Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Human uniqueness: genome interactions with environment, behaviour and culture

Key Points

  • 'Anthropogeny' (explaining the origin of humans) requires a transdisciplinary approach that eschews disciplinary barriers and rejects artificial 'genes versus environment' dichotomies.

  • The genomic and genetic approach towards this goal is made quite difficult by the discovery of much greater molecular variation than originally expected, both within and between species.

  • As only a few simple molecular differences have been identified that might underlie human uniqueness, both traditional and novel approaches are needed to understand the genetic aspects of human evolution.

  • It is fruitless to argue over whether differences in gene expression, in protein and RNA sequence variation, or in genomic deletions, duplications and insertions are more important in exploring human uniqueness. Examples of each have been found, and it is likely that final answers will involve many more in each category.

  • Integrated molecular studies along with parallel organ-systems approaches are required to identify and characterize candidate genes.

  • Genome interactions with environment, behaviour and culture are likely to be more prominent in humans than in other species.

  • Aspects of human uniqueness might have arisen because of a primate evolutionary trend towards increasing and irreversible dependence on learned behaviours and culture, rather than hard-wired instinctual behaviours.

  • This, in turn, might have relaxed allowable thresholds for large-scale genomic structural variation in primates in general, and humans in particular.

  • In addition to conventional Darwinian mechanisms, there are potential roles for the Baldwin effect; humans might have escaped the second phase of the Baldwin effect, wherein there is genetic hard-wiring of learned behaviour that is beneficial to a population.

  • The unusual degree of exaptation of the human mind might require consideration of additional novel mechanisms, as originally suggested by Alfred Russel Wallace.

Abstract

What makes us human? Specialists in each discipline respond through the lens of their own expertise. In fact, 'anthropogeny' (explaining the origin of humans) requires a transdisciplinary approach that eschews such barriers. Here we take a genomic and genetic perspective towards molecular variation, explore systems analysis of gene expression and discuss an organ-systems approach. Rejecting any 'genes versus environment' dichotomy, we then consider genome interactions with environment, behaviour and culture, finally speculating that aspects of human uniqueness arose because of a primate evolutionary trend towards increasing and irreversible dependence on learned behaviours and culture — perhaps relaxing allowable thresholds for large-scale genomic diversity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural variations and segmental duplications.
Figure 2: Are human genomes escaping from Darwinian natural selection and Baldwinian fixation of learned behaviours?

Similar content being viewed by others

References

  1. Huxley, T. H. Evidence as to Man's place in Nature (Williams and Norgate, London, 1863).

    Google Scholar 

  2. Darwin, C. The Descent of Man, and Selection in Relation to Sex (D. Appleton, New York, 1871).

    Book  Google Scholar 

  3. Sarich, V. M. & Wilson, A. C. Immunological time scale for hominid evolution. Science 158, 1200–1203 (1967).

    Article  CAS  PubMed  Google Scholar 

  4. Syner, F. N. & Goodman, M. Differences in the lactic dehydrogenases of primate brains. Nature 209, 426–428 (1966).

    Article  CAS  PubMed  Google Scholar 

  5. de Waal, F. B. A century of getting to know the chimpanzee. Nature 437, 56–59 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. King, M. C. & Wilson, A. C. Evolution at two levels in humans and chimpanzees. Science 188, 107–116 (1975). Synthesizes diverse data sets to show that the level of molecular change that exists between chimpanzees and humans is dissonant with the numerous morphological differences seen between species. It concludes that regulatory differences in gene expression probably underlie species differences.

    Article  CAS  PubMed  Google Scholar 

  7. Maresco, D. L. et al. Localization of FCGR1 encoding Fcγ receptor class I in primates: molecular evidence for two pericentric inversions during the evolution of human chromosome 1. Cytogenet. Cell Genet. 82, 71–74 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Chou, H. H. et al. A mutation in human CMP-sialic acid hydroxylase occurred after the Homo–Pan divergence. Proc. Natl Acad. Sci. USA 95, 11751–11756 (1998). This is the first paper to report that a genetic difference between humans and other hominids results in a definite biochemical change — in human cell-surface sialic acids. Subsequently, more than 10 uniquely human changes in sialic-acid biology have been discovered, as described in reference 89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Szabo, Z. et al. Sequential loss of two neighboring exons of the tropoelastin gene during primate evolution. J. Mol. Evol. 49, 664–671 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. McConkey, E. H. & Goodman, M. A Human Genome Evolution Project is needed. Trends Genet. 13, 350–351 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Vigilant, L. & Pääbo, S. A chimpanzee millennium. Biol. Chem. 380, 1353–1354 (1999).

    CAS  PubMed  Google Scholar 

  12. McConkey, E. H. & Varki, A. A primate genome project deserves high priority. Science 289, 1295–1296 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Varki, A. A chimpanzee genome project is a biomedical imperative. Genome Res. 10, 1065–1070 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. The Chimpanzee Sequencing and Analysis Consortium. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437, 69–87 (2005). Presents a detailed comparison of human and chimpanzee genomes, including confirmation (see also reference 21) that structural and copy-number changes affect four times the number of base pairs than single-nucleotide differences.

  15. Noonan, J. P. et al. Sequencing and analysis of Neanderthal genomic DNA. Science 314, 1113–1118 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Green, R. E. et al. Analysis of one million base pairs of Neanderthal DNA. Nature 444, 330–336 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Varki, A. et al. Great Ape Phenome Project? Science 282, 239–240 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Ridley, M. Nature via Nurture: Genes, Experience, and What Makes us Human (HarperCollins, New York, 2003).

    Google Scholar 

  19. Olson, M. V. & Varki, A. Sequencing the chimpanzee genome: insights into human evolution and disease. Nature Rev. Genet. 4, 20–28 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Varki, A. & Altheide, T. K. Comparing the human and chimpanzee genomes: searching for needles in a haystack. Genome Res. 15, 1746–1758 (2005). Includes a list of several phenotypic features that show apparent or real differences between humans and great apes.

    Article  CAS  PubMed  Google Scholar 

  21. Britten, R. J. Divergence between samples of chimpanzee and human DNA sequences is 5%, counting indels. Proc. Natl Acad. Sci. USA 99, 13633–13635 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cheng, Z. et al. A genome-wide comparison of recent chimpanzee and human segmental duplications. Nature 437, 88–93 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Gibbs, R. A. et al. Evolutionary and biomedical insights from the rhesus macaque genome. Science 316, 222–234 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Prabhakar, S., Noonan, J. P., Pääbo, S. & Rubin, E. M. Accelerated evolution of conserved noncoding sequences in humans. Science 314, 786 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Fortna, A. et al. Lineage-specific gene duplication and loss in human and great ape evolution. PLoS Biol. 2, e207 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Newman, T. L. et al. A genome-wide survey of structural variation between human and chimpanzee. Genome Res. 15, 1344–1356 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dumas, L. et al. Gene copy number variation spanning 60 million years of human and primate evolution. Genome Res. 17, 1266–1277 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hahn, M. W., Demuth, J. P. & Han, S. G. Accelerated rate of gene gain and loss in primates. Genetics 177, 1941–1949 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Khaitovich, P. et al. Parallel patterns of evolution in the genomes and transcriptomes of humans and chimpanzees. Science 309, 1850–1854 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Clark, A. G. et al. Inferring nonneutral evolution from human–chimp–mouse orthologous gene trios. Science 302, 1960–1963 (2003). In this key paper, the mouse is used as an outgroup to identify genes undergoing positive selection in humans.

    Article  CAS  PubMed  Google Scholar 

  31. Dorus, S. et al. Accelerated evolution of nervous system genes in the origin of Homo sapiens. Cell 119, 1027–1040 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Shi, P., Bakewell, M. A. & Zhang, J. Did brain-specific genes evolve faster in humans than in chimpanzees? Trends Genet. 22, 608–613 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Nielsen, R. et al. A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol. 3, e170 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bakewell, M. A., Shi, P. & Zhang, J. More genes underwent positive selection in chimpanzee evolution than in human evolution. Proc. Natl Acad. Sci. USA 104, 7489–7494 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Boyko, A. R. et al. Assessing the evolutionary impact of amino acid mutations in the human genome. PLoS Genet. 4, e1000083 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yu, X. J., Zheng, H. K., Wang, J., Wang, W. & Su, B. Detecting lineage-specific adaptive evolution of brain-expressed genes in human using rhesus macaque as outgroup. Genomics 88, 745–751 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Wang, H. Y. et al. Rate of evolution in brain-expressed genes in humans and other primates. PLoS Biol. 5, e13 (2007).

    Article  PubMed  Google Scholar 

  38. Bustamante, C. D. et al. Natural selection on protein-coding genes in the human genome. Nature 437, 1153–1157 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Altheide, T. K. et al. System-wide genomic and biochemical comparisons of sialic acid biology among primates and rodents: evidence for two modes of rapid evolution. J. Biol. Chem. 281, 25689–25702 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Yang, Z., Nielsen, R., Goldman, N. & Pedersen, A. M. Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155, 431–449 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Pan, Q. et al. Revealing global regulatory features of mammalian alternative splicing using a quantitative microarray platform. Mol. Cell 16, 929–941 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Zhang, X. H. & Chasin, L. A. Comparison of multiple vertebrate genomes reveals the birth and evolution of human exons. Proc. Natl Acad. Sci. USA 103, 13427–13432 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Calarco, J. A. et al. Global analysis of alternative splicing differences between humans and chimpanzees. Genes Dev. 21, 2963–2975 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lu, Z. X., Peng, J. & Su, B. A human-specific mutation leads to the origin of a novel splice form of neuropsin (KLK8), a gene involved in learning and memory. Hum. Mutat. 28, 978–984 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Keightley, P. D., Lercher, M. J. & Eyre-Walker, A. Evidence for widespread degradation of gene control regions in hominid genomes. PLoS Biol. 3, e42 (2005). A surprising finding of poor evolutionary conservation in the regulatory regions of human and chimpanzee genes. The authors suggest that there is “a widespread degradation of the genome during the evolution of humans and chimpanzees”, a proposal that fits with our speculations here about relaxation of constraints on genomic diversity owing to buffering by culture and learning.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Berezikov, E. et al. Diversity of microRNAs in human and chimpanzee brain. Nature Genet. 38, 1375–1377 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Pollard, K. S. et al. An RNA gene expressed during cortical development evolved rapidly in humans. Nature 443, 167–172 (2006). A ranking of regions in the human genome manifesting significant evolutionary acceleration shows that most of these human accelerated regions (HARs) do not code for proteins. The most dramatic change is seen in HAR1, which is part of a novel RNA gene ( HAR1F ) that is expressed specifically in the developing human neocortex.

    Article  CAS  PubMed  Google Scholar 

  48. Landgraf, P. et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129, 1401–1414 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Gerstein, M. B. et al. What is a gene, post-ENCODE? History and updated definition. Genome Res. 17, 669–681 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Asthana, S. et al. Widely distributed noncoding purifying selection in the human genome. Proc. Natl Acad. Sci. USA 104, 12410–12415 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Margulies, E. H. et al. Analyses of deep mammalian sequence alignments and constraint predictions for 1% of the human genome. Genome Res. 17, 760–774 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pheasant, M. & Mattick, J. S. Raising the estimate of functional human sequences. Genome Res. 17, 1245–1253 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Cheng, J. et al. Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science 308, 1149–1154 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Wu, J. Q. et al. Systematic analysis of transcribed loci in ENCODE regions using RACE sequencing reveals extensive transcription in the human genome. Genome Biol. 9, R3 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Stone, E. A., Cooper, G. M. & Sidow, A. Trade-offs in detecting evolutionarily constrained sequence by comparative genomics. Annu. Rev. Genomics Hum. Genet. 6, 143–164 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Karaman, M. W. et al. Comparative analysis of gene-expression patterns in human and African great ape cultured fibroblasts. Genome Res. 13, 1619–1630 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Enard, W. et al. Intra- and interspecific variation in primate gene expression patterns. Science 296, 340–343 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Khaitovich, P. et al. Regional patterns of gene expression in human and chimpanzee brains. Genome Res. 14, 1462–1473 (2004). This paper was among the first to report comparisons of gene expression in multiple brain regions, including different cerebral cortical areas. The data permit an initial estimation of expression differences between cortical and sub-cortical structures and inter-individual variability.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Uddin, M. et al. Sister grouping of chimpanzees and humans as revealed by genome-wide phylogenetic analysis of brain gene expression profiles. Proc. Natl Acad. Sci. USA 101, 2957–2962 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Caceres, M. et al. Elevated gene expression levels distinguish human from non-human primate brains. Proc. Natl Acad. Sci. USA 100, 13030–13035 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Preuss, T. M., Qi, H. & Kaas, J. H. Distinctive compartmental organization of human primary visual cortex. Proc. Natl Acad. Sci. USA 96, 11601–11606 (1999). Demonstrates fundamental differences in the organization of a primary sensory region between humans and other primates.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Preuss, T. M., Caceres, M., Oldham, M. C. & Geschwind, D. H. Human brain evolution: insights from microarrays. Nature Rev. Genet. 5, 850–860 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Khaitovich, P., Enard, W., Lachmann, M. & Pääbo, S. Evolution of primate gene expression. Nature Rev. Genet. 7, 693–702 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Oldham, M. C. & Geschwind, D. H. in New Encyclopedia of Neuroscience (ed. Squire, L.) (Elsevier Science, Oxford, UK, 2008) (in the press).

    Google Scholar 

  65. Gu, J. & Gu, X. Induced gene expression in human brain after the split from chimpanzee. Trends Genet. 19, 63–65 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Oldham, M. C. & Geschwind, D. H. Evolutionary genetics: the human brain — adaptation at many levels. Eur. J. Hum. Genet. 13, 520–522 (2005).

    Article  PubMed  Google Scholar 

  67. Khaitovich, P. et al. Positive selection on gene expression in the human brain. Curr. Biol. 16, R356–R358 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Liao, B. Y. & Zhang, J. Evolutionary conservation of expression profiles between human and mouse orthologous genes. Mol. Biol. Evol. 23, 530–540 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Jordan, I. K., Marino-Ramirez, L. & Koonin, E. V. Evolutionary significance of gene expression divergence. Gene 345, 119–126 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Enard, W. et al. Differences in DNA methylation patterns between humans and chimpanzees. Curr. Biol. 14, R148–R149 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Bailey, J. A. & Eichler, E. E. Genome-wide detection and analysis of recent segmental duplications within mammalian organisms. Cold Spring Harb. Symp. Quant. Biol. 68, 115–124 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. She, X. et al. A preliminary comparative analysis of primate segmental duplications shows elevated substitution rates and a great-ape expansion of intrachromosomal duplications. Genome Res. 16, 576–583 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li, W. H. & Tanimura, M. The molecular clock runs more slowly in man than in apes and monkeys. Nature 326, 93–96 (1987).

    Article  CAS  PubMed  Google Scholar 

  74. Elango, N., Thomas, J. W. & Yi, S. V. Variable molecular clocks in hominoids. Proc. Natl Acad. Sci. USA 103, 1370–1375 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Armengol, L., Pujana, M. A., Cheung, J., Scherer, S. W. & Estivill, X. Enrichment of segmental duplications in regions of breaks of synteny between the human and mouse genomes suggest their involvement in evolutionary rearrangements. Hum. Mol. Genet. 12, 2201–2208 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Bailey, J. A., Baertsch, R., Kent, W. J., Haussler, D. & Eichler, E. E. Hotspots of mammalian chromosomal evolution. Genome Biol. 5, R23 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Kehrer-Sawatzki, H. & Cooper, D. N. Structural divergence between the human and chimpanzee genomes. Hum. Genet. 120, 759–778 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Bailey, J. A. et al. Recent segmental duplications in the human genome. Science 297, 1003–1007 (2002). This is the first validated map of segmental duplication in the human genome. It shows an abundance of interspersed, high-identity duplications and identifies hot spots of disease-associated CNVs.

    Article  CAS  PubMed  Google Scholar 

  79. Stranger, B. E. et al. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 315, 848–853 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yohn, C. T. et al. Lineage-specific expansions of retroviral insertions within the genomes of African great apes but not humans and orangutans. PLoS Biol. 3, e110 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jiang, Z. et al. Ancestral reconstruction of segmental duplications reveals punctuated cores of human genome evolution. Nature Genet. 39, 1361–1368 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Horvath, J. E. et al. Punctuated duplication seeding events during the evolution of human chromosome 2p11. Genome Res. 15, 914–927 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang, H. et al. SVA elements: a hominid-specific retroposon family. J. Mol. Biol. 354, 994–1007 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Kaiser, S. M., Malik, H. S. & Emerman, M. Restriction of an extinct retrovirus by the human TRIM5alpha antiviral protein. Science 316, 1756–1758 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Olson, M. V. When less is more: gene loss as an engine of evolutionary change. Am. J. Hum. Genet. 64, 18–23 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang, X., Grus, W. E. & Zhang, J. Gene losses during human origins. PLoS Biol. 4, e52 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Angata, T., Margulies, E. H., Green, E. D. & Varki, A. Large-scale sequencing of the CD33-related Siglec gene cluster in five mammalian species reveals rapid evolution by multiple mechanisms. Proc. Natl Acad. Sci. USA 101, 13251–13256 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chou, H. H. et al. Inactivation of CMP-N-acetylneuraminic acid hydroxylase occurred prior to brain expansion during human evolution. Proc. Natl Acad. Sci. USA 99, 11736–11741 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Varki, A. Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature 446, 1023–1029 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Stedman, H. H. et al. Myosin gene mutation correlates with anatomical changes in the human lineage. Nature 428, 415–418 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. McCollum, M. A., Sherwood, C. C., Vinyard, C. J., Lovejoy, C. O. & Schachat, F. Of muscle-bound crania and human brain evolution: the story behind the MYH16 headlines. J. Hum. Evol. 50, 232–236 (2006).

    Article  PubMed  Google Scholar 

  92. Perry, G. H., Verrelli, B. C. & Stone, A. C. Comparative analyses reveal a complex history of molecular evolution for human MYH16. Mol. Biol. Evol. 22, 379–382 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Ohno, S., Wolf, U. & Atkin, N. B. Evolution from fish to mammals by gene duplication. Hereditas 59, 169–187 (1968).

    Article  CAS  PubMed  Google Scholar 

  94. Locke, D. P. et al. Large-scale variation among human and great ape genomes determined by array comparative genomic hybridization. Genome Res. 13, 347–357 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bailey, J. A. & Eichler, E. E. Primate segmental duplications: crucibles of evolution, diversity and disease. Nature Rev. Genet. 7, 552–564 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Bosch, N. et al. Characterization and evolution of the novel gene family FAM90A in primates originated by multiple duplication and rearrangement events. Hum. Mol. Genet. 16, 2572–2582 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Linardopoulou, E. V. et al. Human subtelomeric WASH genes encode a new subclass of the WASP family. PLoS Genet. 3, e237 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Popesco, M. C. et al. Human lineage-specific amplification, selection, and neuronal expression of DUF1220 domains. Science 313, 1304–1307 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Johnson, M. E. et al. Positive selection of a gene family during the emergence of humans and African apes. Nature 413, 514–519 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Johnson, M. E. et al. Recurrent duplication-driven transposition of DNA during hominoid evolution. Proc. Natl Acad. Sci. USA 103, 17626–17631 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Iafrate, A. J. et al. Detection of large-scale variation in the human genome. Nature Genet. 36, 949–951 (2004). This paper and reference 102 show extensive genome-wide copy-number polymorphisms within the general human population.

    Article  CAS  PubMed  Google Scholar 

  102. Sebat, J. et al. Large-scale copy number polymorphism in the human genome. Science 305, 525–528 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Redon, R. et al. Global variation in copy number in the human genome. Nature 444, 444–454 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sharp, A. J. et al. Discovery of previously unidentified genomic disorders from the duplication architecture of the human genome. Nature Genet. 38, 1038–1042 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Sebat, J. et al. Strong association of de novo copy number mutations with autism. Science 316, 445–449 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Weiss, L. A. et al. Association between microdeletion and microduplication at 16p11.2 and autism. N. Engl. J. Med. 358, 667–675 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Walsh, T. et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 320, 539–543 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Perry, G. H. et al. Hotspots for copy number variation in chimpanzees and humans. Proc. Natl Acad. Sci. USA 103, 8006–8011 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lee, A. S. et al. Analysis of copy number variation in the rhesus macaque genome identifies candidate loci for evolutionary and human disease studies. Hum. Mol. Genet. 17, 1127–1136 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Graubert, T. A. et al. A high-resolution map of segmental DNA copy number variation in the mouse genome. PLoS Genet. 3, e3 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. She, X., Cheng, Z., Zollner, S., Church, D. M. & Eichler, E. E. Mouse segmental duplication and copy number variation. Nature Genet. 40, 909–914 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Nguyen, D. Q., Webber, C. & Ponting, C. P. Bias of selection on human copy-number variants. PLoS Genet. 2, e20 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. de Smith, A. J. et al. Array CGH analysis of copy number variation identifies 1,284 new genes variant in healthy white males: implications for association studies of complex diseases. Hum. Mol. Genet. 16, 2783–2794 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Hayakawa, T. et al. A human-specific gene in microglia. Science 309, 1693 (2005).

    CAS  PubMed  Google Scholar 

  115. Perry, G. H. et al. Diet and the evolution of human amylase gene copy number variation. Nature Genet. 39, 1256–1260 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Yu, H. & Gerstein, M. Genomic analysis of the hierarchical structure of regulatory networks. Proc. Natl Acad. Sci. USA 103, 14724–14731 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Chen, Y. et al. Variations in DNA elucidate molecular networks that cause disease. Nature 452, 429–435 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Barabasi, A. L. & Oltvai, Z. N. Network biology: understanding the cell's functional organization. Nature Rev. Genet. 5, 101–113 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Zhang, B. & Horvath, S. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 4, Article 17 (2005).

  120. Oldham, M. C., Horvath, S. & Geschwind, D. H. Conservation and evolution of gene coexpression networks in human and chimpanzee brains. Proc. Natl Acad. Sci. USA 103, 17973–17978 (2006). The first demonstration that network-based approaches permit a functional assessment of changes in gene expression in an evolutionary context.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Horvath, S. et al. Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target. Proc. Natl Acad. Sci. USA 103, 17402–17407 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Miller, J. A., Oldham, M. C. & Geschwind, D. H. A systems level analysis of transcriptional changes in Alzheimer's disease and normal aging. J. Neurosci. 28, 1410–1420 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kim, P. M., Korbel, J. O. & Gerstein, M. B. Positive selection at the protein network periphery: evaluation in terms of structural constraints and cellular context. Proc. Natl Acad. Sci. USA 104, 20274–20279 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Wood, B. & Collard, M. Anthropology — the human genus. Science 284, 65–66 (1999).

    Article  CAS  PubMed  Google Scholar 

  125. Tramo, M. J. et al. Brain size, head size, and intelligence quotient in monozygotic twins. Neurology 50, 1246–1252 (1998).

    Article  CAS  PubMed  Google Scholar 

  126. Bates, E. et al. Differential effects of unilateral lesions on language production in children and adults. Brain Lang. 79, 223–265 (2001).

    Article  CAS  PubMed  Google Scholar 

  127. Semendeferi, K., Lu, A., Schenker, N. & Damasio, H. Humans and great apes share a large frontal cortex. Nature Neurosci. 5, 272–276 (2002).

    Article  CAS  PubMed  Google Scholar 

  128. Abrahams, B. S. et al. Genome-wide analyses of human perisylvian cerebral cortical patterning. Proc. Natl Acad. Sci. USA 104, 17849–17854 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Sun, T. et al. Early asymmetry of gene transcription in embryonic human left and right cerebral cortex. Science 308, 1794–1798 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Rilling, J. K. et al. The evolution of the arcuate fasciculus revealed with comparative DTI. Nature Neurosci. 11, 426–428 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Sherwood, C. C. et al. Scaling of inhibitory interneurons in areas v1 and v2 of anthropoid primates as revealed by calcium-binding protein immunohistochemistry. Brain Behav. Evol. 69, 176–195 (2007).

    Article  PubMed  Google Scholar 

  132. Preuss, T. M. Taking the measure of diversity: comparative alternatives to the model-animal paradigm in cortical neuroscience. Brain Behav. Evol. 55, 287–299 (2000).

    Article  CAS  PubMed  Google Scholar 

  133. Caceres, M., Suwyn, C., Maddox, M., Thomas, J. W. & Preuss, T. M. Increased cortical expression of two synaptogenic thrombospondins in human brain evolution. Cereb. Cortex 17, 2312–2321 (2007).

    Article  PubMed  Google Scholar 

  134. Herrmann, E., Call, J., Hernandez-Lloreda, M. V., Hare, B. & Tomasello, M. Humans have evolved specialized skills of social cognition: the cultural intelligence hypothesis. Science 317, 1360–1366 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Penn, D. C. & Povinelli, D. J. On the lack of evidence that non-human animals possess anything remotely resembling a 'theory of mind'. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 362, 731–744 (2007).

    Article  Google Scholar 

  136. Mundy, P. Annotation: the neural basis of social impairments in autism: the role of the dorsal medial–frontal cortex and anterior cingulate system. J. Child. Psychol. Psychiatry 44, 793–809 (2003).

    Article  PubMed  Google Scholar 

  137. Allman, J. M., Watson, K. K., Tetreault, N. A. & Hakeem, A. Y. Intuition and autism: a possible role for Von Economo neurons. Trends Cogn. Sci. 9, 367–373 (2005).

    Article  PubMed  Google Scholar 

  138. Geschwind, D. H. & Levitt, P. Autism spectrum disorders: developmental disconnection syndromes. Curr. Opin. Neurobiol. 17, 103–111 (2007).

    Article  CAS  PubMed  Google Scholar 

  139. Geschwind, N. The organization of language and the brain. Science 170, 940–944 (1970).

    Article  CAS  PubMed  Google Scholar 

  140. Nimchinsky, E. A. et al. A neuronal morphologic type unique to humans and great apes. Proc. Natl Acad. Sci. USA 96, 5268–5273 (1999). Demonstrates that a neuronal type, although not specific to humans, is likely to be an important feature of human brain evolution. This paper is a critical proof of principle study that, similar to reference 61, highlights the importance of phenotype discovery.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Seeley, W. W. et al. Early frontotemporal dementia targets neurons unique to apes and humans. Ann. Neurol. 60, 660–667 (2006).

    Article  PubMed  Google Scholar 

  142. Enard, W. et al. Molecular evolution of FOXP2, a gene involved in speech and language. Nature 418, 869–872 (2002). Together with reference 143, this paper reports human-specific rapid evolution in a gene known to be defective in humans who have speech articulation defects.

    CAS  PubMed  Google Scholar 

  143. Zhang, J., Webb, D. M. & Podlaha, O. Accelerated protein evolution and origins of human-specific features: FOXP2 as an example. Genetics 162, 1825–1835 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Krause, J. et al. The derived FOXP2 variant of modern humans was shared with Neandertals. Curr. Biol. 17, 1908–1912 (2007).

    Article  CAS  PubMed  Google Scholar 

  145. White, S. A., Fisher, S. E., Geschwind, D. H., Scharff, C. & Holy, T. E. Singing mice, songbirds, and more: models for FOXP2 function and dysfunction in human speech and language. J. Neurosci. 26, 10376–10379 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Teramitsu, I. & White, S. A. FoxP2 regulation during undirected singing in adult songbirds. J. Neurosci. 26, 7390–7394 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Webb, D. M. & Zhang, J. FoxP2 in song-learning birds and vocal-learning mammals. J. Hered. 96, 212–216 (2005).

    Article  CAS  PubMed  Google Scholar 

  148. Haesler, S. et al. Incomplete and inaccurate vocal imitation after knockdown of FoxP2 in songbird basal ganglia nucleus Area X. PLoS Biol. 5, e321 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Li, G., Wang, J., Rossiter, S. J., Jones, G. & Zhang, S. Accelerated FoxP2 evolution in echolocating bats. PLoS ONE 2, e900 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Teramitsu, I., Kudo, L. C., London, S. E., Geschwind, D. H. & White, S. A. Parallel FoxP1 and FoxP2 expression in songbird and human brain predicts functional interaction. J. Neurosci. 24, 3152–3163 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Spiteri, E. et al. Identification of the transcriptional targets of FOXP2, a gene linked to speech and language, in developing human brain. Am. J. Hum. Genet. 81, 1144–1157 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Evans, P. D. et al. Microcephalin, a gene regulating brain size, continues to evolve adaptively in humans. Science 309, 1717–1720 (2005).

    Article  CAS  PubMed  Google Scholar 

  153. Mekel-Bobrov, N. et al. Ongoing adaptive evolution of ASPM, a brain size determinant in Homo sapiens. Science 309, 1720–1722 (2005).

    Article  CAS  PubMed  Google Scholar 

  154. Yu, F. et al. Comment on “Ongoing adaptive evolution of ASPM, a brain size determinant in Homo sapiens”. Science 316, 370 (2007).

    Article  CAS  PubMed  Google Scholar 

  155. Woods, R. P. et al. Normal variants of Microcephalin and ASPM do not account for brain size variability. Hum. Mol. Genet. 15, 2025–2029 (2006).

    Article  CAS  PubMed  Google Scholar 

  156. Gilad, Y., Man, O. & Glusman, G. A comparison of the human and chimpanzee olfactory receptor gene repertoires. Genome Res. 15, 224–230 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Go, Y. & Niimura, Y. Similar numbers but different repertoires of olfactory receptor genes in humans and chimpanzees. Mol. Biol. Evol. 25, 1897–1907 (2008).

    Article  CAS  PubMed  Google Scholar 

  158. Keller, A., Zhuang, H., Chi, Q., Vosshall, L. B. & Matsunami, H. Genetic variation in a human odorant receptor alters odour perception. Nature 449, 468–472 (2007).

    Article  CAS  PubMed  Google Scholar 

  159. Menashe, I., Man, O., Lancet, D. & Gilad, Y. Different noses for different people. Nature Genet. 34, 143–144 (2003).

    Article  CAS  PubMed  Google Scholar 

  160. Wang, X., Thomas, S. D. & Zhang, J. Relaxation of selective constraint and loss of function in the evolution of human bitter taste receptor genes. Hum. Mol. Genet. 13, 2671–2678 (2004).

    Article  CAS  PubMed  Google Scholar 

  161. Fischer, A., Gilad, Y., Man, O. & Pääbo, S. Evolution of bitter taste receptors in humans and apes. Mol. Biol. Evol. 22, 432–436 (2005).

    Article  CAS  PubMed  Google Scholar 

  162. Go, Y., Satta, Y., Takenaka, O. & Takahata, N. Lineage-specific loss of function of bitter taste receptor genes in humans and nonhuman primates. Genetics 170, 313–326 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Hedlund, M. et al. N-glycolylneuraminic acid deficiency in mice: implications for human biology and evolution. Mol. Cell Biol. 27, 4340–4346 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Bramble, D. M. & Lieberman, D. E. Endurance running and the evolution of Homo. Nature 432, 345–352 (2004).

    Article  CAS  PubMed  Google Scholar 

  165. Brinkman-Van der Linden, E. C. et al. Human-specific expression of Siglec-6 in the placenta. Glycobiology 17, 922–931 (2007).

    Article  CAS  PubMed  Google Scholar 

  166. Nguyen, D. H., Hurtado-Ziola, N., Gagneux, P. & Varki, A. Loss of Siglec expression on T lymphocytes during human evolution. Proc. Natl Acad. Sci. USA 103, 7765–7770 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Maggioncalda, A. N., Czekala, N. M. & Sapolsky, R. M. Male orangutan subadulthood: a new twist on the relationship between chronic stress and developmental arrest. Am. J. Phys. Anthropol. 118, 25–32 (2002).

    Article  PubMed  Google Scholar 

  168. Harlow, H. F. & Suomi, S. J. Social recovery by isolation-reared monkeys. Proc. Natl Acad. Sci. USA 68, 1534–1538 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Hannah, A. C. & Brotman, B. Procedures for improving maternal behavior in captive chimpanzees. Zoo Biol. 9, 233–240 (1990).

    Article  Google Scholar 

  170. Hrdy, S. Mother Nature: a History of Mothers, Infants, and Natural Selection (Pantheon Books, New York, 1999). A comprehensive and revealing analysis of motherhood, discussing some unusual aspects of primate and human mothering, and of mother–infant interactions.

    Google Scholar 

  171. Cohen, J. Biomedical research. The endangered lab chimp. Science 315, 450–452 (2007).

    Article  CAS  PubMed  Google Scholar 

  172. Goossens, B. et al. Survival, interactions with conspecifics and reproduction in 37 chimpanzees released into the wild. Biol. Conserv. 123, 461–475 (2005).

    Article  Google Scholar 

  173. Custance, D. M., Whiten, A. & Fredman, T. Social learning and primate reintroduction. Int. J. Primatol. 23, 479–499 (2002).

    Article  Google Scholar 

  174. McConkey, E. H. & Varki, A. Thoughts on the future of great ape research. Science 309, 1499–1501 (2005).

    Article  CAS  PubMed  Google Scholar 

  175. Gagneux, P., Moore, J. J. & Varki, A. The ethics of research on great apes. Nature 437, 27–29 (2005).

    Article  CAS  PubMed  Google Scholar 

  176. Switzer, W. M. et al. Ancient co-speciation of simian foamy viruses and primates. Nature 434, 376–380 (2005).

    Article  CAS  PubMed  Google Scholar 

  177. Gao, F. et al. Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature 397, 436–441 (1999).

    Article  CAS  PubMed  Google Scholar 

  178. Boneva, R. S. et al. Clinical and virological characterization of persistent human infection with simian foamy viruses. AIDS Res. Hum. Retroviruses 23, 1330–1337 (2007).

    Article  PubMed  Google Scholar 

  179. Gagneux, P. & Varki, A. Evolutionary considerations in relating oligosaccharide diversity to biological function. Glycobiology 9, 747–755 (1999).

    Article  CAS  PubMed  Google Scholar 

  180. Bishop, J. R. & Gagneux, P. Evolution of carbohydrate antigens — microbial forces shaping host glycomes? Glycobiology 17, 23R–34R (2007).

    Article  CAS  PubMed  Google Scholar 

  181. Baldwin, J. M. A New factor in evolution. Am. Nat. 30, 441–451, 536–553 (1896).

    Article  Google Scholar 

  182. Waddington, C. H. Genetic assimilation of an acquired character. Evolution 4, 118–126 (1953).

    Article  Google Scholar 

  183. Simpson, G. G. The Baldwin effect. Evolution 7, 110–117 (1953).

    Article  Google Scholar 

  184. Weber, B. H. & Depew, D. J. Evolution and Learning: the Baldwin Effect Reconsidered (MIT Press, Cambridge, Massachusetts, 2003). A compendium of interesting articles discussing many aspects of the definitions and implications of the Baldwin effect.

    Google Scholar 

  185. Dennett, D. C. Darwin's Dangerous Idea: Evolution and the Meanings of Life (Simon & Schuster, New York, 1995).

    Google Scholar 

  186. Deacon, T. W. The Symbolic Species: the Co-Evolution of Language and the Brain (W. W. Norton, New York, 1997).

    Google Scholar 

  187. Wiles, J., Watson, J., Tonkes, B. & Deacon, T. Transient phenomena in learning and evolution: genetic assimilation and genetic redistribution. Artif. Life 11, 177–188 (2005).

    Article  PubMed  Google Scholar 

  188. Yamauchi, H. How does niche construction reverse the Baldwin effect? Lecture Notes Comput. Sci. 4648, 315–324 (2007).

    Article  Google Scholar 

  189. Flannery, T. The Future Eaters: an Ecological History of the Australasia Lands and People (Grove Press, New York, 2002).

    Google Scholar 

  190. Beccaloni, G. W. & Smith, V. S. Celebrations for Darwin downplay Wallace's role. Nature 451, 1050 (2008).

    Article  CAS  PubMed  Google Scholar 

  191. Wallace, A. R. in Contributions to the Theory of Natural Selection. A Series of Essays (Macmillan, London, 1870).

    Google Scholar 

  192. Kutschera, U. Darwin–Wallace principle of natural selection. Nature 453, 27 (2008).

    Article  CAS  PubMed  Google Scholar 

  193. Gould, S. J. & Vrba, E. S. Exaptation: a missing term in the science of form. Paleobiology 8, 4–15 (1982).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge comments from P. Gagneux, R. Bingham, D. Nelson, P. Churchland, F. Ayala, S. Hrdy, and two anonymous reviewers; M. Oldham for adapting the figure in Box 4; and funding from the Howard Hughes Medical Institute (HHMI), the Mathers Foundation and the Gordon and Virginia MacDonald Foundation (to D.H.G.). The authors have National Institutes of Health grant funding: GM32373 to A.V., H60233 to D.H.G. and GM58815 to E.E.E.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit Varki.

Related links

Related links

FURTHER INFORMATION

The Varki laboratory

The Geschwind laboratory

The Eichler laboratory

miRBase, Sanger Institute

Glossary

Hominid

The term that is now often used to refer to the clade that includes both humans and great apes (that is, chimpanzees, bonobos, gorillas and orangutans). The term hominoid is also no longer routinely used for great apes. In recognition of these changes, we have introduced the term non-human hominids in place of great apes in most places. However, we recognize that the nomenclature is still in flux.

Positive selection

A form of natural selection that increases the frequency of beneficial alleles in a population.

Outgroup

A related but taxonomically distinct species that can be used to infer the ancestral state of a particular characteristic.

Tissue heterogeneity

The presence of a large and variable number of cell types within a given tissue. Tissue heterogeneity in the brain might blunt the ability to detect the most variable low abundant genes in the brain relative to less complex tissue.

Neutral theory

The word 'neutral' has two different meanings in population genetics literature. The strictly neutral model assumes that all mutations are neutral, whereas the biologically neutral model assumes that all mutations are either neutral or deleterious.

Encephalization

An increase in brain size relative to body size.

Array comparative genomic hybridization

(ArrayCGH). A technique used to measure the relative copy number of a test and reference DNA sample based on differential hybridization to DNA molecules fixed on a microarray.

Copy-number variant

(CNV). A gain or loss of a >1 kb DNA region that contains genes. Most copy-number polymorphisms tend to be small (<10 kb) in size. De novo CNVs are variants that largely arise by new mutation, as opposed to hereditary transmission.

Gene conversion

A non-reciprocal recombination process that results in an alteration of the sequence of a gene to that of its homologue during meiosis.

Ontology

A hierarchical organization of concepts. The Gene Ontology framework provides one means for determining whether gene expression differences represent enrichment for specific functional categories.

Scale-free network

A network in which a few nodes (for example, genes) are central (that is, they act as 'hubs') and therefore serve as control points in the network, whereas most nodes are more peripheral and have few connections.

Parallel distributed circuits

Interconnected brain regions that work coordinately, to yield cognition and behaviour.

Frontotemporal dementia

A degenerative disease that frequently involves dilapidation of social cognition.

Pseudogenization

Changes within the coding region of a gene that prevent transcription of a functional protein product.

Exaptation

When a useful feature arises during evolution for a different reason, but is subsequently co-opted for its current function.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varki, A., Geschwind, D. & Eichler, E. Human uniqueness: genome interactions with environment, behaviour and culture. Nat Rev Genet 9, 749–763 (2008). https://doi.org/10.1038/nrg2428

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2428

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing