Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of Disease: carcinogenesis in Barrett's esophagus

Abstract

The pathogenesis of cancer in Barrett's esophagus is multifactorial. Gastroesophageal reflux seems to be important in the initiation of Barrett's esophagus, but its role in promoting carcinogenesis has yet to be established. Diet, lifestyle and carcinogens, especially the nitrates, may be important in the development of carcinogenesis, and require further investigation. Inhibition of reflux-stimulated inflammatory changes, for example by inhibiting cyclooxygenase, holds promise for decreasing cancer progression. Similarly, dietary and lifestyle modification used in the management of reflux may also help to prevent the development of esophageal cancer. The molecular changes that are associated with the development of cancer in Barrett's esophagus offer several potential areas of intervention to prevent and manage esophageal cancer. Limiting cell growth, increasing apoptosis of damaged cells, limiting cell invasion and angiogenesis factors could be useful to accomplish this goal. Having a greater understanding of the pathogenesis of this condition can only help to develop more management options in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Putative risk factors promoting carcinogenesis in Barrett's esophagus.
Figure 2: A potential link between gastroesophageal reflux and esophageal cancer.
Figure 3: Molecular aberrations during carcinogenesis in Barrett's esophagus.

Similar content being viewed by others

References

  1. Cameron AJ (1997). Barrett's esophagus: does the incidence of adenocarcinoma matter? Am J Gastro 92: 193–194

    CAS  Google Scholar 

  2. Lagergren J et al. (1999) Symptomatic gastroesophageal reflux as a risk factor for esophageal adenocarcinoma. N Engl J Med 340: 825–831

    Article  CAS  Google Scholar 

  3. Jankowski JA et al. (1999) Molecular evolution of the metaplasia-dysplasia-adenocarcinoma sequence in the esophagus. Am J Pathol 154: 965–973

    Article  CAS  Google Scholar 

  4. Vaezi MF and Richter JE . (1995) Synergism of acid and duodenogastroesophageal reflux in complicated Barrett's esophagus. Surgery 117: 699–704

    Article  CAS  Google Scholar 

  5. Spechler SJ et al. (2001) Long-term outcome of medical and surgical therapies for gastroesophageal reflux disease: follow-up of a randomized controlled trial. JAMA 285: 2331–2338

    Article  CAS  Google Scholar 

  6. Caldwell MT et al. (1995) Ambulatory oesophageal bile reflux monitoring in Barrett's oesophagus. Br J Surg 82: 657–660

    Article  CAS  Google Scholar 

  7. Goldstein SR et al. (1997) Development of esophageal metaplasia and adenocarcinoma in a rat surgical model without the use of a carcinogen. Carcinogenesis 18: 2265–2270

    Article  CAS  Google Scholar 

  8. Kawaura Y et al. (2001) Immunohistochemical study of p53, c-erbB-2, and PCNA in barrett's esophagus with dysplasia and adenocarcinoma arising from experimental acid or alkaline reflux model. J Gastroenterol 36: 595–600

    Article  CAS  Google Scholar 

  9. Nehra D et al. (1999) Toxic bile acids in gastro-oesophageal reflux disease: influence of gastric acidity. Gut 44: 598–602

    Article  CAS  Google Scholar 

  10. Sontag SJ (1990) The medical management of reflux esophagitis. Role of antacids and acid inhibition. Gastroenterol Clin N Am 19: 683–712

    CAS  Google Scholar 

  11. Theisen J et al. (2000) Suppression of gastric acid secretion in patients with gastroesophageal reflux disease results in gastric bacterial overgrowth and deconjugation of bile acids. J Gastrointest Surg 4: 50–54

    Article  CAS  Google Scholar 

  12. Kaur BS et al. (2000) Bile salts induce or blunt cell proliferation in Barrett's esophagus in an acid-dependent fashion. Am J Physiol Gastrointest Liver Physiol 278: G1000–1009

    Article  CAS  Google Scholar 

  13. Zhang F et al. (2001) Duodenal reflux induces cyclooxygenase-2 in the esophageal mucosa of rats: evidence for involvement of bile acids. Gastroenterology 121: 1391–1399

    Article  CAS  Google Scholar 

  14. Wilson KT et al. (1998) Increased expression of inducible nitric oxide synthase and cyclooxygenase-2 in Barrett's esophagus and associated adenocarcinomas. Cancer Res 58: 2929–2934

    CAS  PubMed  Google Scholar 

  15. Souza RF et al. (2002) Acid exposure activates the mitogen-activated protein kinase pathways in Barrett's esophagus. Gastroenterology 122: 299–307

    Article  CAS  Google Scholar 

  16. Buttar N et al. (2002) The effect of selective cyclooxygenase-2 inhibition in Barrett's esophagus epithelium: an in vitro study. J Natl Cancer Inst 94: 422–429

    Article  CAS  Google Scholar 

  17. Nishigaki Y et al. (1996) Ursodeoxycholic acid corrects defective natural killer activity by inhibiting prostaglandin E2 production in primary biliary cirrhosis. Dig Dis Sci 41: 1487–1493

    Article  CAS  Google Scholar 

  18. Wild CP and LJ Hardie (2003) Reflux, Barrett's oesophagus and adenocarcinoma: burning questions. Nat Rev Cancer 3: 676–684

    Article  CAS  Google Scholar 

  19. Barrett MT et al. (1999) Evolution of neoplastic cell lineages in Barrett oesophagus. Nat Genetics 22: 106–109

    Article  CAS  Google Scholar 

  20. Qiao D et al. (2001) Deoxycholic acid suppresses p53 by stimulating proteasome-mediated p53 protein degradation. Carcinogenesis 22: 957–964

    Article  CAS  Google Scholar 

  21. Ohsawa T et al. (2002) Effects of three H2-receptor antagonists (cimetidine, famotidine, ranitidine) on serum gastrin level. Int J Clin Pharmacol Res 22: 29–35

    CAS  PubMed  Google Scholar 

  22. Iwao T et al. (1995) Effects of omeprazole and lansoprazole on fasting and postprandial serum gastrin and serum pepsinogen A and C. Hepatogastroenterology 42: 677–682

    CAS  PubMed  Google Scholar 

  23. Haigh CR et al. (2003) Gastrin induces proliferation in Barrett's metaplasia through activation of the CCK2 receptor. Gastroenterology 124: 615–625

    Article  CAS  Google Scholar 

  24. Abdalla SI et al. (2004) Gastrin-induced cyclooxygenase-2 expression in Barrett's carcinogenesis. Clin Cancer Res 10: 4784–4792

    Article  CAS  Google Scholar 

  25. Engel LS et al. (2003) Population attributable risks of esophageal and gastric cancers. J Natl Cancer Inst 95: 1404–1413

    Article  Google Scholar 

  26. Chow WH et al. (1998) Body mass index and risk of adenocarcinomas of the esophagus and gastric cardia. J Natl Cancer Inst 90: 150–155

    Article  CAS  Google Scholar 

  27. Lagergren J et al. (1999) Association between body mass and adenocarcinoma of the esophagus and gastric cardia. Ann Intern Med 130: 883–890

    Article  CAS  Google Scholar 

  28. Calle EE and Kaaks R (2004) Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer 4: 579–591

    Article  CAS  Google Scholar 

  29. Iravani S et al. (2003) Modification of insulin-like growth factor 1 receptor, c-Src, and Bcl-XL protein expression during the progression of Barrett's neoplasia. Hum Pathol 34: 975–982

    Article  CAS  Google Scholar 

  30. Coppola D et al. (1994) A functional insulin-like growth factor I receptor is required for the mitogenic and transforming activities of the epidermal growth factor receptor. Mol Cell Biol 14: 4588–4595

    Article  CAS  Google Scholar 

  31. Ye W et al. (2004) Helicobacter pylori infection and gastric atrophy: risk of adenocarcinoma and squamous-cell carcinoma of the esophagus and adenocarcinoma of the gastric cardia. J Natl Cancer Inst 96: 388–396

    Article  Google Scholar 

  32. Weston AP et al. (2000) Prospective evaluation of the prevalence of gastric Helicobacter pylori infection in patients with GERD, Barrett's esophagus, Barrett's dysplasia, and Barrett's adenocarcinoma. Am J Gastroenterol 95: 387–394

    Article  CAS  Google Scholar 

  33. Chow WH et al. (1998) An inverse relation between cagA+ strains of Helicobacter pylori infection and risk of esophageal and gastric cardia adenocarcinoma. Cancer Res 58: 588–590

    CAS  PubMed  Google Scholar 

  34. Wu AH et al. (2003) Role of Helicobacter pylori CagA+ strains and risk of adenocarcinoma of the stomach and esophagus. Int J Cancer 103: 815–821

    Article  CAS  Google Scholar 

  35. Jones AD et al. (2003) Helicobacter pylori induces apoptosis in Barrett's-derived esophageal adenocarcinoma cells. J Gastrointest Surg 7: 68–76

    Article  Google Scholar 

  36. Gammon MD et al. (1997) Tobacco, alcohol, and socioeconomic status and adenocarcinomas of the esophagus and gastric cardia. J Natl Cancer Inst 89: 1277–1284

    Article  CAS  Google Scholar 

  37. Mirvish SS (1997) Studies on experimental animals involving surgical procedures and/or nitrosamine treatment related to the etiology of esophageal adenocarcinoma. Cancer Lett 117: 161–174

    Article  CAS  Google Scholar 

  38. Calmels S et al. (1999) Bacterial formation of N-nitroso compounds in the rat stomach after omeprazole-induced achlorhydria. IARC Sci Publ 1991: 187–191

    Google Scholar 

  39. Forman D et al. (1985) Nitrates, nitrites and gastric cancer in Great Britain. Nature 313: 620–625

    Article  CAS  Google Scholar 

  40. Duncan C et al. (1995) Chemical generation of nitric oxide in the mouth from the enterosalivary circulation of dietary nitrate. Nat Med 1: 546–551

    Article  CAS  Google Scholar 

  41. Spechler SJ (2002) Carcinogenesis at the gastroesophageal junction: free radicals at the frontier. Gastroenterology 122: 1518–1520

    Article  Google Scholar 

  42. Liu RH and Hotchkiss JH (1995) Potential genotoxicity of chronically elevated nitric oxide: a review. Mutat Res 339: 73–89

    Article  CAS  Google Scholar 

  43. Jankowski J et al. (1993) Increased expression of epidermal growth factor receptors in Barrett's esophagus associated with alkaline reflux: a putative model for carcinogenesis. Am J Gastroenterol 88: 402–408

    CAS  PubMed  Google Scholar 

  44. Brito MJ et al. (1995) Association of transforming growth factor alpha (TGFA) and its precursors with malignant change in Barrett's epithelium: biological and clinical variables. Int J Cancer 60: 27–32

    Article  CAS  Google Scholar 

  45. Barrett MT et al. (1996) Allelic loss of 9p21 and mutation of the CDKN2/p16 gene develop as early lesions during neoplastic progression in Barrett's esophagus. Oncogene 13: 1867–1873

    CAS  PubMed  Google Scholar 

  46. Arber N et al. (1996) Increased expression of the cyclin D1 gene in Barrett's esophagus. Cancer Epidemiol, Biomarkers Prev 5: 457–459

    CAS  Google Scholar 

  47. Sarbia M et al. (1999) Expression of cyclin E in dysplasia, carcinoma, and nonmalignant lesions of Barrett esophagus. Cancer 86: 2597–2601

    Article  CAS  Google Scholar 

  48. Boynton RF et al. (1991) Frequent loss of heterozygosity at the retinoblastoma locus in human esophageal cancers. Cancer Res 51: 5766–5769

    CAS  PubMed  Google Scholar 

  49. Garrigue-Antar L et al. (1996) Loss of transforming growth factor-beta type II receptor gene expression in primary human esophageal cancer. Lab Invest 75: 263–272

    CAS  PubMed  Google Scholar 

  50. Krishnadath KK et al. (2001) Biomarkers in Barrett esophagus. Mayo Clin Proc 76: 438–446

    Article  CAS  Google Scholar 

  51. Younes M et al. (2000) Decreased expression of Fas (CD95/APO1) associated with goblet cell metaplasia in Barrett's esophagus. Hum Pathol 31: 434–438

    Article  CAS  Google Scholar 

  52. Morales CP et al. (1998) In situ hybridization for the detection of telomerase RNA in the progression from Barrett's esophagus to esophageal adenocarcinoma. Cancer 83: 652–659

    Article  CAS  Google Scholar 

  53. Dolan K et al. (1999) LOH at the sites of the DCC, APC, and TP53 tumor suppressor genes occurs in Barrett's metaplasia and dysplasia adjacent to adenocarcinoma of the esophagus. Hum Pathol 30: 1508–1514

    Article  CAS  Google Scholar 

  54. Salmela MT et al. (2001) Upregulation and differential expression of matrilysin (MMP-7) and metalloelastase (MMP-12) and their inhibitors TIMP-1 and TIMP-3 in Barrett's oesophageal adenocarcinoma. Br J Cancer 85: 383–392

    Article  CAS  Google Scholar 

  55. Couvelard A et al. (2000) Angiogenesis in the neoplastic sequence of Barrett's oesophagus. Correlation with VEGF expression. J Pathol 192: 14–18

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of the NIH and the Mayo Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth K Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buttar, N., Wang, K. Mechanisms of Disease: carcinogenesis in Barrett's esophagus. Nat Rev Gastroenterol Hepatol 1, 106–112 (2004). https://doi.org/10.1038/ncpgasthep0057

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpgasthep0057

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing