. Gohlke, H., Schmitz, B., Sommerfeld, A., Reinehr, R. & Haussinger, D. α5 β1-integrins are sensors for tauroursodeoxycholic acid in hepatocytes. Hepatology 57, 1117–1129 (2013).

    CAS  PubMed  Google Scholar 

  131. Bouscarel, B., Fromm, H. & Nussbaum, R. Ursodeoxycholate mobilizes intracellular Ca2+ and activates phosphorylase a in isolated hepatocytes. Am. J. Physiol. 264, G243–G251 (1993).

    CAS  PubMed  Google Scholar 

  132. Wong, M. H., Oelkers, P., Craddock, A. L. & Dawson, P. A. Expression cloning and characterization of the hamster ileal sodium-dependent bile acid transporter. J. Biol. Chem. 269, 1340–1347 (1994).

    CAS  PubMed  Google Scholar 

  133. Mekjian, H. S., Phillips, S. F. & Hofmann, A. F. Colonic secretion of water and electrolytes induced by bile acids: perfusion studies in man. J. Clin. Invest. 50, 1569–1577 (1971).

    CAS  PubMed  Google Scholar 

  134. Harach, T. et al. TGR5 potentiates GLP-1 secretion in response to anionic exchange resins. Sci. Rep. 2, 430 (2012).

    PubMed  PubMed Central  Google Scholar 

  135. Chen, L. et al. Inhibition of apical sodium-dependent bile acid transporter as a novel treatment for diabetes. Am. J. Physiol. Endocrinol. Metab. 302, E68–E76 (2012).

    CAS  PubMed  Google Scholar 

  136. Bhat, B. G. et al. Inhibition of ileal bile acid transport and reduced atherosclerosis in apoE−/− mice by SC-435. J. Lipid Res. 44, 1614–1621 (2003).

    CAS  PubMed  Google Scholar 

  137. Li, H. et al. Inhibition of ileal bile acid transport lowers plasma cholesterol levels by inactivating hepatic farnesoid X receptor and stimulating cholesterol 7 α-hydroxylase. Metabolism 53, 927–932 (2004).

    CAS  PubMed  Google Scholar 

  138. Insull, W. Jr et al. Effectiveness of colesevelam hydrochloride in decreasing LDL cholesterol in patients with primary hypercholesterolemia: a 24-week randomized controlled trial. Mayo Clin. Proc. 76, 971–982 (2001).

    CAS  PubMed  Google Scholar 

  139. Hansen, M. et al. Effect of bile acid sequestrants on glycaemic control: protocol for a systematic review with meta-analysis of randomised controlled trials. BMJ Open 2, e001803 (2012).

    PubMed  PubMed Central  Google Scholar 

  140. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  141. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  142. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  143. Schaap, F. G., van der Gaag, N. A., Gouma, D. J. & Jansen, P. L. High expression of the bile salt-homeostatic hormone fibroblast growth factor 19 in the liver of patients with extrahepatic cholestasis. Hepatology 49, 1228–1235 (2009).

    CAS  PubMed  Google Scholar 

  144. Fickert, P. et al. Regurgitation of bile acids from leaky bile ducts causes sclerosing cholangitis in Mdr2 (Abcb4) knockout mice. Gastroenterology 127, 261–274 (2004).

    CAS  PubMed  Google Scholar 

  145. Fiorucci, S. et al. Farnesoid X receptor agonist for the treatment of liver and metabolic disorders: focus on 6-ethyl-CDCA. Mini Rev. Med. Chem. 11, 753–762 (2011).

    CAS  PubMed  Google Scholar 

  146. Kremer, A. E. et al. Lysophosphatidic acid is a potential mediator of cholestatic pruritus. Gastroenterology 139, 1008–1018 (2010).

    CAS  PubMed  Google Scholar 

  147. Kremer, A. E. et al. Serum autotaxin is increased in pruritus of cholestasis, but not of other origin, and responds to therapeutic interventions. Hepatology 56, 1391–1400 (2012).

    CAS  PubMed  Google Scholar 

  148. Alemi, F. et al. The TGR5 receptor mediates bile acid-induced itch and analgesia. J. Clin. Invest. 123, 1513–1530 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Gadaleta, R. M. et al. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease. Gut 60, 463–472 (2011).

    CAS  PubMed  Google Scholar 

  150. Terjung, B. et al. p-ANCAs in autoimmune liver disorders recognise human β-tubulin isotype 5 and cross-react with microbial protein FtsZ. Gut 59, 808–816 (2010).

    CAS  PubMed  Google Scholar 

  151. Wong, B. S. et al. Increased bile acid biosynthesis is associated with irritable bowel syndrome with diarrhea. Clin. Gastroenterol. Hepatol. 10, 1009–1015 e3 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Mudaliar, S. et al. Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease. Gastroenterology http://dx.doi.org/10.1053/j.gastro.2013.05.042.

  153. Wang, X. X. et al. Diabetic nephropathy is accelerated by farnesoid X receptor deficiency and inhibited by farnesoid X receptor activation in a type 1 diabetes model. Diabetes 59, 2916–2927 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Peterli, R. et al. Improvement in glucose metabolism after bariatric surgery: comparison of laparoscopic Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy: a prospective randomized trial. Ann. Surg. 250, 234–241 (2009).

    PubMed  Google Scholar 

  155. van Dijk, R., Kremer, A. F., Enemuo, V., Jansen, P. L., Beuers, U. Clinical and molecular aspects of rifampicin-mediated attenuation of severe persistent hepatocellular secretory failure. Hepatology 56, 549A (2012).

    Google Scholar 

  156. Ohkubo, H., Okuda, K. & Iida, S. Effects of corticosteroids on bilirubin metabolism in patients with Gilbert's syndrome. Hepatology 1, 168–172 (1981).

    CAS  PubMed  Google Scholar 

  157. Arias, I. M., Gartner, L. M., Cohen, M., Ezzer, J. B. & Levi, A. J. Chronic nonhemolytic unconjugated hyperbilirubinemia with glucuronyl transferase deficiency. Clinical, biochemical, pharmacologic and genetic evidence for heterogeneity. Am. J. Med. 47, 395–409 (1969).

    CAS  PubMed  Google Scholar 

  158. Ellis, E. et al. Successful treatment of severe unconjugated hyperbilirubinemia via induction of UGT1A1 by rifampicin. J. Hepatol. 44, 243–245 (2006).

    PubMed  Google Scholar 

  159. Makishima, M. et al. Identification of a nuclear receptor for bile acids. Science 284, 1362–1365 (1999).

    CAS  PubMed  Google Scholar 

  160. Downes, M. et al. A chemical, genetic, and structural analysis of the nuclear bile acid receptor FXR. Mol. Cell 11, 1079–1092 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Hambruch, E. et al. Synthetic farnesoid X receptor agonists induce high-density lipoprotein-mediated transhepatic cholesterol efflux in mice and monkeys and prevent atherosclerosis in cholesteryl ester transfer protein transgenic low-density lipoprotein receptor(−/−) mice. J. Pharmacol. Exp. Ther. 343, 556–567 (2012).

    CAS  PubMed  Google Scholar 

  162. Flatt, B. et al. Discovery of XL335 (WAY-362450), a highly potent, selective, and orally active agonist of the farnesoid X receptor (FXR). J. Med. Chem. 52, 904–907 (2009).

    CAS  PubMed  Google Scholar 

  163. Soisson, S. M. et al. Identification of a potent synthetic FXR agonist with an unexpected mode of binding and activation. Proc. Natl Acad. Sci. USA 105, 5337–5342 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Bass, J. Y. et al. Conformationally constrained farnesoid X receptor (FXR) agonists: heteroaryl replacements of the naphthalene. Bioorg. Med. Chem. Lett. 21, 1206–1213 (2011).

    CAS  PubMed  Google Scholar 

  165. Chen, W. D. et al. Farnesoid X receptor alleviates age-related proliferation defects in regenerating mouse livers by activating forkhead box m1b transcription. Hepatology 51, 953–962 (2010).

    CAS  PubMed  Google Scholar 

  166. Hollman, D. A., Milona, A., van Erpecum, K. J. & van Mil, S. W. Anti-inflammatory and metabolic actions of FXR: insights into molecular mechanisms. Biochim. Biophys. Acta 1821, 1443–1452 (2012).

    CAS  PubMed  Google Scholar 

  167. Staudinger, J. L. et al. The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc. Natl Acad. Sci. USA 98, 3369–3374 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Jones, S. A. et al. The pregnane X receptor: a promiscuous xenobiotic receptor that has diverged during evolution. Mol. Endocrinol. 14, 27–39 (2000).

    CAS  PubMed  Google Scholar 

  169. Moore, L. B. et al. St. John's wort induces hepatic drug metabolism through activation of the pregnane X receptor. Proc. Natl Acad. Sci. USA 97, 7500–7502 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Ogura, M. et al. Vitamin D3 modulates the expression of bile acid regulatory genes and represses inflammation in bile duct-ligated mice. J. Pharmacol. Exp. Ther. 328, 564–570 (2009).

    CAS  PubMed  Google Scholar 

  171. Ma, Y. et al. Identification and characterization of noncalcemic, tissue-selective, nonsecosteroidal vitamin D receptor modulators. J. Clin. Invest. 116, 892–904 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Maglich, J. M. et al. Nuclear pregnane x receptor and constitutive androstane receptor regulate overlapping but distinct sets of genes involved in xenobiotic detoxification. Mol. Pharmacol. 62, 638–646 (2002).

    CAS  PubMed  Google Scholar 

  173. Gao, J. & Xie, W. Targeting xenobiotic receptors PXR and CAR for metabolic diseases. Trends Pharmacol. Sci. 33, 552–558 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors of this Review are supported by grantsP19118-B05, F3008 and F3517-B20 from the Austrian Science Foundation and European Community's Seventh Framework Program (FP7/2007-2013) under grant agreement HEALTH-F2-2009-241762 for the project FLIP (M. Trauner) and the Dutch Digestive Diseases Foundation (MLDS WO 08-69; to P. L. M. Jansen and F. G. Schaap).

Author information

Authors and Affiliations

Authors

Contributions

P. L. M. Jansen and F. G. Schaap wrote the article. M. Trauner reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Peter L. M. Jansen.

Ethics declarations

Competing interests

M. Trauner has received unrestricted research grants from Falk Pharma and Intercept and acts as an advisor for Phenex. The Medical University of Graz has filed a patent on the medical use of norUDCA and M. Trauner is listed as co-inventor. F. G. Schaap and P. L. M. Jensen declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaap, F., Trauner, M. & Jansen, P. Bile acid receptors as targets for drug development. Nat Rev Gastroenterol Hepatol 11, 55–67 (2014). https://doi.org/10.1038/nrgastro.2013.151

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2013.151

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing