Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetic linkage and association analyses for trait mapping in Plasmodium falciparum

Key Points

  • This article discuss the foundations for genetic linkage mapping and population association analysis of the human malaria parasite Plasmodium falciparum.

  • We review strategies of P. falciparum genetic crosses and of candidate-gene association, selection-based association and genome-wide association studies.

  • We present an example of a trait (P. falciparum chloroquine resistance) that has been mapped to a single gene.

  • We discuss the feasibility of dissecting complex traits that are determined by multiple genes.

  • We survey methods for systematic and large-scale analysis of gene expression, polymorphism and selection.

Abstract

Genetic studies of Plasmodium falciparum laboratory crosses and field isolates have produced valuable insights into determinants of drug responses, antigenic variation, disease virulence, cellular development and population structures of these virulent human malaria parasites. Full-genome sequences and high-resolution haplotype maps of SNPs and microsatellites are now available for all 14 parasite chromosomes. Rapidly increasing genetic and genomic information on Plasmodium parasites, mosquitoes and humans will combine as a rich resource for new advances in our understanding of malaria, its transmission and its manifestations of disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The malaria parasite life cycle.
Figure 2: A laboratory cross of different Plasmodium falciparum clones.
Figure 3: Reduced microsatellite diversity from a chloroquine selective sweep on the pfcrt locus of Plasmodium falciparum chromosome 7.

Similar content being viewed by others

References

  1. Levine, N. D. Progress in taxonomy of the Apicomplexan protozoa. J. Protozool. 35, 518–520 (1988).

    Article  CAS  PubMed  Google Scholar 

  2. Bruce-Chwatt, L. J. Essential Malariology (Oxford Univ. Press, New York, 1993).

    Google Scholar 

  3. Singh, B. et al. A large focus of naturally acquired Plasmodium knowlesi infections in human beings. Lancet 363, 1017–1024 (2004).

    Article  PubMed  Google Scholar 

  4. World Health Organization. The World Health Report 2005: Make Every Mother and Child Count. World Health Organization, Geneva. [online], (2005).

  5. Trager, W. & Jensen, J. B. Human malaria parasites in continuous culture. Science 193, 673–675 (1976). A landmark paper describing the methods for in vitro culture of P. falciparum.

    Article  CAS  PubMed  Google Scholar 

  6. Vanderberg, J. P. & Gwadz, R. W. in Malaria, Volume 2: Pathology, Vector Studies and Culture. (ed. Kreier, J. P.) 153–234 (Academic, New York, 1980).

    Book  Google Scholar 

  7. Walliker, D. et al. Genetic analysis of the human malaria parasite Plasmodium falciparum. Science 236, 1661–1666 (1987). Description of the first genetic cross in P. falciparum.

    Article  CAS  PubMed  Google Scholar 

  8. Peterson, D. S., Walliker, D. & Wellems, T. E. Evidence that a point mutation in dihydrofolate reductase-thymidylate synthase confers resistance to pyrimethamine in falciparum malaria. Proc. Natl Acad. Sci. USA 85, 9114–9118 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wellems, T. E. et al. Chloroquine resistance not linked to mdr-like genes in a Plasmodium falciparum cross. Nature 345, 253–255 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Wellems, T. E., Walker-Jonah, A. & Panton, L. J. Genetic mapping of the chloroquine-resistance locus on Plasmodium falciparum chromosome 7. Proc. Natl Acad. Sci. USA 88, 3382–3386 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vaidya, A. B. et al. A genetic locus on Plasmodium falciparum chromosome 12 linked to a defect in mosquito infectivity and male gametogenesis. Mol. Biochem. Parasitol. 69, 65–71 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Su, X.-Z., Kirkman, L. A., Fujioka, H. & Wellems, T. E. Complex polymorphisms in an 330 kDa protein are linked to chloroquine-resistant P. falciparum in Southeast Asia and Africa. Cell 91, 593–603 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, P., Read, M., Sims, P. F. G. & Hyde, J. E. Sulfadoxine resistance in the human malaria parasite Plasmodium falciparum is determined by mutations in the dihydropteroate synthase and an additional factor associated with folate utilization. Mol. Microbiol. 23, 979–986 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Su, X.-Z. et al. A genetic map and recombination parameters of the human malaria parasite Plasmodium falciparum. Science 286, 1351–1353 (1999). Description of the first high-resolution genetic map for P. falciparum.

    Article  CAS  PubMed  Google Scholar 

  15. Fidock, D. A. et al. Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol. Cell 6, 861–871 (2000). The original description of the determinant of CQ resistance in P. falciparum.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ferdig, M. T. et al. Dissecting the loci of low-level quinine resistance in malaria parasites. Mol. Microbiol. 52, 985–997 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Wang, P., Nirmalan, N., Wang, Q., Sims, P. F. & Hyde, J. E. Genetic and metabolic analysis of folate salvage in the human malaria parasite Plasmodium falciparum. Mol. Biochem. Parasitol. 135, 77–87 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Furuya, T. et al. Disruption of a Plasmodium falciparum gene linked to male sexual development causes early arrest in gametocytogenesis. Proc. Natl Acad. Sci. USA 102, 16813–16818 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hoffman, S. L., Subramanian, G. M., Collins, F. H. & Venter, J. C. Plasmodium, human and Anopheles genomics and malaria. Nature 415, 702–709 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Crabb, B. S. Transfection technology and the study of drug resistance in the malaria parasite Plasmodium falciparum. Drug Resist. Updat. 5, 126–130 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Bozdech, Z. et al. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol. 1, e5 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Le Roch, K. G. et al. Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 301, 1503–1508 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Yeh, I., Hanekamp, T., Tsoka, S., Karp, P. D. & Altman, R. B. Computational analysis of Plasmodium falciparum metabolism: organizing genomic information to facilitate drug discovery. Genome Res. 14, 917–924 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Carlton, J., Silva, J. & Hall, N. The genome of model malaria parasites, and comparative genomics. Curr. Issues Mol. Biol. 7, 23–37 (2005).

    CAS  PubMed  Google Scholar 

  25. Hall, N. et al. A comprehensive survey of the Plasmodium life cycle by genomic, transcriptomic, and proteomic analyses. Science 307, 82–86 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. LaCount, D. J. et al. A protein interaction network of the malaria parasite Plasmodium falciparum. Nature 438, 103–107 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Stoeckert, C. J. Jr et al. PlasmoDB v5: new looks, new genomes. Trends Parasitol. 22, 543–546 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Winzeler, E. A. Applied systems biology and malaria. Nature Rev. Microbiol. 4, 145–151 (2006).

    Article  CAS  Google Scholar 

  29. Walliker, D., Carter, R. & Morgan, S. Genetic recombination in malaria parasites. Nature 232, 561–562 (1971).

    Article  CAS  PubMed  Google Scholar 

  30. Carlton, J., Mackinnon, M. & Walliker, D. A chloroquine resistance locus in the rodent malaria parasite Plasmodium chabaudi. Mol. Biochem. Parasitol. 93, 57–72 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Hayton, K., Ranford-Cartwright, L. C. & Walliker, D. Sulfadoxine-pyrimethamine resistance in the rodent malaria parasite Plasmodium chabaudi. Antimicrob. Agents Chemother. 46, 2482–2489 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cravo, P. V. et al. Genetics of mefloquine resistance in the rodent malaria parasite Plasmodium chabaudi. Antimicrob. Agents Chemother. 47, 709–718 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Culleton, R., Martinelli, A., Hunt, P. & Carter, R. Linkage group selection: rapid gene discovery in malaria parasites. Genome Res. 15, 92–97 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Martinelli, A. et al. A genetic approach to the de novo identification of targets of strain-specific immunity in malaria parasites. Proc. Natl Acad. Sci. USA 102, 814–819 (2005). This paper describes application of linkage group selection to identify targets of strain-specific immunity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. van Dijk, M. R., Waters, A. P. & Janse, C. J. Stable transfection of malaria parasite blood stages. Science 268, 1358–1362 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. de Koning-Ward, T. F., Janse, C. J. & Waters, A. P. The development of genetic tools for dissecting the biology of malaria parasites. Annu. Rev. Microbiol. 54, 157–185 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Balu, B. & Adams, J. H. Advancements in transfection technologies for Plasmodium. Int. J. Parasitol. 37, 1–10 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Carlton, J. M., Hayton, K., Cravo, P. V. & Walliker, D. Of mice and malaria mutants: unravelling the genetics of drug resistance using rodent malaria models. Trends Parasitol. 17, 236–242 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Carter, R., Hunt, P. & Cheesman, S. Linkage group selection — a fast approach to the genetic analysis of malaria parasites. Int. J. Parasitol. 37, 285–293 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Sinden, R. E. & Hartley, R. H. Identification of the meiotic division of malarial parasites. J. Protozool. 32, 742–744 (1985).

    Article  CAS  PubMed  Google Scholar 

  41. Babiker, H. A. et al. Random mating in a natural population of the malarial parasite Plasmodium falciparum. Parasitology 109, 413–421 (1994).

    Article  PubMed  Google Scholar 

  42. Paul, R. E. L. et al. Mating patterns in malaria parasite populations of Papua New Guinea. Science 269, 1709–1711 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Wellems, T. E. & Plowe, C. V. Chloroquine-resistant malaria. J. Infect. Dis. 184, 770–776 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Carter, R. & Mendis, K. N. Evolutionary and historical aspects of the burden of malaria. Clin. Microbiol. Rev. 15, 564–594 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chou, A. C., Chevli, R. & Fitch, C. D. Ferriprotoporphyrin IX fulfills the criteria for identification as the chloroquine receptor of malaria parasites. Biochemistry 19, 1543–1549 (1980).

    Article  CAS  PubMed  Google Scholar 

  46. Fidock, D. A. et al. Allelic modification of the cg2 and cg1genes do not alter the chloroquine response of drug-resistant Plasmodium falciparum. Mol. Biochem. Parasitol. 110, 1–10 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Cooper, R. A. et al. Alternative mutations at position 76 of the vacuolar transmembrane protein PfCRT are associated with chloroquine resistance and unique stereospecific quinine and quinidine responses in Plasmodium falciparum. Mol. Pharmacol. 61, 35–42 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Sidhu, A. B., Verdier-Pinard, D. & Fidock, D. A. Chloroquine resistance in Plasmodium falciparum malaria parasites conferred by pfcrt mutations. Science 298, 210–213 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Djimde, A. et al. A molecular marker for chloroquine-resistant falciparum malaria. N. Engl. J. Med. 344, 257–263 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Wootton, J. C. et al. Genetic diversity and chloroquine selective sweeps in Plasmodium falciparum. Nature 418, 320–323 (2002). Description of CQ-resistance founder events and subsequent selective sweeps across the major malarious regions of the world.

    Article  CAS  PubMed  Google Scholar 

  51. Mehlotra, R. K. et al. Evolution of a unique Plasmodium falciparum chloroquine-resistance phenotype in association with PfCRT polymorphism in Papua New Guinea and South America. Proc. Natl Acad. Sci. USA 98, 12689–12694 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bray, P. G. et al. PfCRT and the trans-vacuolar proton electrochemical gradient: regulating the access of chloroquine to ferriprotoporphyrin IX. Mol. Microbiol. 62, 238–251 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cooper, R. A. et al. Mutations in transmembrane domains 1, 4 and 9 of the Plasmodium falciparum chloroquine resistance transporter alter susceptibility to chloroquine, quinine and quinidine. Mol. Microbiol. 63, 270–282 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Mu, J. et al. Multiple transporters associated with malaria parasite responses to chloroquine and quinine. Mol. Microbiol. 49, 977–989 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Wongsrichanalai, C. et al. In vitro susceptibility of Plasmodium falciparum isolates in Vietnam to artemisinin derivatives and other antimalarials. Acta Trop. 63, 151–158 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Reed, M. B., Saliba, K. J., Caruana, S. R., Kirk, K. & Cowman, A. F. Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature 403, 906–909 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Kidgell, C. et al. A systematic map of genetic variation in Plasmodium falciparum. PLoS. Pathog. 2, e57 (2006). A primary report of allelic variability in the P. falciparum genome detected by high-density microarrays.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Farrall, M. Quantitative genetic variation: a post-modern view. Hum. Mol. Genet. 13, R1–R7 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Suthram, S., Sittler, T. & Ideker, T. The Plasmodium protein network diverges from those of other eukaryotes. Nature 438, 108–112 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nair, S. et al. A selective sweep driven by pyrimethamine treatment in Southeast Asian malaria parasites. Mol. Biol. Evol. 20, 1526–1536 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Roper, C. et al. Antifolate antimalarial resistance in southeast Africa: a population-based analysis. Lancet 361, 1174–1181 (2003).

    Article  PubMed  Google Scholar 

  62. Nair, S. et al. Recurrent gene amplification and soft selective sweeps during evolution of multidrug resistance in malaria parasites. Mol. Biol. Evol. 24, 562–573 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Al-Olayan, E. M., Beetsma, A. L., Butcher, G. A., Sinden, R. E. & Hurd, H. Complete development of mosquito phases of the malaria parasite in vitro. Science 295, 677–679 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Hollingdale, M. R. in In vitro Methods for Parasite Cultivation (eds Taylor, A. E. R. & Baker, J. R.) 180–198 (Academic, New York, 1987).

    Google Scholar 

  65. Udomsangpetch, R. et al. Short-term in vitro culture of field isolates of Plasmodium vivax using umbilical cord blood. Parasitol. Int. 56, 65–69 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Kocken, C. H. et al. Plasmodium knowlesi provides a rapid in vitro and in vivo transfection system that enables double-crossover gene knockout studies. Infect. Immun. 70, 655–660 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rich, S. M., Licht, M. C., Hudson, R. R. & Ayala, F. J. Malaria's Eve: evidence of a recent population bottleneck throughout the world populations of Plasmodium falciparum. Proc. Natl Acad. Sci. USA 95, 4425–4430 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Volkman, S. K. et al. Recent origin of Plasmodium falciparum from a single progenitor. Science 293, 482–484 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Hughes, A. L. & Verra, F. Very large long-term effective population size in the virulent human malaria parasite Plasmodium falciparum. Proc. Biol. Sci. 268, 1855–1860 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mu, J. et al. Chromosome-wide SNPs reveal an ancient origin for Plasmodium falciparum. Nature 418, 323–326 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Joy, D. A. et al. Early origin and recent expansion of Plasmodium falciparum. Science 300, 318–321 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Su, X. Z., Mu, J. & Joy, D. A. The 'Malaria's Eve' hypothesis and the debate concerning the origin of the human malaria parasite Plasmodium falciparum. Microbes. Infect. 5, 891–896 (2003).

    Article  PubMed  Google Scholar 

  73. Jeffares, D. C. et al. Genome variation and evolution of the malaria parasite Plasmodium falciparum. Nature Genet. 39, 120–125 (2007). Description of genome-wide polymorphism within and between species, and evolutionary implications of the findings.

    Article  CAS  PubMed  Google Scholar 

  74. Mu, J. et al. Genome-wide variation and identification of vaccine targets in the Plasmodium falciparum genome. Nature Genet. 39, 126–130 (2007). Selection signatures from a survey of 3,500 predicted genes identify sequences that are likely to be under immune pressure.

    Article  CAS  PubMed  Google Scholar 

  75. Volkman, S. K. et al. A genome-wide map of diversity in Plasmodium falciparum. Nature Genet. 39, 113–119 (2007). SNPs identified by large-scale sequencing reveal genome-wide LD, selection and recombination

    Article  CAS  PubMed  Google Scholar 

  76. Hughes, A. L. & Verra, F. Extensive polymorphism and ancient origin of Plasmodium falciparum. Trends Parasitol. 18, 348–351 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Anderson, T. J. et al. Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum. Mol. Biol. Evol. 17, 1467–1482 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Mu, J. et al. Recombination hotspots and population structure in Plasmodium falciparum. PLoS Biol. 3, e335 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hayward, R. E. et al. Shotgun DNA microarrays and stage-specific gene expression in Plasmodium falciparum malaria. Mol. Microbiol. 35, 6–14 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Llinas, M., Bozdech, Z., Wong, E. D., Adai, A. T. & DeRisi, J. L. Comparative whole genome transcriptome analysis of three Plasmodium falciparum strains. Nucleic Acids Res. 34, 1166–1173 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Young, J. A. et al. The Plasmodium falciparum sexual development transcriptome: a microarray analysis using ontology-based pattern identification. Mol. Biochem. Parasitol. 143, 67–79 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Mok, B. W. et al. Comparative transcriptomal analysis of isogenic Plasmodium falciparum clones of distinct antigenic and adhesive phenotypes. Mol. Biochem. Parasitol. 151, 184–192 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Lovegrove, F. E. et al. Simultaneous host and parasite expression profiling identifies tissue-specific transcriptional programs associated with susceptibility or resistance to experimental cerebral malaria. BMC Genomics 7, 295 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mockler, T. C. et al. Applications of DNA tiling arrays for whole-genome analysis. Genomics 85, 1–15 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Price, R. N. et al. Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number. Lancet 364, 438–447 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Anderson, T. J. et al. Are transporter genes other than the chloroquine resistance locus (pfcrt) and multidrug resistance gene (pfmdr) associated with antimalarial drug resistance? Antimicrob. Agents Chemother. 49, 2180–2188 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hill, W. G., Babiker, H. A., Ranford-Cartwright, L. C. & Walliker, D. Estimation of inbreeding coefficients from genotypic data on multiple alleles, and application to estimation of clonality in malaria parasites. Genet. Res. 65, 53–61 (1995).

    Article  CAS  PubMed  Google Scholar 

  88. Walliker, D., Babiker, H. A. & Ranford-Cartwright, L. C. The genetic structure of malaria parasite populations in Malaria: Parasite Biology, Pathogenesis and Protection (ed. Sherman, I. W.) 235–255 (ASM, Washington DC, 1998).

    Google Scholar 

  89. Conway, D. J. et al. High recombination rate in natural populations of Plasmodium falciparum. Proc. Natl Acad. Sci. USA 96, 4506–4511 (1999). Description and discussion of high recombination frequencies in parasite populations of five African countries.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Laserson, K. F. et al. Genetic characterization of an epidemic of Plasmodium falciparum malaria among Yanomami Amerindians. J. Infect. Dis. 180, 2081–2085 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Florens, L. et al. A proteomic view of the Plasmodium falciparum life cycle. Nature 419, 520–526 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Lasonder, E. et al. Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature 419, 537–542 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Khan, S. M. et al. Proteome analysis of separated male and female gametocytes reveals novel sex-specific Plasmodium biology. Cell 121, 675–687 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Sam-Yellowe, T. Y. et al. Proteome analysis of rhoptry-enriched fractions isolated from Plasmodium merozoites. J. Proteome. Res. 3, 995–1001 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Ginsburg, H. Progress in in silico functional genomics: the malaria Metabolic Pathways database. Trends Parasitol. 22, 238–240 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Sinden, R. E. A proteomic analysis of malaria biology: integration of old literature and new technologies. Int. J. Parasitol. 34, 1441–1450 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Carlton, J. M. et al. Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii. Nature 419, 512–519 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Aravind, L., Iyer, L. M., Wellems, T. E. & Miller, L. H. Plasmodium biology: genomic gleanings. Cell 115, 771–785 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Trager, W. & Williams, J. Extracellular (axenic) development in vitro of the erythrocytic cycle of Plasmodium falciparum. Proc. Natl Acad. Sci. USA 89, 5351–5355 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wu, Y., Sifri, C. D., Lei, H. H., Su, X. Z. & Wellems, T. E. Transfection of Plasmodium falciparum within human red blood cells. Proc. Natl Acad. Sci. USA 92, 973–977 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Duraisingh, M. T., Triglia, T. & Cowman, A. F. Negative selection of Plasmodium falciparum reveals targeted gene deletion by double crossover recombination. Int. J. Parasitol. 32, 81–89 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Deitsch, K., Driskill, C. & Wellems, T. Transformation of malaria parasites by the spontaneous uptake and expression of DNA from human erythrocytes. Nucleic Acids Res. 29, 850–853 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Carvalho, T. G. & Menard, R. Manipulating the Plasmodium genome. Curr. Issues Mol. Biol. 7, 39–55 (2005).

    CAS  PubMed  Google Scholar 

  104. Meissner, M. et al. Tetracycline analogue-regulated transgene expression in Plasmodium falciparum blood stages using Toxoplasma gondii transactivators. Proc. Natl Acad. Sci. USA 102, 2980–2985 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Mamoun, C. B., Gluzman, I. Y., Goyard, S., Beverley, S. M. & Goldberg, D. E. A set of independent selectable markers for transfection of the human malaria parasite Plasmodium falciparum. Proc. Natl Acad. Sci. USA 96, 8716–8720 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Desjardins, R. E., Canfield, C. J., Haynes, J. D. & Chulay, J. D. Quantitative assessment of antimalarial activity in vitro by a semiautomated technique. Antimicrobial Agents Chemother. 16, 710–718 (1979).

    Article  CAS  Google Scholar 

  107. White, N. J. Assessment of the pharmacodynamic properties of antimalarial drugs in vivo. Antimicrob. Agents Chemother. 41, 1413–1422 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Miller, L. H., Baruch, D. I., Marsh, K. & Doumbo, O. K. The pathogenic basis of malaria. Nature 415, 673–679 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Gaur, D., Mayer, D. C. & Miller, L. H. Parasite ligand-host receptor interactions during invasion of erythrocytes by Plasmodium merozoites. Int. J. Parasitol. 34, 1413–1429 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Cowman, A. F. & Crabb, B. S. Invasion of red blood cells by malaria parasites. Cell 124, 755–766 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Miller, L. H., Mason, S. J., Dvorak, J. A., McGinniss, M. H. & Rothman, I. K. Erythrocyte receptors for (Plasmodium knowlesi) malaria: Duffy blood group determinants. Science 189, 561–563 (1975).

    Article  CAS  PubMed  Google Scholar 

  112. al-Khedery, B., Barnwell, J. W. & Galinski, M. R. Antigenic variation in malaria: a 3′ genomic alteration associated with the expression of a P. knowlesi variant antigen. Mol. Cell 3, 131–141 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Dzikowski, R., Frank, M. & Deitsch, K. Mutually exclusive expression of virulence genes by malaria parasites is regulated independently of antigen production. PLoS. Pathog. 2, e22 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kaestli, M. et al. Virulence of malaria is associated with differential expression of Plasmodium falciparum var gene subgroups in a case-control study. J. Infect. Dis. 193, 1567–1574 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Trimnell, A. R. et al. Global genetic diversity and evolution of var genes associated with placental and severe childhood malaria. Mol. Biochem. Parasitol. 148, 169–180 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Shelburne, S. A. & Musser, J. M. Virulence gene expression in vivo. Curr. Opin. Microbiol. 7, 283–289 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Shortt, H. E., Fairley, N. H., Covell, G., Shute, P. G. & Garnham, P. C. C. The pre-erythrocytic stage of Plasmodium falciparum. Trans. R. Soc. Trop. Med. Hyg. 44, 405–419 (1951).

    Article  CAS  PubMed  Google Scholar 

  118. Shi, Q. et al. Alteration in host cell tropism limits the efficacy of immunization with a surface protein of malaria merozoites. Infect. Immun. 73, 6363–6371 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Intramural Research Program of the National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas E. Wellems.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Affymetrix molecular inversion probe

Johns Hopkins Malaria Research Institute

Malaria Research and Reference Reagent Resource Center

NCBI Malaria Genetics and Genomics

NIAID Laboratory of Malaria and Vector Research

The J. Craig Venter Institute

PlasmoDB

Glossary

Apicomplexa

A phylum of parasitic protozoa that is classified by the presence of an apical complex, which is used by the invasive stages.

Linkage analysis

Analysis by which genetic markers that are associated with a trait of interest are established from genetic crosses or family pedigrees.

Linkage disequilibrium

A tendency of genetic loci to segregate together more frequently than expected by chance.

Selection valley

A chromosome region with reduced allelic diversity or reduced marker intensity owing to selection.

Hitchhiking

Spread in a population of neutral or, in some cases, deleterious variants, when they are linked to beneficial mutations.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, X., Hayton, K. & Wellems, T. Genetic linkage and association analyses for trait mapping in Plasmodium falciparum. Nat Rev Genet 8, 497–506 (2007). https://doi.org/10.1038/nrg2126

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2126

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing