Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Horizontal gene transfer: building the web of life

Key Points

  • Many horizontal gene transfer (HGT) events are initially neutral or nearly neutral (slightly detrimental) and can later adapt to become beneficial to the recipient.

  • HGT events often involve compound mobile genetic elements that promote their own dissemination by associating with adaptive traits in the gene pool of the mobilome.

  • HGT is most frequent between closely related species with highly similar genome features.

  • Large multicellular eukaryotes can evolve through gene acquisitions by the associated microbiome, which responds more quickly than the host to variation in environmental conditions.

  • Endosymbiotic gene transfer frequently involves gene import not only from the endosymbiotic donor to the host, but also from other organisms that contribute to the initial establishment of the endosymbiotic relationship.

  • Novel traits that evolve through HGT can lead to the exploitation of new niches, prompting an adaptive radiation to exploit the new resource without competition.

Abstract

Horizontal gene transfer (HGT) is the sharing of genetic material between organisms that are not in a parent–offspring relationship. HGT is a widely recognized mechanism for adaptation in bacteria and archaea. Microbial antibiotic resistance and pathogenicity are often associated with HGT, but the scope of HGT extends far beyond disease-causing organisms. In this Review, we describe how HGT has shaped the web of life using examples of HGT among prokaryotes, between prokaryotes and eukaryotes, and even between multicellular eukaryotes. We discuss replacement and additive HGT, the proposed mechanisms of HGT, selective forces that influence HGT, and the evolutionary impact of HGT on ancestral populations and existing populations such as the human microbiome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of gene transfer.
Figure 2: Nested levels of selection on gene content.
Figure 3: HGT is more frequent between closely related species.
Figure 4: Structured exchange community.
Figure 5: HGT to the plant lineage.

Similar content being viewed by others

References

  1. Tatum, E. L. & Lederberg, J. Gene recombination in the bacterium Escherichia coli. J. Bacteriol. 53, 673–684 (1947).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Went, F. W. Parallel evolution. Taxon 20, 197–226 (1971).

    Article  Google Scholar 

  3. Treangen, T. J. & Rocha, E. P. C. Horizontal transfer, not duplication, drives the expansion of protein families in prokaryotes. PLoS Genet. 7, e1001284 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Swithers, K. S., Soucy, S. M. & Gogarten, J. P. The role of reticulate evolution in creating innovation and complexity. Int. J. Evol. Biol. 2012, 418964 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gogarten, J. P. & Townsend, J. P. Horizontal gene transfer, genome innovation and evolution. Nat. Rev. Microbiol. 3, 679–687 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Park, C. & Zhang, J. High expression hampers horizontal gene transfer. Genome Biol. Evol. 4, 523–532 (2012). This paper examines the impact of expression level on the transferability of a gene in both environmental and laboratory populations of E. coli.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Boto, L. Horizontal gene transfer in the acquisition of novel traits by metazoans. Proc. Biol. Sci. 281, 20132450 (2014).

    PubMed  PubMed Central  Google Scholar 

  8. Huang, J. Horizontal gene transfer in eukaryotes: the weak-link model. Bioessays 35, 868–875 (2013). This letter proposes a model for ongoing HGT in eukaryotes involving unicellular and early developmental stages to overcome the barrier of genome sequestration in eukaryotes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Andersson, J. O. Gene transfer and diversification of microbial eukaryotes. Annu. Rev. Microbiol. 63, 177–193 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Timmis, J. N., Ayliffe, M. A., Huang, C. Y. & Martin, W. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat. Rev. Genet. 5, 123–135 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Koonin, E. V. Darwinian evolution in the light of genomics. Nucleic Acids Res. 37, 1011–1034 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Crisp, A., Boschetti, C., Perry, M., Tunnacliffe, A. & Micklem, G. Expression of multiple horizontally acquired genes is a hallmark of both vertebrate and invertebrate genomes. Genome Biol. 16, 50 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Riley, D. R. et al. Bacteria–human somatic cell lateral gene transfer is enriched in cancer samples. PLoS Comput. Biol. 9, e1003107 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Norman, A., Hansen, L. H. & Sørensen, S. J. Conjugative plasmids: vessels of the communal gene pool. Phil. Trans. R. Soc. B 364, 2275–2289 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kyndt, T. et al. The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: an example of a naturally transgenic food crop. Proc. Natl Acad. Sci. USA 112, 201419685 (2015).

    Article  CAS  Google Scholar 

  16. Johnston, C., Martin, B., Fichant, G., Polard, P. & Claverys, J.-P. Bacterial transformation: distribution, shared mechanisms and divergent control. Nat. Rev. Microbiol. 12, 181–196 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Chimileski, S., Dolas, K., Naor, A., Gophna, U. & Papke, R. T. Extracellular DNA metabolism in Haloferax volcanii. Front. Microbiol. 5, 57 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lang, A. S., Zhaxybayeva, O. & Beatty, J. T. Gene transfer agents: phage-like elements of genetic exchange. Nat. Rev. Microbiol. 10, 472–482 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Naor, A. & Gophna, U. Cell fusion and hybrids in Archaea: prospects for genome shuffling and accelerated strain development for biotechnology. Bioengineered 4, 126–129 (2013).

    Article  PubMed  Google Scholar 

  20. Schleper, C., Holz, I., Janekovic, D., Murphy, J. & Zillig, W. A multicopy plasmid of the extremely thermophilic archaeon Sulfolobus effects its transfer to recipients by mating. J. Bacteriol. 177, 4417–4426 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mevarech, M. & Werczberger, R. Genetic transfer in Halobacterium volcanii. J. Bacteriol. 162, 461–462 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Naor, A., Lapierre, P., Mevarech, M., Papke, R. T. & Gophna, U. Low species barriers in halophilic archaea and the formation of recombinant hybrids. Curr. Biol. 22, 1444–1448 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Dunning Hotopp, J. C. et al. Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science 317, 1753–1756 (2007). This paper describes HGT between Wolbachia spp., an intracellular bacterial symbiont, and its multicellular eukaryotic insect hosts.

    Article  CAS  PubMed  Google Scholar 

  24. Nikoh, N. et al. Bacterial genes in the aphid genome: absence of functional gene transfer from Buchnera to its host. PLoS Genet. 6, e1000827 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Moustafa, A. et al. Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Science 324, 1724–1726 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Chapman, J. A. et al. The dynamic genome of Hydra. Nature 464, 592–596 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Doolittle, W. F. You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet. 14, 307–311 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Yue, J., Sun, G., Hu, X. & Huang, J. The scale and evolutionary significance of horizontal gene transfer in the choanoflagellate Monosiga brevicollis. BMC Genomics 14, 729 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Grant, J. R. & Katz, L. A. Phylogenomic study indicates widespread lateral gene transfer in entamoeba and suggests a past intimate relationship with parabasalids. Genome Biol. Evol. 6, 2350–2360 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huang, J. & Gogarten, J. P. Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? Genome Biol. 8, R99 (2007). This paper discusses a complex tripartite relationship between a eukaryotic host, a cyanobacterium and a chlamydia that may have facilitated the establishment of modern plastids.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Graham, L. A., Li, J., Davidson, W. S. & Davies, P. L. Smelt was the likely beneficiary of an antifreeze gene laterally transferred between fishes. BMC Evol. Biol. 12, 190 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yue, J., Hu, X., Sun, H., Yang, Y. & Huang, J. Widespread impact of horizontal gene transfer on plant colonization of land. Nat. Commun. 3, 1152 (2012).

    Article  PubMed  CAS  Google Scholar 

  33. Stewart, C. N., Halfhill, M. D. & Warwick, S. I. Transgene introgression from genetically modified crops to their wild relatives. Nat. Rev. Genet. 4, 806–817 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Evans, P. D., Mekel-Bobrov, N., Vallender, E. J., Hudson, R. R. & Lahn, B. T. Evidence that the adaptive allele of the brain size gene microcephalin introgressed into Homo sapiens from an archaic Homo lineage. Proc. Natl Acad. Sci. USA 103, 18178–18183 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Williams, D. et al. A rooted net of life. Biol. Direct 6, 45 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Gogarten, J. P., Doolittle, W. F. & Lawrence, J. G. Prokaryotic evolution in light of gene transfer. Mol. Biol. Evol. 19, 2226–2238 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Colston, S. M. et al. Bioinformatic genome comparisons for taxonomic and phylogenetic assignments using Aeromonas as a test case. mBio 5 e02136-14 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Delamuta, J. R. M., Ribeiro, R. A., Menna, P., Bangel, E. V. & Hungria, M. Multilocus sequence analysis (MLSA) of Bradyrhizobium strains: revealing high diversity of tropical diazotrophic symbiotic bacteria. Braz. J. Microbiol. 43, 698–710 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Williams, D., Gogarten, J. P. & Papke, R. T. Quantifying homologous replacement of loci between haloarchaeal species. Genome Biol. Evol. 4, 1223–1244 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Andam, C. P. & Gogarten, J. P. Biased gene transfer in microbial evolution. Nat. Rev. Microbiol. 9, 543–555 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Polz, M., Alm, E. & Hanage, W. Horizontal gene transfer and the evolution of bacterial. 29, 170–175 (2015). This paper investigates the interplay between HGT, population structure and lineage divergence in bacteria and archaea.

  42. Langille, M. G. I., Hsiao, W. W. L. & Brinkman, F. S. L. Detecting genomic islands using bioinformatics approaches. Nat. Rev. Microbiol. 8, 373–382 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Daubin, V. & Ochman, H. Bacterial genomes as new gene homes: the genealogy of ORFans in E. coli. Genome Res. 14, 1036–1042 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ragan, M. A. On surrogate methods for detecting lateral gene transfer. FEMS Microbiol. Lett. 201, 187–191 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Lukjancenko, O., Wassenaar, T. M. & Ussery, D. W. Comparison of 61 sequenced Escherichia coli genomes. Microb. Ecol. 60, 708–720 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tettelin, H. et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial 'pan-genome'. Proc. Natl Acad. Sci. USA 102, 13950–13955 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Read, B. A. et al. Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature 499, 209–213 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Barzel, A., Obolski, U., Gogarten, J. P., Kupiec, M. & Hadany, L. Home and away — the evolutionary dynamics of homing endonucleases. BMC Evol. Biol. 11, 324 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Smillie, C. S. et al. Ecology drives a global network of gene exchange connecting the human microbiome. Nature 480, 241–244 (2011). This letter investigates the frequency of HGT in the human microbiome across body sites and across continents.

    Article  CAS  PubMed  Google Scholar 

  50. Rankin, D. J., Rocha, E. P. C. & Brown, S. P. What traits are carried on mobile genetic elements, and why? Hered. (Edinb.). 106, 1–10 (2011). This paper investigates the types of traits that are associated with compound selfish genetic elements and investigates the ecological scenarios that would select for specific types of traits.

    Article  CAS  Google Scholar 

  51. Broaders, E., Gahan, C. G. M. & Marchesi, J. R. Mobile genetic elements of the human gastrointestinal tract: potential for spread of antibiotic resistance genes. Gut Microbes 4, 271–280 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Feschotte, C. & Gilbert, C. Endogenous viruses: insights into viral evolution and impact on host biology. Nat. Rev. Genet. 13, 283–296 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Cornelis, G. et al. Ancestral capture of syncytin-Car1, a fusogenic endogenous retroviral envelope gene involved in placentation and conserved in Carnivora. Proc. Natl Acad. Sci. USA 109, E432–E441 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Schaack, S., Gilbert, C. & Feschotte, C. Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution. Trends Ecol. Evol. 25, 537–546 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Skippington, E. & Ragan, M. A. Phylogeny rather than ecology or lifestyle biases the construction of Escherichia coli–Shigella genetic exchange communities. Open Biol. 2, 120112 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hendrickson, H. & Lawrence, J. G. Selection for chromosome architecture in bacteria. J. Mol. Evol. 62, 615–629 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Papke, R. T. & Gogarten, J. P. Ecology. How bacterial lineages emerge. Science 336, 45–46 (2012).

    Article  PubMed  Google Scholar 

  58. Khomyakova, M., Bükmez, Ö., Thomas, L. K., Erb, T. J. & Berg, I. A. A methylaspartate cycle in haloarchaea. Science 331, 334–337 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Nelson-Sathi, S. et al. Acquisition of 1,000 eubacterial genes physiologically transformed a methanogen at the origin of haloarchaea. Proc. Natl Acad. Sci. USA 109, 20537–20542 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nelson-Sathi, S. et al. Origins of major archaeal clades correspond to gene acquisitions from bacteria. Nature 517, 77–80 (2014). This paper suggests that acquisitions of genes from bacteria lead to the evolution of the major clades in archaea.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Guerrero, R., Margulis, L. & Berlanga, M. Symbiogenesis: the holobiont as a unit of evolution. Int. Microbiol. 16, 133–143 (2013).

    PubMed  Google Scholar 

  62. Ley, R. E., Peterson, D. A. & Gordon, J. I. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124, 837–848 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Hehemann, J.-H. et al. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464, 908–912 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Thomas, F. et al. Characterization of the first alginolytic operons in a marine bacterium: from their emergence in marine Flavobacteriia to their independent transfers to marine Proteobacteria and human gut Bacteroides. Environ. Microbiol. 14, 2379–2394 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Hirt, R. P., Alsmark, C. & Embley, T. M. Lateral gene transfers and the origins of the eukaryote proteome: a view from microbial parasites. Curr. Opin. Microbiol. 23, 155–162 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. McFadden, G. I. Origin and evolution of plastids and photosynthesis in eukaryotes. Cold Spring Harb. Perspect. Biol. 6, a016105 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Ball, S. G. et al. Metabolic effectors secreted by bacterial pathogens: essential facilitators of plastid endosymbiosis? Plant Cell 25, 7–21 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Moustafa, A., Reyes-Prieto, A. & Bhattacharya, D. Chlamydiae has contributed at least 55 genes to Plantae with predominantly plastid functions. PLoS ONE 3, e2205 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Price, D. C. et al. Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants. Science 335, 843–847 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Cenci, U. et al. Transition from glycogen to starch metabolism in archaeplastida. Trends Plant Sci. 19, 18–28 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Deschamps, P. Primary endosymbiosis: have cyanobacteria and Chlamydiae ever been roommates? Acta Soc. Bot. Pol. 83, 291–302 (2014).

    Article  CAS  Google Scholar 

  72. Ku, C. et al. Endosymbiotic gene transfer from prokaryotic pangenomes: inherited chimerism in eukaryotes. Proc. Natl Acad. Sci. USA http://dx.doi.org/10.1073/pnas.1421385112 (2015).

  73. Domman, D., Horn, M., Embley, T. M. & Williams, T. A. Plastid establishment did not require a chlamydial partner. Nat. Commun. 6, 6421 (2015).

    Article  PubMed  CAS  Google Scholar 

  74. Ball, S. G. et al. Toward an understanding of the function of Chlamydiales in plastid endosymbiosis. Biochim. Biophys. Acta 1847, 495–504 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Huang, J. & Gogarten, J. P. Concerted gene recruitment in early plant evolution. Genome Biol. 9, R109 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Suzuki, K. & Miyagishima, S. Y. Eukaryotic and eubacterial contributions to the establishment of plastid proteome estimated by large-scale phylogenetic analyses. Mol. Biol. Evol. 27, 581–590 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Qiu, H. et al. Assessing the bacterial contribution to the plastid proteome. Trends Plant Sci. 18, 680–687 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Schonknecht, G. et al. Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote. Science 339, 1207–1210 (2013).

    Article  PubMed  CAS  Google Scholar 

  79. Blanc, G. et al. The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation. Genome Biol. 13, R39 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bhattacharya, D. et al. Genome of the red alga Porphyridium purpureum. Nat. Commun. 4, 1941 (2013).

    Article  PubMed  CAS  Google Scholar 

  81. Yue, J., Hu, X. & Huang, J. Origin of plant auxin biosynthesis. Trends Plant Sci. 19, 764–770 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Yang, Z. et al. Ancient horizontal transfer of transaldolase-like protein gene and its role in plant vascular development. New Phytol. 206, 807–816 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. Hoang, Q. T. et al. An actinoporin plays a key role in water stress in the moss Physcomitrella patens. New Phytol. 184, 502–510 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Maumus, F., Epert, A., Nogue, F. & Blanc, G. Plant genomes enclose footprints of past infections by giant virus relatives. Nat. Commun. 5, 4268 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Molbak, L., Molin, S. & Kroer, N. Root growth and exudate production define the frequency of horizontal plasmid transfer in the rhizosphere. FEMS Microbiol. Ecol. 59, 167–176 (2007).

    Article  PubMed  CAS  Google Scholar 

  86. Sun, G., Yang, Z., Ishwar, A. & Huang, J. Algal genes in the closest relatives of animals. Mol. Biol. Evol. 27, 2879–2889 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Boschetti, C. et al. Biochemical diversification through foreign gene expression in Bdelloid Rotifers. PLoS Genet. 8, e1003035 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ricard, G. et al. Horizontal gene transfer from bacteria to rumen ciliates indicates adaptation to their anaerobic, carbohydrates-rich environment. BMC Genomics 7, 22 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Paganini, J. et al. Contribution of lateral gene transfers to the genome composition and parasitic ability of root-knot nematodes. PLoS ONE 7, e50875 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Richards, T. A. et al. Horizontal gene transfer facilitated the evolution of plant parasitic mechanisms in the oomycetes. Proc. Natl Acad. Sci. USA 108, 15258–15263 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Li, Z. W., Shen, Y. H., Xiang, Z. H. & Zhang, Z. Pathogen–origin horizontally transferred genes contribute to the evolution of Lepidopteran insects. BMC Evol. Biol. 11, 356 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wybouw, N. et al. A gene horizontally transferred from bacteria protects arthropods from host plant cyanide poisoning. eLife 3, e02365 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Yoshida, S., Maruyama, S., Nozaki, H. & Shirasu, K. Horizontal gene transfer by the parasitic plant Striga hermonthica. Science 328, 1128 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Xi, Z. et al. Horizontal transfer of expressed genes in a parasitic flowering plant. BMC Genomics 13, 227 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhang, Y. et al. Evolution of a horizontally acquired legume gene, albumin 1, in the parasitic plant Phelipanche aegyptiaca and related species. BMC Evol. Biol. 13, 48 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhang, D. et al. Root parasitic plant Orobanche aegyptiaca and shoot parasitic plant Cuscuta australis obtained Brassicaceae-specific strictosidine synthase-like genes by horizontal gene transfer. BMC Plant Biol. 14, 19 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Christin, P.-A. et al. Adaptive evolution of C4 photosynthesis through recurrent lateral gene transfer. Curr. Biol. 22, 445–449 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Li, F.-W. et al. Horizontal transfer of an adaptive chimeric photoreceptor from bryophytes to ferns. Proc. Natl Acad. Sci. USA 111, 6672–6677 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhang, H.-H., Feschotte, C., Han, M.-J. & Zhang, Z. Recurrent horizontal transfers of Chapaev transposons in diverse invertebrate and vertebrate animals. Genome Biol. Evol. 6, 1375–1386 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Blanchard, J. L. & Lynch, M. Organellar genes. Trends Genet. 16, 315–320 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Lynch, M. Mutation accumulation in transfer RNAs: molecular evidence for Muller's ratchet in mitochondrial genomes. Mol. Biol. Evol. 13, 209–220 (1996).

    Article  CAS  PubMed  Google Scholar 

  102. Palmer, J. D. et al. Dynamic evolution of plant mitochondrial genomes: mobile genes and introns and highly variable mutation rates. Proc. Natl Acad. Sci. USA 97, 6960–6966 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Rice, D. W. et al. Horizontal transfer of entire genomes via mitochondrial fusion in the angiosperm Amborella. Science 342, 1468–1473 (2013). This paper reports the acquisition of several mitochondrial genomes by the mitochondria in Amborella trichopoda a basal flowering plant.

    Article  CAS  PubMed  Google Scholar 

  104. Edwards, A. W. F. Cogwheels of the Mind: The Story of Venn Diagrams (JHU Press, 2004).

    Google Scholar 

  105. Morris, J. J., Lenski, R. E. & Zinser, E. R. The Black Queen Hypothesis: evolution of dependencies through adaptive gene loss. mBio 3, e00036-12 (2012). This paper explains how the interplay between cheating and selection for streamlined genomes can give rise to shared genomic resources.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Lobkovsky, A. E., Wolf, Y. I. & Koonin, E. V. Estimation of prokaryotic supergenome size and composition from gene frequency distributions. BMC Genomics 15, S14 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Lapierre, P. & Gogarten, J. P. Estimating the size of the bacterial pan-genome. Trends Genet. 25, 107–110 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. Puigbò, P., Lobkovsky, A. E., Kristensen, D. M., Wolf, Y. I. & Koonin, E. V. Genomes in turmoil: quantification of genome dynamics in prokaryote supergenomes. BMC Biol. 12, 66 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Baumdicker, F., Hess, W. R. & Pfaffelhuber, P. The infinitely many genes model for the distributed genome of bacteria. Genome Biol. Evol. 4, 443–456 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hooper, L. V. & Gordon, J. I. Commensal host–bacterial relationships in the gut. Science 292, 1115–1118 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Lederberg, J. & McCray, A. 'Ome sweet 'omics — a genealogical treasury of words. Scientist 15, 8 (2001).

    Google Scholar 

  112. Becker, E. A. et al. Phylogenetically driven sequencing of extremely halophilic archaea reveals strategies for static and dynamic osmo-response. PLoS Genet. 10, e1004784 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Groussin, M et al. Origins of major archaeal clades do not correspond to gene acquisitions from bacteria. BioRxiv http://dx.doi:10.1101/019851 (2015).

Download references

Acknowledgements

Work in the authors' laboratories was supported through grants from the National Science Foundation Grant (DEB 0830024), NASA Exobiology (NNX13AI03G), Binational Science Foundation (BSF 2013061), NSFC Oversea, Hong Kong, Macao collaborative grant (31328003), and the CAS/SAFEA International Partnership Program for Creative Research Teams. The authors would also like to thank K. Swithers for providing insightful comments and discussion pertaining to the body of this text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johann Peter Gogarten.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

Summary of Horizontal Gene Transfers (HGTs) discussed in the main text. (PDF 173 kb)

PowerPoint slides

Glossary

Selfish genetic element

A gene or group of genes that enhance their own transmission and reproductive success without making a positive contribution to the host's fitness.

Microbiome

Following a definition ascribed to Joshua Lederberg this term is most often used to denote the collective genome of the indigenous microorganisms of a multicellular or unicellular host. However, the term has also been used by Lederberg and others to signify an ecological community of commensal, symbiotic and pathogenic microorganisms.

Phylogenetic conflict

Differences between the evolutionary history of a species and the evolutionary history of its genes are embodied by discrepancies in branching order between the species and the gene tree.

Genome streamlining

The reduction of genome size through relaxed selection and eventual loss of loci that are superfluous to the niche occupied by the organism.

Mobilome

The aggregate of mobile genetic elements in a genome, population or environment of interest.

Genome architecture imparting sequences

Strand-biased sequence motifs that are enriched towards the termini of replication; thought to direct proteins towards the termini.

Ecotypes

Genetically distinct subsets of organisms within a population or species, usually genetic differences correspond to niche adaptation.

Holobiont

A multicellular or unicellular host and its collective symbionts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soucy, S., Huang, J. & Gogarten, J. Horizontal gene transfer: building the web of life. Nat Rev Genet 16, 472–482 (2015). https://doi.org/10.1038/nrg3962

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3962

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing