Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Engineering adeno-associated viruses for clinical gene therapy

Abstract

Clinical gene therapy has been increasingly successful owing both to an enhanced molecular understanding of human disease and to progressively improving gene delivery technologies. Among these technologies, delivery vectors based on adeno-associated viruses (AAVs) have emerged as safe and effective and, in one recent case, have led to regulatory approval. Although shortcomings in viral vector properties will render extension of such successes to many other human diseases challenging, new approaches to engineer and improve AAV vectors and their genetic cargo are increasingly helping to overcome these barriers.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Adeno-associated virus biology and variant generation.

Similar content being viewed by others

References

  1. Boycott, K. M., Vanstone, M. R., Bulman, D. E. & MacKenzie, A. E. Rare-disease genetics in the era of next-generation sequencing: discovery to translation. Nature Rev. Genet. 14, 681–691 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Stroes, E. S. et al. Intramuscular administration of AAV1-lipoprotein lipase S447X lowers triglycerides in lipoprotein lipase-deficient patients. Arterioscler. Thromb. Vasc. Biol. 28, 2303–2304 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Gaudet, D. et al. Review of the clinical development of alipogene tiparvovec gene therapy for lipoprotein lipase deficiency. Atheroscler. Suppl. 11, 55–60 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Carpentier, A. C. et al. Effect of alipogene tiparvovec (AAV1-LPLS447X) on postprandial chylomicron metabolism in lipoprotein lipase-deficient patients. J. Clin. Endocrinol. Metab. 97, 1635–1644 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Hauswirth, W. W. et al. Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum. Gene Ther. 19, 979–990 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Bainbridge, J. W. B. et al. Effect of gene therapy on visual function in Leber's congenital amaurosis. N. Engl. J. Med. 358, 2231–2239 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Maguire, A. M. et al. Safety and efficacy of gene transfer for Leber's congenital amaurosis. N. Engl. J. Med. 358, 2240–2248 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Maguire, A. M. et al. Age-dependent effects of RPE65 gene therapy for Leber's congenital amaurosis: a phase 1 dose-escalation trial. Lancet 374, 1597–1605 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Jacobson, S. G. et al. Gene therapy for Leber congenital amaurosis caused by RPE65 mutations: safety and efficacy in 15 children and adults followed up to 3 years. Arch. Ophthalmol. 130, 9–24 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Bennett, J. et al. AAV2 gene therapy readministration in three adults with congenital blindness. Sci. Transl. Med. 4, 120ra15 (2012).

    Article  PubMed Central  PubMed  Google Scholar 

  11. MacLaren, R. E. et al. Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial. Lancet 383, 1129–1137 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Nathwani, A. C. et al. Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N. Engl. J. Med. 365, 2357–2365 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Jaski, B. E. et al. Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID trial), a first-in-human phase 1/2 clinical trial. J. Card. Fail. 15, 171–181 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Jessup, M. et al. Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. Circulation 124, 304–313 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. DiMattia, M. A. et al. Structural insight into the unique properties of adeno-associated virus serotype 9. J. Virol. 86, 6947–6958 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Govindasamy, L. et al. Structural insights into adeno-associated virus serotype 5. J. Virol. 87, 11187–11199 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Asuri, P. et al. Directed evolution of adeno-associated virus for enhanced gene delivery and gene targeting in human pluripotent stem cells. Mol. Ther. 20, 329–338 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Varadi, K. et al. Novel random peptide libraries displayed on AAV serotype 9 for selection of endothelial cell-directed gene transfer vectors. Gene Ther. 19, 800–809 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Dalkara, D. et al. In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci. Transl. Med. 5, 189ra76 (2013).

    Article  PubMed  Google Scholar 

  20. Lisowski, L. et al. Selection and evaluation of clinically relevant AAV variants in a xenograft liver model. Nature 506, 382–386 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  21. Zhong, L. et al. Next generation of adeno-associated virus 2 vectors: point mutations in tyrosines lead to high-efficiency transduction at lower doses. Proc. Natl Acad. Sci. USA 105, 7827–7832 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Zhong, L. et al. Tyrosine-phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression. Virology 381, 194–202 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Martino, A. T. et al. Engineered AAV vector minimizes in vivo targeting of transduced hepatocytes by capsid-specific CD8+ T cells. Blood 121, 2224–2233 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Manno, C. S. et al. Successful transduction of liver in hemophilia by AAV–factor IX and limitations imposed by the host immune response. Nature Med. 12, 342–347 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Moskalenko, M. et al. Epitope mapping of human anti-adeno-associated virus type 2 neutralizing antibodies: implications for gene therapy and virus structure. J. Virol. 74, 1761–1766 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Wobus, C. E. et al. Monoclonal antibodies against the adeno-associated virus type 2 (AAV-2) capsid: epitope mapping and identification of capsid domains involved in AAV-2-cell interaction and neutralization of AAV-2 infection. J. Virol. 74, 9281–9293 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Lochrie, M. A. et al. Mutations on the external surfaces of adeno-associated virus type 2 capsids that affect transduction and neutralization. J. Virol. 80, 821–834 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Mingozzi, F. et al. Overcoming preexisting humoral immunity to AAV using capsid decoys. Sci. Transl. Med. 5, 194ra92 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  29. Münch, R. C. et al. Displaying high-affinity ligands on adeno-associated viral vectors enables tumor cell-specific and safe gene transfer. Mol. Ther. 21, 109–118 (2013).

    Article  PubMed  Google Scholar 

  30. Shen, S. et al. Engraftment of a galactose receptor footprint onto adeno-associated viral capsids improves transduction efficiency. J. Biol. Chem. 288, 28814–28823 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Maheshri, N., Koerber, J. T., Kaspar, B. K. & Schaffer, D. V. Directed evolution of adeno-associated virus yields enhanced gene delivery vectors. Nature Biotech. 24, 198–204 (2006).

    Article  CAS  Google Scholar 

  32. Bartel, M. A., Weinstein, J. R. & Schaffer, D. V. Directed evolution of novel adeno-associated viruses for therapeutic gene delivery. Gene Ther. 19, 694–700 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Perabo, L. et al. Combinatorial engineering of a gene therapy vector: directed evolution of adeno-associated virus. J. Gene Med. 8, 155–162 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Bartel, M. A. et al. Directed evolution of AAV for enhanced evasion of human neutralizing antibodies. Am. Soc. Gene Cell Ther. 15th Annu. Meet. 20, S140 (2012).

    Google Scholar 

  35. Excoffon, K. J. D. et al. Directed evolution of adeno-associated virus to an infectious respiratory virus. Proc. Natl Acad. Sci. USA 106, 3865–3870 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Jang, J.-H. et al. An evolved adeno-associated viral variant enhances gene delivery and gene targeting in neural stem cells. Mol. Ther. 19, 667–675 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Yang, L. et al. A myocardium tropic adeno-associated virus (AAV) evolved by DNA shuffling and in vivo selection. Proc. Natl Acad. Sci. USA 106, 3946–3951 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Gray, S. J. et al. Directed evolution of a novel adeno-associated virus (AAV) vector that crosses the seizure-compromised blood–brain barrier (BBB). Mol. Ther. 18, 570–578 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Klimczak, R. R., Koerber, J. T., Dalkara, D., Flannery, J. G. & Schaffer, D. V. A novel adeno-associated viral variant for efficient and selective intravitreal transduction of rat Müller cells. PLoS ONE 4, e7467 (2009).

    Article  PubMed Central  PubMed  Google Scholar 

  40. Dalkara, D. et al. AAV mediated GDNF secretion from retinal glia slows down retinal degeneration in a rat model of retinitis pigmentosa. Mol. Ther. 19, 1602–1608 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Gaj, T., Gersbach, C. A. & Barbas, C. F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31, 397–405 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Russell, D. W. & Hirata, R. K. Human gene targeting by viral vectors. Nature Genet. 18, 325–330 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Li, H. et al. In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature 475, 217–221 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. McBride, J. L. et al. Preclinical safety of RNAi-mediated HTT suppression in the rhesus macaque as a potential therapy for Huntington's disease. Mol. Ther. 19, 2152–2162 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Colella, P. et al. Efficient gene delivery to the cone-enriched pig retina by dual AAV vectors. Gene Ther. 21, 450–456 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Trapani, I. et al. Effective delivery of large genes to the retina by dual AAV vectors. EMBO Mol. Med. 6, 194–211 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Zhang, Y. et al. Dual AAV therapy ameliorates exercise-induced muscle injury and functional ischemia in murine models of Duchenne muscular dystrophy. Hum. Mol. Genet. 22, 3720–3729 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Boutin, S. et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum. Gene Ther. 21, 704–712 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Mingozzi, F. et al. CD8+ T-cell responses to adeno-associated virus capsid in humans. Nature Med. 13, 419–422 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Madsen, D., Cantwell, E. R., O'Brien, T., Johnson, P. A. & Mahon, B. P. Adeno-associated virus serotype 2 induces cell-mediated immune responses directed against multiple epitopes of the capsid protein VP1. J. Gen. Virol. 90, 2622–2633 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Wu, T.-L. et al. CD8+ T cell recognition of epitopes within the capsid of adeno-associated virus 8-based gene transfer vectors depends on vectors' genome. Mol. Ther. 22, 42–51 (2014).

    Article  PubMed  Google Scholar 

  52. Faust, S. M. et al. CpG-depleted adeno-associated virus vectors evade immune detection. J. Clin. Invest. 123, 2994–3001 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Dalkara, D. et al. Inner limiting membrane barriers to AAV-mediated retinal transduction from the vitreous. Mol. Ther. 17, 2096–2102 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Summerford, C. & Samulski, R. J. Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J. Virol. 72, 1438–1445 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Wu, Z., Yang, H. & Colosi, P. Effect of genome size on AAV vector packaging. Mol. Ther. 18, 80–86 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Ghosh, A. & Duan, D. Expanding adeno-associated viral vector capacity: a tale of two vectors. Biotechnol. Genet. Eng. Rev. 24, 165–177 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Bowles, D., Rabinowitz, J. & Samulski, R. Marker rescue of adeno-associated virus (AAV) capsid mutants: a novel approach for chimeric AAV production. J. Virol. 77, 423–432 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Grimm, D. et al. In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses. J. Virol. 82, 5887–5911 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Koerber, J. T., Jang, J.-H. & Schaffer, D. V. DNA shuffling of adeno-associated virus yields functionally diverse viral progeny. Mol. Ther. 16, 1703–1709 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Li, W. et al. Engineering and selection of shuffled AAV genomes: a new strategy for producing targeted biological nanoparticles. Mol. Ther. 16, 1252–1260 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Koerber, J. T. & Schaffer, D. V. Transposon-based mutagenesis generates diverse adeno-associated viral libraries with novel gene delivery properties. Methods Mol. Biol. 434, 161–170 (2008).

    CAS  PubMed  Google Scholar 

  62. Koerber, J. T., Jang, J.-H., Yu, J. H., Kane, R. S. & Schaffer, D. V. Engineering adeno-associated virus for one-step purification via immobilized metal affinity chromatography. Hum. Gene Ther. 18, 367–378 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Koerber, J. T. et al. Molecular evolution of adeno-associated virus for enhanced glial gene delivery. Mol. Ther. 17, 2088–2095 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Gao, G. et al. Biology of AAV serotype vectors in liver-directed gene transfer to nonhuman primates. Mol. Ther. 13, 77–87 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Bell, P. et al. Evaluation of adeno-associated viral vectors for liver-directed gene transfer in dogs. Hum. Gene Ther. 22, 985–997 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Knipe, D. M. & Howley, P. M. Fields' Virology (Lippincott Williams & Wilkins, 2007).

    Google Scholar 

  67. Sonntag, F., Schmidt, K. & Kleinschmidt, J. A. A viral assembly factor promotes AAV2 capsid formation in the nucleolus. Proc. Natl Acad. Sci. USA 107, 10220–10225 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Sonntag, F. et al. The assembly-activating protein promotes capsid assembly of different adeno-associated virus serotypes. J. Virol. 85, 12686–12697 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Xie, Q. et al. The atomic structure of adeno-associated virus (AAV-2), a vector for human gene therapy. Proc. Natl Acad. Sci. USA 99, 10405–10410 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Flotte, T. R. Gene therapy progress and prospects: recombinant adeno-associated virus (rAAV) vectors. Gene Ther. 11, 805–810 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Flotte, T. R. et al. Stable in vivo expression of the cystic fibrosis transmembrane conductance regulator with an adeno-associated virus vector. Proc. Natl Acad. Sci. USA 90, 10613–10617 (1993).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Schaffer, D. V., Koerber, J. T. & Lim, K. Molecular engineering of viral gene delivery vehicles. Annu. Rev. Biomed. Eng. 10, 169–194 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Wu, Z., Asokan, A. & Samulski, R. J. Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol. Ther. 14, 316–327 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institutes of Health grant R01EY022975.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David V. Schaffer.

Ethics declarations

Competing interests

M.A.K. and D.V.S. are inventors on patents related to directed evolution of adeno-associated viruses.

Related links

PowerPoint slides

Supplementary information

Supplementary information S1 (table)

Summary of recent clinical trials using adeno-associated virus. (PDF 125 kb)

Glossary

Biopanning

An in vivo method for selection of adeno-associated virus variants from a library for more efficient infectivity of a cell or tissue type of interest.

Choroideremia

An X-linked recessive disease caused by a mutation in the choroideremia (CHM) gene and the subsequent absence of Rab escort protein 1 (REP1) that leads to progressive loss of vision due to degeneration of the retina and choroid.

Directed evolution

A capsid engineering approach that emulates natural evolution through iterative rounds of genetic diversification and selection processes, thereby enabling the accumulation of beneficial mutations that progressively improve the function of a biomolecule.

Leber's congenital amaurosis type 2

A rare monogenic inherited eye disorder caused by mutations in the RPE65 gene (which encodes a protein needed for the isomerohydrolase activity of the retinal pigment epithelium) that result in loss of photoreceptor function.

Müller cells

Glial cells that support neurons in the vertebrate retina.

Parvovirus

A linear, non-segmented single-stranded DNA virus with a genome size that is typically ~5 kb.

Rational design

A capsid engineering approach that uses knowledge of adeno-associated virus biology and structural analyses to guide capsid changes.

Tropism

The cell or tissue type that can be infected by a virus or a gene delivery vector.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotterman, M., Schaffer, D. Engineering adeno-associated viruses for clinical gene therapy. Nat Rev Genet 15, 445–451 (2014). https://doi.org/10.1038/nrg3742

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3742

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research