Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Essay
  • Published:

The origin of eukaryotes: a reappraisal

Abstract

Ever since the elucidation of the main structural and functional features of eukaryotic cells and subsequent discovery of the endosymbiotic origin of mitochondria and plastids, two opposing hypotheses have been proposed to account for the origin of eukaryotic cells. One hypothesis postulates that the main features of these cells, including their ability to capture food by endocytosis and to digest it intracellularly, were developed first, and later had a key role in the adoption of endosymbionts; the other proposes that the transformation was triggered by an interaction between two typical prokaryotic cells, one of which became the host and the other the endosymbiont. Re-examination of this question in the light of cell-biological and phylogenetic data leads to the conclusion that the first model is more likely to be the correct one.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The main features of eukaryotic cells.
Figure 2: Hypothetical steps in the development of the eukaryotic cytomembrane system.

References

  1. Sagan, L. On the origin of mitosing cells. J. Theoret. Biol. 14, 225–274 (1967).

    Article  CAS  Google Scholar 

  2. Woese, C. R. & Fox, G. E. The phylogenetic structure of the procaryotic domain: the primary kingdoms. Proc. Natl Acad. Sci. USA 74, 5088–5090 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. de Duve, C. Singularities (Cambridge Univ. Press, New York, 2005).

    Book  Google Scholar 

  4. Holland, H. D. The oxygenation of the atmosphere and oceans. Phil. Trans. R. Soc. Lond. B Biol. Sci. 361, 903–915 (2006).

    Article  CAS  Google Scholar 

  5. Brocks, J. J., Logan, G. A., Buick, R. & Summons, R. E. Archaean molecular fossils and the early rise of eukaryotes. Science 285, 1033–1036 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Douzery, E. J. P., Snell, E. A., Bapteste, E., Delsuc, F. & Philippe, H. The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils? Proc. Natl Acad. Sci. USA 101, 15386–15391 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Berney, C. & Pawlowski, J. A molecular time-scale for eukaryote evolution recalibrated with the continuous microfossil record. Proc. R. Soc. Lond. B Biol. Sci. 273, 1867–1872 (2006).

    Article  CAS  Google Scholar 

  8. Cavalier-Smith, T. The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. Int. J. Syst. Evol. Microbiol. 52, 7–76 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Cavalier-Smith, T. Cell evolution and Earth history: stasis and revolution. Phil. Trans. R. Soc. Lond. B Biol. Sci. 361, 969–1006 (2006).

    Article  CAS  Google Scholar 

  10. Hartman, H. & Fedorov, A. The origin of the eukaryotic cell: a genomic investigation. Proc. Natl Acad. Sci. USA 99, 1420–1425 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kurland, C. G., Collins, L. J. & Penny, D. Genomics and the irreducible nature of eukaryote cells. Science 312, 1011–1014 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Ourisson, G. & Nakatani, T. The terpenoid theory of the origin of cellular life: the evolution of terpenoids to cholesterol. Chem. Biol. 1, 11–23 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Lake, J. A., Jain, R. & Rivera, M. C. Mix and match in the tree of life. Science 283, 2027–2028 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Horiike, T., Hamada, K., Kanaya, S. & Shinozawa, T. Origin of eukaryotic cell nuclei by symbiosis of Archaea in Bacteria is revealed by homology-hit analysis. Nature Cell Biol. 3, 210–214 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Zillig, W. Comparative biochemistry of Archaea and Bacteria. Curr. Opin. Genet. Dev. 1, 544–551 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. Gupta, R. S., Aitken, K., Falah, M. & Singh, B. Cloning of Giardia lamblia heat shock protein HSP70 homologs: Implications regarding origin of eukaryotic cells and endoplasmic reticulum. Proc. Natl Acad. Sci. USA 91, 2895–2899 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Margulis, L. Archaeal–eubacterial mergers in the origin of Eukarya: phylogenetic classification of life. Proc. Natl Acad. Sci. USA 93, 1071–1076 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rivera, M. C. & Lake, J. A. The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature 431, 152–155 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Lake, A. & Rivera, M. C. Was the nucleus the first endosymbiont? Proc. Natl Acad. Sci. USA 91, 2880–2881 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Moreira, D. & Lopez-Garcia, P. Symbiosis between methanogenic archaea and δ-proteobacteria as the origin of eukaryotes: The syntrophic hypothesis. J. Mol. Evol. 47, 517–530 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Martin, W. & Müller, M. The hydrogen hypothesis for the first eukaryote. Nature 392, 37–41 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Vellai, T., Takacs, K. & Vida, G. A new aspect to the origin and evolution of eukaryotes. J. Mol. Evol. 46, 499–507 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Vellai, T. & Vida, G. The origin of eukaryotes: the difference between prokaryotic and eukaryotic cells. Proc. R. Soc. Lond. B Biol. Sci. 266, 1571–1577 (1999).

    Article  CAS  Google Scholar 

  24. Embley, T. M. & Martin, W. Eukaryotic evolution, changes and challenges. Nature 440, 623–630 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Forterre, P. Thermoreduction, a hypothesis for the origin of prokaryotes. C. R. Acad. Sci. III 318, 415–422 (1995).

    CAS  Google Scholar 

  26. Forterre, P. Where is the root of the universal tree of life? BioEssays 21, 871–879 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Poole, A., Jeffares, D. & Penny, D. Early evolution: prokaryotes, the new kids on the block. BioEssays 21, 880–889 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Xu, Y. & Glansdorff, N. Was our ancestor a thermophilic procaryote? Comp. Biochem. Physiol. A 133, 677–688 (2002).

    Article  Google Scholar 

  29. Doolittle, W. F. Phylogenetic classification and the universal tree. Science 284, 2124–2128 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Doolittle, W. F. The nature of the universal ancestor and the evolution of the proteome. Curr. Opin. Struct. Biol. 10, 355–358 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Woese, C. R. The universal ancestor. Proc. Natl Acad. Sci. USA 95, 6854–6859 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Woese, C. R. On the evolution of cells. Proc. Natl Acad. Sci. USA 99, 8742–8747 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Blobel, G. Intracellular protein topogenesis. Proc. Natl Acad. Sci. USA 77, 1496–1500 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Martin, W., Hoffmeister, M., Rotte, C. & Henze, K. An overview of endosymbiotic models for the origins of eukaryotes, their ATP-producing organelles (mitochondria and hydrogenosomes), and their heterotrophic lifestyle. Biol. Chem. 382, 1521–1539 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Martin, W. & Koonin, E. V. Introns and the origin of the nucleus–cytosol compartmentalization. Nature 440, 41–45 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Wächtershäuser, G. From pre-cells to Eukarya: a tale of two lipids. Mol. Microbiol. 47, 13–22 (2003).

    Article  PubMed  Google Scholar 

  37. Boucher, Y., Kamekura, M. & Doolittle, W. F. Origins and evolution of isoprenoid lipid biosynthesis in archaea. Mol. Microbiol. 52, 515–527 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Davis, B. D. & Tai, P.-C. The mechanism of protein secretion across membranes. Nature 283, 433–438 (1980).

    Article  CAS  PubMed  Google Scholar 

  39. Silhavy, T. J., Benson, S. A. & Emr, S. D. Mechanisms of protein localization. Microbiol. Rev. 47, 313–344 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee, C. & Beckwith, J. Cotranslational and posttranslational protein translocation systems in prokaryotic systems. Annu. Rev. Cell Biol. 2, 315–336 (1986).

    Article  CAS  PubMed  Google Scholar 

  41. Hortsch, M. & Meyer, D. I. Transfer of secretory proteins through the membrane of the endoplasmic reticulum. Int. Rev. Cytol. 102, 215–242 (1986).

    Article  CAS  PubMed  Google Scholar 

  42. Walter, P. & Lingappa, V. R. Mechanism of protein translocation across the endoplasmic reticulum membrane. Annu. Rev. Cell Biol. 2, 499–586 (1986).

    Article  CAS  PubMed  Google Scholar 

  43. Randall, L. L., Hardy, S. J. & Thom, J. R. Export of protein: a biochemical view. Annu. Rev. Microbiol. 41, 507–541 (1987).

    Article  CAS  PubMed  Google Scholar 

  44. Powers, T. & Walter, P. Co-translational protein targeting catalyzed by the Escherichia coli recognition particle and its receptor. EMBO J. 16, 4880–4886 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Halic, M. et al. Following the signal sequence from ribosomal tunnel exit to signal recognition particle. Nature 444, 507–511 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. de Duve, C. & Wattiaux, R. Functions of lysosomes. Annu. Rev. Physiol. 28, 435–492 (1966).

    Article  CAS  PubMed  Google Scholar 

  47. Stanier, R. Y. Some aspects of the biology of cells and their possible evolutionary significance. Symp. Soc. Gen. Microbiol. 20, 1–38 (1970).

    Google Scholar 

  48. Cavalier-Smith, T. The origin of nuclei and of eukaryotic cells. Nature 256, 463–468 (1975).

    Article  Google Scholar 

  49. de Duve, C. A Guided Tour of the Living Cell. (Scientific American, New York, 1984).

    Google Scholar 

  50. Woese, C. Bacterial evolution. Microbiol. Rev. 51, 221–271 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. de Duve, C. Blueprint for a Cell (Neil Patterson, Burlington, 1991).

    Google Scholar 

  52. Cavalier-Smith, T. in Endocytobiology II (eds Schwemmler, W. & Schenk, H. E. A.) 265–279 (De Gruyter, Berlin, 1983).

    Google Scholar 

  53. de Duve, C. The birth of complex cells. Sci. Am. 274, 38–45 (1996).

    Google Scholar 

  54. Nogales, E., Downing, K. H., Amos, L. A. & Löwe, J. Tubulin and FtsZ form a distinct family of GTPases. Nature Struct. Biol. 5, 451–458 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. van den Ent, F., Amos, L. A. & Löwe, J. Prokaryotic origin of the actin cytoskeleton. Nature 413, 39–44 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Cavalier-Smith, T. The phagotrophic origin of eukaryotes and phylogenetic classification of protozoa. Int. J. Syst. Evol. Microbiol. 52, 297–354 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Cavalier-Smith, T. The origin of eukaryote and archaebacterial cells. Ann. NY Acad. Sci. 503, 17–54 (1987).

    Article  CAS  PubMed  Google Scholar 

  58. Devos, D. et al. Components of coated vesicles and nuclear pore complexes share a common molecular architecture. PLoS Biol. 2, e380 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cavalier-Smith, T. Economy, speed and size matter: evolutionary forces driving nuclear genome miniaturization and expansion. Ann. Bot. 95, 147–175 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Newport, J. Nuclear reconstitution in vitro: stages of assembly around protein-free DNA. Cell 48, 205–217 (1987).

    Article  CAS  PubMed  Google Scholar 

  61. Gerace, L. & Burke, B. Functional organization of the nuclear envelope. Annu. Rev. Cell Biol. 4, 335–374 (1988).

    Article  CAS  PubMed  Google Scholar 

  62. de Duve, C. Evolution of the peroxisome. Ann. NY Acad. Sci. 168, 369–381 (1969).

    Article  CAS  PubMed  Google Scholar 

  63. Fahimi, H. D. & Sies, H. (eds) Peroxisomes in Biology and Medicine (Springer, Berlin, 1987).

    Book  Google Scholar 

  64. Masters, C. & Crane, D. The Peroxisome: A Vital Organelle (Cambridge Univ. Press, Cambridge, 1995).

    Google Scholar 

  65. Shio, H. & Lazarow, P. B. Relationship between peroxisomes and endoplasmic reticulum investigated by combined catalase and glucose-6-phosphatase cytochemistry. J. Histochem. Cytochem. 29, 1263–1272 (1981).

    Article  CAS  PubMed  Google Scholar 

  66. Fujiki, Y., Fowler, S., Shio, H., Hubbard, A. L. & Lazarow, P. B. Polypeptide and phospholipid composition of the membrane of rat liver peroxisomes. Comparison with endoplasmic reticulum and mitochondrial membranes. J. Cell Biol. 93, 103–110 (1982).

    Article  CAS  PubMed  Google Scholar 

  67. Lazarow, P. B., Robbi, M., Fujiki, Y. & Wong, L. Biogenesis of peroxisomal proteins in vivo and in vitro. Ann. NY Acad. Sci. 386, 285–297 (1982).

    Article  CAS  PubMed  Google Scholar 

  68. Lazarow, P. B. & Fujiki, Y. Biogenesis of peroxisomes. Ann. Rev. Cell Biol. 1, 489–530 (1985).

    Article  CAS  PubMed  Google Scholar 

  69. Purdue, P. E. & Lazarow, P. B. Peroxisome biogenesis. Annu. Rev. Cell Dev. Biol. 17, 701–752 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Lazarow, P. B. Peroxisome biogenesis: advances and conundrums. Curr. Opin. Cell Biol. 15, 489–497 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. de Duve, C. Peroxisomes and related particles in historical perspective. Ann. NY Acad. Sci. 386, 1–4 (1982).

    Article  CAS  PubMed  Google Scholar 

  72. de Duve, C. Microbodies in the living cell. Sci. Am. 248, 74–84 (1983).

    Article  CAS  PubMed  Google Scholar 

  73. Borst, P. How proteins get into microbodies (peroxisomes, glyoxysomes, glycosomes). Biochim. Biophys. Acta 866, 179–203 (1986).

    Article  CAS  PubMed  Google Scholar 

  74. Cavalier-Smith, T. in Endocytobiology IV (eds Nardon, P. et al.) 515–521 (INRA, Paris, 1989).

    Google Scholar 

  75. Titorenko, V. I. & Rachubinski, R. A. The endoplasmic reticulum plays an essential role in peroxisome biogenesis. Trends Biochem. Sci. 23, 231–233 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Hoepfner, D., Schildknegt, D., Braakman I., Philippsen, P. & Tabak, H. F. Contribution of the endoplasmic reticulum to peroxisome formation. Cell 122, 85–95 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. South, S. T. & Gould S. J. Peroxisome synthesis in the absence of preexisting peroxisomes. J. Cell Biol. 144, 255–266 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. South, S. T., Sacksteder, K. A., Li, X., Liu, Y. & Gould, S. J. Inhibitors of COPI and COPII do not block PEX3-mediated peroxisome synthesis. J. Cell Biol. 149, 1345–1360 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gabaldon, T. et al. Origin and evolution of the peroxisomal proteome. Biol. Direct 1, 8 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Schlüter, A. et al. The evolutionary origin of peroxisomes: an ER-peroxisome connection. Mol. Biol. Evol. 23, 838–845 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Checroun, C., Wehrly, T. D., Fischer, E. R., Hayes, S. F. & Celli, J. Autophagy-mediated reentry of Francisella tularensis into the endocytic compartment after cytoplasmic replication. Proc. Natl Acad. Sci. USA 103, 14578–14583 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hannaert, V., Bringaud, F., Opperdoes, F. R. & Michels, P. A. M. Evolution of energy metabolism and its compartmentation in Kinetoplastida. Kinetoplastid Biol. Dis. 2, 11 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Hannaert, V. et al. Plant-like traits associated with metabolism of Trypanosoma parasites. Proc. Natl Acad. Sci. USA 100, 1067–1071 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Opperdoes, F. R. & Szikora, J.-P. In silico prediction of glycosomal enzymes of Leishmania major and trypanosomes. Mol. Biochem. Parasitol. 147, 193–206 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Gabaldon, T. & Huynen, M. A. Reconstruction of the proto-mitochondrial metabolism. Science 301, 609 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Cavalier-Smith, T. Origin of mitochondria by intracellular enslavement of a photosynthetic purple bacterium. Proc. R. Soc. Lond. B Biol. Sci. 273, 1943–1952 (2006).

    Article  CAS  Google Scholar 

  87. Margulis, L. Origin of Eukaryotic Cells (Yale Univ. Press, New Haven, 1970).

    Google Scholar 

  88. Margulis, L. Symbiosis in Cell Evolution (W. H. Freeman & Co., San Francisco, 1981).

    Google Scholar 

  89. Margulis, L. & Sagan, D. Micro-cosmos (Summit, New York, 1986).

    Google Scholar 

  90. Dyall, S. D., Brown, M. T. & Johnson, P. J. Ancient invasions: from endosymbionts to organelles. Science 304, 253–257 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Hackstein, J. H. P. & Yarlett, N. in Molecular Basis of Symbiosis (ed. Overmann, J.) 117–142 (Springer, Berlin-Heidelberg, 2005).

    Google Scholar 

  92. von Dohlen, C. D., Kohler, S., Alsop, S. T. & McManus, W. R. Mealybug β-proteobacterial endosymbionts contain γ-proteobacterial symbionts. Nature 412, 433–436 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Martin, W. & Russell, M. J. On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Phil. Trans. R. Soc. Lond. B 358, 59–85 (2003).

    Article  CAS  Google Scholar 

  94. Akhmanova, A. et al. A hydrogenosome with a genome. Nature 396, 527–528 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. Dyall, S. D. et al. Non-mitochondrial complex I proteins in a Trichomonas hydrogenosomal oxidoreductase complex. Nature 431, 1103–1107 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Horner, D. S., Foster, P. G. & Embley, T. M. Iron hydrogenases and the evolution of anaerobic eukaryotes. Mol. Biol. Evol. 17, 1695–1709 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Hackstein, J. H. P. et al. Hydrogenosomes: convergent adaptations of mitochondria to anaerobic environments. Zoology 104, 290–302 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Voncken, F. et al. Multiple origins of hydrogenosomes: functional and phylogenetic evidence from the ADP/ATP carrier of the anaerobic chytrid Neocallimastix sp. Mol. Microbiol. 44, 1441–1454 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Poole, A. M. & Penny, D. Evaluating hypotheses for the origin of eukaryotes. BioEssays 29, 74–84 (2006).

    Article  Google Scholar 

  100. Schopf, J. W. Cradle of Life (Princeton Univ. Press, Princeton, 1999).

    Google Scholar 

  101. Hedges, S. B. The origin and evolution of model organisms. Nature Rev. Genet. 3, 838–849 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Gribaldo, S. & Philippe, H. Ancient phylogenetic relationships. Theor. Pop. Biol. 61, 391–408 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

This paper could not have been written without the invaluable help of many knowledgeable colleagues. In New York, I have benefited greatly from the advice of two former collaborators, M. Müller, who, with D. Lindmark, discovered hydrogenosomes in my laboratory, and P. Lazarow, who pioneered peroxisome biogenesis. In Brussels, my Dutch colleagues F. Opperdoes, who discovered glycosomes in the laboratory of P. Borst, and his associate P. Michels have provided many pertinent critical comments, useful suggestions and efficient help in searching the recent literature. My grateful thanks go also to T. Gabaldon for an enlightening discussion of his latest results on the phylogeny of peroxisomes and many valuable observations. I am also deeply indebted to two reviewers for their valuable criticisms. I am particularly grateful to T. Cavalier-Smith, who has allowed his identity to be revealed and has greatly helped me by putting his immense scholarship to my disposal. Finally, I express my feelings of appreciation to my friend N. Patterson for having taken time from his heavy schedule to go over my manuscript with his customary editorial care. Needless to say, I have not always followed the advice I have been given and remain solely responsible for the contents of this Essay.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Christian de Duve Institute of Cellular Pathology

Glossary

Archaebacteria

Archaebacteria are one of the two main groups of prokaryotes (the other being Eubacteria). Thus named because, when discovered, they were believed to be particularly ancient (Greek Archaios), which is no longer unanimously accepted; they share a number of special genetic and metabolic characteristics and have ether lipids in their membranes. They include many extremophiles, microbes adapted to extreme environments.

Endocytosis

The uptake of extracellular materials by cells. The plasma membrane invaginates and vesicles pinch off that contain trapped extracellular materials enclosed within the membrane patch derived from the plasma membrane. Those vesicles, called endosomes, either fuse with lysosomes, within which their contents are digested, or migrate to a distant site, where they fuse with the plasma membrane by exocytosis, discharging their contents outside the cell (vesicular transport).

Endosymbiont

An intracellular organism that contributes to the survival of the host cell and depends on the host for its own persistence. The relationship can be either mutualistic (in which both species benefit) or commensalistic (in which one species benefits, whereas the other is not affected). Some organelles (mitochondria, plastids) are derived from degnerate endosymbionts.

Eubacteria

Eubacteria are one of the two main groups of prokaryotes (the other being Archaebacteria). They share a number of special genetic and metabolic characteristics and have ester lipids in their membranes. They comprise all the commonly known bacteria, including those responsible for diseases.

Exocytosis

A process by which the surrounding membrane of an intracellular vesicle fuses with the plasma membrane, so that the contents of the vesicle (usually secretory products) are discharged into the extracellular membrane.

Heterotrophy

Dependence on organic foodstuffs for survival, as opposed to autotrophy, which describes self-sufficiency, the ability to survive on mineral foodstuffs.

Lateral gene transfer

Horizontal transfer of genes between unrelated species, as opposed to vertical inheritance within a species.

Phagocytosis

A form of endocytosis whereby large particles are taken up.

Pinocytosis

A form of endocytosis whereby droplets of fluid and soluble molecules are taken up.

Polyisoprenoids

A large and diverse class of lipids that are derived from 5-carbon isoprene units and enter into the formation of many natural substances, including cholesterol.

Protists

Unicellular eukaryotes including protozoans, slime molds and certain algae.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Duve, C. The origin of eukaryotes: a reappraisal. Nat Rev Genet 8, 395–403 (2007). https://doi.org/10.1038/nrg2071

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2071

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing