Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Yeast evolutionary genomics

Key Points

  • This Review summarizes our present knowledge about the diversity of yeast genome architectures. Specific attention is paid to yeast genome evolution and the multiphyletic origin of yeasts among fungi.

  • The structure of yeast populations (as determined from recent genomic analyses) and their specific mode of propagation (in which clonal expansions, drift and irregular genetic transfer dominate normal sexual exchanges) are discussed in terms of their evolutionary impact.

  • The different mechanisms of gene duplication, determined from genome comparisons as well as from direct experimental analyses, are discussed along with their evolutionary consequences. Gene duplication mechanisms in yeast are compared with those in other eukaryotes.

  • Phenomena of asymmetrical mitotic division, preferential inbreeding, horizontal gene acquisition, introgression, interspecific hybridization, delayed karyogamy, loss of heterozygosity and de novo gene formation are discussed in relation to their evolutionary consequences.

  • An attempt is made to integrate experimentally determined mutational rates with observed intra- and interspecific sequence divergences. Comparisons are made between the extensive and abrupt sequence divergence separating the distinct lineages and conservation or loss of synteny.

  • Together with some indications of future directions for investigation, the Review concludes with the apparent contradiction between the extensive mutational spectrum experienced by yeast genomes and their long evolutionary conservation, and proposes hypotheses to reconcile these facts.

Abstract

Over the past few years, genome sequences have become available from an increasing range of yeast species, which has led to notable advances in our understanding of evolutionary mechanisms in eukaryotes. Yeasts offer us a unique opportunity to examine how molecular and reproductive mechanisms combine to affect genome architectures and drive evolutionary changes over a broad range of species. This Review summarizes recent progress in understanding the molecular mechanisms — such as gene duplication, mutation and acquisition of novel genetic material — that underlie yeast evolutionary genomics. I also discuss how results from yeasts can be extended to other eukaryotes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the sequenced yeast genomes.
Figure 2: Asymmetrical cell divisions and consequences for population structures.
Figure 3: Types of spontaneous segmental duplications in Saccharomyces cerevisiae as observed in experimental evolution assays.
Figure 4: Main evolutionary mechanisms in yeasts and their functional and architectural consequences.

Similar content being viewed by others

References

  1. Kurtzman, C. P., Fell, J. W. & Boekhout, T. The Yeasts: A Taxonomic Study 5th edn (Elsevier, Amsterdam) (in the press).

  2. Hughes, A. L. & Friedman, R. Parallel evolution by gene duplication in the genomes of two unicellular fungi. Genome Res. 13, 794–799 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liu, Y. J. & Hall, B. D. Body plan evolution of ascomycetes, as inferred from an RNA polymerase II phylogeny. Proc. Natl Acad. Sci. USA 101, 4507–4512 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Keeling, P. J. et al., The tree of eukaryotes. Trends Ecol. Evol. 20, 670–676 (2005).

    Article  PubMed  Google Scholar 

  5. Goffeau, A. et al. Life with 6000 genes. Science 274, 563–567 (1996). The first sequencing of a eukaryotic genome, that of Saccharomyces cerevisiae.

    Article  Google Scholar 

  6. Pena-Castillo, L. & Hughes, T. R. Why are there still over 1000 uncharacterized yeast genes? Genetics 176, 7–14 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wood, V. et al. The genome sequence of Schizosaccharomyces pombe. Nature 415, 871–880 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Johnson, L. J. et al. Population genetics of the wild yeast Saccharomyces paradoxus. Genetics 166, 43–52 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Aa, E., Townsend, J. P., Adams, R. I., Nielsen, K. M. & Taylor, J. W. Population structure and gene evolution in Saccharomyces cerevisiae. FEMS Yeast Res. 6, 702–715 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Ruderfer, D. M., Pratt, S. C., Seidel, H. S. & Kruglyak, L. Population genomic analysis of outcrossing and recombination in yeast. Nature Genet. 38, 1077–1081 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Tsai, I. J., Bensasson, D., Burt, A. & Koufopanou, V. Population genomics of the wild yeast Saccharomyces paradoxus: quantifying the life cycle. Proc. Natl Acad. Sci. USA 105, 4957–4962 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Koufopanou, V., Hughes, J., Bell, G. & Burt, A. The spatial scale of genetic differentiation in a model organism: the wild yeast Saccharomyces paradoxus. Philos. Trans. R. Soc. Lond. B 361, 1941–1946 (2006).

    Article  Google Scholar 

  13. Kuehne, H. A., Murphy, H. A., Francis, C. A. & Sniegowski, P. D. Allopatric divergence, secondary contact, and genetic isolation in wild yeast populations. Curr. Biol. 17, 407–411 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Liti, G. et al. Population genomics of domestic and wild yeasts. Nature 458, 337–341 (2009). The most comprehensive recent analysis of the genomic diversity of numerous isolates of S. cerevisiae and S. paradoxus , highlighting population structures of these two yeasts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schacherer, J., Shapiro, J. A., Ruderfer, D. M. & Kruglyak, L. Comprehensive polymorphism survey elucidates population structure of Saccharomyces cerevisiae. Nature 458, 342–346 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hittinger, C. T. et al. Remarkably ancient balanced polymorphisms in a multi-locus gene network. Nature 464, 54–60 (2010). The discovery of a stably maintained multilocus polymorphism among populations of S. kudriavzevii.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Marinoni, G. et al. Horizontal transfer of genetic material among Saccharomyces yeasts. J. Bacteriol. 181, 6488–6496 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Dunn, B. & Sherlock, G. Reconstruction of the genome origins and evolution of the hybrid lager yeast Saccharomyces pastorianus. Gene Res. 18, 1610–1623 (2008).

    Article  CAS  Google Scholar 

  19. Nakao, Y. et al. Genome sequence of the lager brewing yeast, an interspecies hybrid. DNA Res. 16, 115–129 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gonzalez, S., Barrio, E. & Querol, A. Molecular characterization of new natural hybrids of Saccharomyces cerevisiae and S. kudriavzevii in brewing. Appl. Environ. Microbiol. 74, 2314–2320 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Belloch, C. et al. Chimeric genomes of natural hybrids between Saccharomyces cerevisiae and Saccharomyces kudriavzevii. Appl. Environ. Microbiol. 75, 2534–2544 (2009).

    Article  CAS  Google Scholar 

  22. Replansky, T., Koufopanou, V., Greig, D. & Bell, G. Saccharomyces sensu stricto as a model system for evolution and ecology. Trends Ecol. Evol. 23, 494–501 (2008).

    Article  PubMed  Google Scholar 

  23. Pujol, C. et al. The closely related species Candida albicans and Candida dubliniensis can mate. Eukaryot. Cell 3, 1015–1027 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bovers, M. et al. Unique hybrids between the fungal pathogens Cryptococcus neoformans and Cryptococcus gattii. FEMS Yeast Res. 6, 599–607 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Gordon, J. L. & Wolfe, K. H. Recent allopolyploid origin of Zygosaccharomyces rouxii strain ATCC 42981. Yeast 25, 449–456 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Greig, D., Louis, E. J., Borts, R. H. & Travisano, M. Hybrid speciation in experimental populations of yeast. Science 298, 1773–1775 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Usher, J. & Bond, U. Recombination between homoeologous chromosomes of lager yeasts leads to loss of function of the hybrid GPH1 gene. Appl. Environ. Microbiol. 75, 4573–4579 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Payen, C. et al. Unusual composition of a yeast chromosome arm is associated with its delayed replication. Genome Res. 19, 1710–1721 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wu, Q., James, S. A., Roberts, I. N., Moulton, V. & Huber, K. T. Exploring contradictory phylogenetic relationships in yeasts. FEMS Yeast Res. 8, 641–650 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Naunov, G. I., James, S. A., Naumova, E. S., Louis, E. J. & Roberts, I. N. Three new species in the Saccharomyces sensu stricto complex: Saccharomyces cariocanus, Saccharomyces kudriavzevii and Saccharomyces mikatae. Int. J. Syst. Evol. Micobiol. 50, 1931–1942 (2000).

    Article  Google Scholar 

  31. Chambers, S. R., Hunter, N., Louis, E. J. & Borts, R. H. The mismatch repair system reduces meiotic homeologous recombination and stimulates recombination-dependent chromosome loss. Mol. Cell. Biol. 16, 6110–6120 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Delneri, D. et al. Engineering evolution to study speciation in yeasts. Nature 422, 68–72 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Liti, G., Barton, D. B. H. & Louis, E. J. Sequence diversity, reproductive isolation and species concepts in Saccharomyces. Genetics 174, 839–850 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fischer, G., James, S. A., Roberts, I. N., Oliver, S. G. & Louis, E. J. Chromosomal evolution in Saccharomyces. Nature 405, 415–454 (2000).

    Article  Google Scholar 

  35. Lee, H.-Y. et al. Incompatibility of nuclear and mitochondrial genomes causes hybrid sterility between two yeast species. Cell 135, 1065–1073 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Scannell, D. R. et al. Multiple rounds of speciation associated with reciprocal gene loss in polyploid yeasts. Nature 440, 341–345 (2006). A comprehensive analysis of post-duplication consequences in terms of speciation.

    Article  CAS  PubMed  Google Scholar 

  37. Lynch, M. & Force, A. G. The origin of interspecific genomic incompatibility via gene duplication. Am. Nat. 156, 590–605 (2000).

    Article  PubMed  Google Scholar 

  38. Sampaio, J. P. & Gonçalves, P. Natural populations of Saccharomyces kudriavzevii in Portugal are associated with oak bark and are sympatric with S. cerevisiae and S. paradoxus. Appl. Environ. Microbiol. 74, 2144–2152 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Maclean, C. J. & Greig, D. Prezygotic reproductive isolation between Saccharomyces cerevisiae and Saccharomyces paradoxus. BMC Evol. Biol. 8, 1 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Murphy, H., Kuehne, H., Francis, C. & Sniegowski, P. Mate choice assays and mating propensity differences in natural yeast populations. Biol. Lett. 2, 553–556 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ohno, S. Evolution by Gene Duplication (Springer, New York, 1970).

    Book  Google Scholar 

  42. Conant, G. C. & Wolfe, K. H. Turning a hobby into a job: how duplicated genes find new functions. Nature Rev. Genet. 9, 938–950 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Innan, H. & Kondrashov, F. The evolution of gene duplications: classifying and distinguishing between models. Nature Rev. Genet. 11, 97–108 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Souciet, J.-L. et al. Comparative genomics of protoploid Saccharomycetaceae. Genome Res. 19, 1696–1709 (2009). The basic protein repertoire, distribution of paralogues and conservation of synteny in Saccharomycetaceae yeasts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Despons, L. et al. Genome-wide computational prediction of tandem gene arrays: application in yeasts. BMC Genomics 11, 56 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fogel, S. & Welch, J. W. Tandem gene amplification mediates copper resistance in yeast. Proc. Natl Acad. Sci. USA 79, 5342–5346 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Johnston, M. et al. Complete nucleotide sequence of Saccharomyces cerevisiae chromosome VIII. Science 265, 2077–2082 (1994).

    Article  CAS  PubMed  Google Scholar 

  48. Dujon, B. et al. Genome evolution in yeasts. Nature 430, 35–44 (2004). The first multispecies genomic comparison across the entire Saccharomycotina subphylum.

    Article  PubMed  Google Scholar 

  49. Kaur, R., Ma, B. & Cormack, B. P. A family of glycosylphosphatidylinositol-linked aspartyl proteases is required for virulence of Candida glabrata. Proc. Natl Acad. Sci. USA 104, 7628–7633 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Müller, H. et al. Genomic polymorphism in the population of Candida glabrata: gene copy number variation and chromosomal translocations. Fungal Genet. Biol. 46, 264–276 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Despons, L., Wirth, B., Louis, V. L., Potier, S. & Souciet, J.-L. An evolutionary scenario for one of the largest yeast gene families. Trends Genet. 22, 10–15 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Marques-Bonet, T., Girirajan, S. & Eichler, E. E. The origins and impact of primate segmental duplications. Trends Genet. 25, 443–454 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fairhead, C. & Dujon, B. Structure of Kluyveromyces lactis subtelomeres: duplication and gene content. FEMS Yeast Res. 6, 428–441 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Koszul, R. & Fischer, G. A prominent role for segmental duplications in modeling eukaryotic genomes. C. R. Biol. 332, 254–266 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Koszul, R., Caburet S., Dujon B. & Fischer G. Eukaryotic genome evolution through the spontaneous duplication of large chromosomal segments. EMBO J. 23, 234–243 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Schacherer, J., Tourrette, Y., Potier, S., Souciet, J.-L. & de Montigny J. Spontaneous duplications in diploid Saccharomyces cerevisiae cells. DNA Repair (Amst.) 6, 1441–1452 (2007).

    Article  CAS  Google Scholar 

  57. Gresham, D. et al. The repertoire and dynamics of evolutionary adaptations to controlled nutrient-limited environments in yeast. PLoS Genet. 4, e1000303 (2008). A genome-wide analysis of evolutionary adaptations in experimental cultures of S. cerevisiae , based on genome resequencing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Koszul, R., Dujon, B. & Fischer, G. Stability of large segmental duplications in the yeast genome. Genetics 172, 2211–2222 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Libuda, D. E. & Winston, F. Amplification of histone genes by circular chromosome formation in Saccharomyces cerevisiae. Nature 443, 1003–1007 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Payen, C., Koszul, R., Dujon, B. & Fischer, G. Segmental duplications arise from pol32-dependent repair of broken forks through two alternative replication-based mechanisms. PLoS Genet. 4, e1000175 (2008). The discovery of the molecular mechanisms responsible for spontaneous segmental duplications.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wolfe, K. H. & Shields, D. C. Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387, 708–713 (1997). The first hypothesis of whole-genome duplication in S. cerevisiae.

    Article  CAS  PubMed  Google Scholar 

  62. Dietrich, F. S. et al. The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome. Science 304, 304–307 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Kellis, M., Birren, B. W. & Lander, E. S. Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 428, 617–624 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Ma, L.-J. et al. Genomic analysis of the basal lineage fungus Rhizopus oryzae reveals a whole-genome duplication. PLoS Genet. 5, e1000549 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Presser, A., Elowitz, M. B., Kellis, M. & Kishony, R. The evolutionary dynamics of the Saccharomyces c erevisiae protein interaction network after duplication. Proc. Natl Acad. Sci. USA 105, 950–954 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Vinogradov, A. E. & Anatskaya, O. V. Loss of protein interactions and regulatory divergence in yeast whole-genome duplicates. Genomics 93, 534–542 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Byrne, K. P. & Wolfe, K. H. The Yeast Gene Order Browser: combining curated homology and syntenic context reveals gene fate in polyploid species. Genome Res. 15, 1456–1461 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cliften, P. F., Fulton, R. S., Wilson, R. K. & Johnston, M. After the duplication: gene loss and adaptation in Saccharomyces genomes. Genetics 172, 863–872 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Scannell, D. R. et al. Independent sorting-out of thousands of duplicated gene pairs in two yeast species descended from a whole-genome duplication. Proc. Natl Acad. Sci. USA 104, 8397–8402 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gordon, J. L., Byrne, K. P. & Wolfe, K. H. Additions, losses, and rearrangements on the evolutionary route from a reconstructed ancestor to the modern Saccharomyces cerevisiae genome. PLoS Genet. 5, e1000485 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Martin, N., Ruedi, E. A., Leduc, R., Sun, F. J. & Caetano-Anolles, G. Gene-interleaving patterns of synteny in the Saccharomyces cerevisiae genome: are they proof of an ancient genome duplication event? Biol. Direct 2, 23 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fischer, G., Neuvéglise, C., Durrens, P., Gaillardin, C. & Dujon, B. Evolution of gene order in the genomes of two related yeast species. Genome Res. 11, 2009–2019 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Lafontaine, I., Fischer, G., Talla, E. & Dujon, B. Gene relics in the genome of the yeast Saccharomyces cerevisiae. Gene 335, 1–17 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Byrnes, J. K., Morris, G. P. & Li, W. H. Reorganization of adjacent gene relationships in yeast genomes by whole-genome duplication and gene deletion. Mol. Biol. Evol. 23, 1136–1143 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Scannell, D. R. & Wolfe, K. H. A burst of protein sequence evolution and a prolonged period of asymmetric evolution follow gene duplication in yeast. Genome Res. 18, 137–147 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kim, S.-H. & Yi, S. V. Correlated asymmetry of sequence and functional divergence between duplicate proteins of Saccharomyces cerevisiae. Mol. Biol. Evol. 23, 1068–1075 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Byrne, K. P. & Wolfe, K. H. Consistent patterns of rate asymmetry and gene loss indicate widespread neofunctionalization of yeast genes after whole-genome duplication. Genetics 175, 1341–1350 (2007). An analysis of the post-duplication divergence of genes and the functional consequences of duplication.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Papp, B., Pal, C. & Hurst, L. D. Evolution of cis-regulatory elements in duplicated genes of yeast. Trends Genet. 19, 417–422 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Gu, X., Zhang, Z. & Huang, W. Rapid evolution of expression and regulatory divergences after yeast gene duplication. Proc. Natl Acad. Sci. USA 102, 707–712 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wapinski, I., Pfeffer, A., Friedman, N. & Regev, A. Natural history and evolutionary principles of gene duplication in fungi. Nature 449, 54–64 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Marques, A. C., Vinckenbosch, N., Brawand, D. & Kaessmann, H. Functional diversification of duplicate genes through subcellular adaptation of encoded proteins. Genome Biol. 9, R54 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Dean, E. J., Davis, J. C., Davis, R. W. & Petrov, D. A. Pervasive and persistent redundancy among duplicated genes in yeast. PLoS Genet. 4, e1000113 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Schacherer, J., Tourette, Y., Souciet, J.-L., Potier, S. & De Montigny, J. Recovery of a function involving gene duplication by retroposition in Saccharomyces cerevisiae. Genome Res. 14, 1291–1297 (2004). A demonstration of the RNA-mediated mechanism of single-gene duplication at ectopic locations in yeast.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Neuvéglise, C., Feldman, H., Bon, E., Gaillardin, C. & Casarégola, S. Genomic evolution of the long terminal repeat retrotransposons in hemiascomycetous yeasts. Genome Res. 12, 930–943 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bon, E. et al. Molecular evolution of eukaryotic genomes: hemiascomycetous yeast spliceosomal introns. Nucleic Acids Res. 31, 1121–1135 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Stajich, J. E., Dietrich, F. S. & Roy, S. W. Comparative genomic analysis of fungal genomes reveals intron-rich ancestors. Genome Biol. 8, R223 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dujon, B. Yeasts illustrate the molecular mechanisms of eukaryotic genome evolution. Trends Genet. 22, 375–387 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Butler G. et al. Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459, 657–662 (2009). The most comprehensive recent multispecies comparative analysis of yeasts of the CTG group.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lang, G. L. & Murray, A. W. Estimating the per-base mutation rate in the yeast Saccharomyces cerevisiae. Genetics 178, 67–82 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lynch, M. et al. A genome-wide view of the spectrum of spontaneous mutations in yeast. Proc. Natl Acad. Sci. USA 105, 9272–9277 (2008). The first genome-wide estimation of the mutational spectrum in experimental cultures of S. cerevisiae that have not been submitted to limiting nutritional conditions. The estimation was based on resequencing.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Fay, J. C. & Benavides, J. A. Evidence for domesticated and wild populations of Saccharomyces cerevisiae. PLoS Genet. 1, 66–71 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Gresham, D. et al. Genome-wide detection of polymorphisms at nucleotide resolution with a single DNA microarray. Science 311, 1932–1936 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Lafontaine, I. & Dujon, B. Origin and fate of pseudogenes in hemiascomycetes: a comparative analysis. BMC Genomics 11, 260 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Seoighe, C. et al. Prevalence of small inversions in yeast gene order evolution. Proc. Natl Acad. Sci. USA 97, 14433–14437 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Fischer, G., Rocha, E. P., Brunet, F., Vergassola, M. & Dujon, B. Highly variable rates of genome rearrangements between hemiascomycetous yeast lineages. PLoS Genet. 2, e32 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Rolland, T., Neuvéglise, C., Sacerdot, C. & Dujon, B. Insertion of horizontally transferred genes within conserved syntenic regions of yeast genomes. PLoS ONE 4, e6515 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Keller, P. J. & Knop, M. Evolution of mutational robustness in the yeast genome: a link to essential genes and meiotic recombination hotspots. PLoS Genet. 5, e1000533 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Diogo, D., Bouchier, C., d'Enfert, C. & Bougnoux, M.-E. Loss of heterozygosity in commensal isolates of the asexual diploid yeast Candida albicans. Fungal Genet. Biol. 46, 159–168 (2009).

    Article  PubMed  Google Scholar 

  99. Jackson, A. P. et al. Comparative genomics of the fungal pathogens Candida dubliniensis and Candida albicans. Genome Res. 19, 2231–2244 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Andersen, M. P., Nelson, Z. W., Hetrick, E. D. & Gottschling, D. E. A genetic screen for increased loss of heterozygosity in Saccharomyces cerevisiae. Genetics 179, 1179–1195 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Forche, A., Magee, P. T., Selmecki, A., Berman, J. & May, G. Evolution in Candida albicans populations during a single passage through a mouse host. Genetics 182, 799–811 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Naumova, E. S., Naumov, G. I., Masneuf-Pomarède, I. & Aigle, M. Molecular genetic study of introgression between Saccharomyces bayanus and S. cerevisiae. Yeast 22, 1099–1115 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Doniger, S. W. et al. A catalog of neutral and deleterious polymorphisms in yeast. PLoS Genet. 4, e1000183 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Muller, L. A. H. & McCusker, J. H. A multispecies-based taxonomic microarray reveals interspecies hybridization and introgression in Saccharomyces cerevisiae. FEMS Yeast Res. 9, 143–152 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Novo, M. et al. Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118. Proc. Natl Acad. Sci. USA 106, 16333–16338 (2009). The most notable recent example of introgression in yeasts.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Kavanaugh, L. A., Fraser, J. A. & Dietrich, F. S. Recent evolution of the human pathogen Cryptococcus neoformans by intervarietal transfer of a 14-gene fragment. Mol. Biol. Evol. 23, 1879–1890 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Gojdovic, Z. et al. Horizontal gene transfer promoted evolution of the ability to propagate under anaerobic conditions in yeasts. Mol. Genet. Genomics 271, 387–393 (2004).

    Article  CAS  Google Scholar 

  108. Hall, C., Brachat, S. & Dietrich, F. S. Contribution of horizontal gene transfer to the evolution of Saccharomyces cerevisiae. Eukaryotic Cell 4, 1102–1115 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hall, C. & Dietrich, F. S. The reacquisition of biotin prototrophy in Saccharomyces cerevisiae involved horizontal gene transfer, gene duplication and gene clustering. Genetics 177, 2293–2307 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wei, W. et al. Genome sequencing and comparative analysis of Saccharomyces cerevisiae strain YJM789. Proc. Natl Acad. Sci. USA 104, 12825–12830 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Woolfit, M., Rozpedowska, E, Piskur, J. & Wolfe, K. H. Genome survey sequencing of the wine spoilage yeast Dekkera (Brettanomyces) bruxellensis. Eukaryot. Cell 6, 721–733 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Fitzpatrick, D. A., Logue, M. E. & Butler, G. Evidence of recent interkingdom horizontal gene transfer between bacteria and Candida parapsilosis. BMC Evol. Biol. 8, 181 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Marcet-Houben, M. & Gabaldón, T. Acquisition of prokaryotic genes by fungal genomes. Trends Genet. 26, 5–8 (2010).

    Article  CAS  PubMed  Google Scholar 

  114. Durrens, P., Nikolski, M. & Sherman, D. Fusion and fission of genes define a metric between fungal genomes. PLoS Comput. Biol. 4, e1000200 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Cai, J., Zhao, R., Jiang, H. & Wang, W. De novo origination of a new protein-coding gene in Saccharomyces cerevisiae. Genetics 179, 487–496 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Li, D. et al. A de novo originated gene depresses budding yeast mating pathway and is repressed by the protein encoded by its antisense strand. Cell Res. 20, 408–420 (2010).

    Article  CAS  PubMed  Google Scholar 

  117. Sacerdot, C. et al. Promiscuous DNA in the nuclear genomes of hemiascomycetous yeasts. FEMS Yeast Res. 8, 846–857 (2008).

    Article  CAS  PubMed  Google Scholar 

  118. Ricchetti, M., Fairhead, C. & Dujon, B. Mitochondrial DNA repairs double-strand breaks in yeast chromosomes. Nature 402, 96–100 (1999).

    Article  CAS  PubMed  Google Scholar 

  119. Frank, A. C. & Wolfe K. H. Evolutionary capture of viral and plasmid DNA by yeast nuclear chromosomes. Eukaryot. Cell 8, 1521–1531 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Taylor, D. J. & Bruenn, J. The evolution of novel fungal genes from non-retroviral RNA viruses. BMC Biol. 7, 88 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Araya, C. L., Payen, C., Dunham, M. J. & Fields, S. Whole-genome sequencing of a laboratory-evolved yeast strain. BMC Genomics 11, 88 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lynch, M. The Origins of Genome Architecture (Sinauer Associates, Sunderland, Massachusetts, 2007).

    Google Scholar 

  123. Drinnenberg, I. A. et al. RNAi in budding yeast. Science 326, 544–550 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Massey, S. E. et al. Comparative evolutionary genomics unveils the molecular mechanism of reassignment of the CTG codon in Candida spp. Genome Res. 13, 544–557 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Marck, C. et al. The RNA polymerase III-dependent family of genes in hemiascomycetes: comparative RNomics, decoding strategies, transcription and evolutionary implications. Nucleic Acids Res. 34, 1816–1835 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Slaughter, B. D. Smith, S. E. & Li, R. Symmetry breaking in the life cycle of the budding yeast. Cold Spring Harb. Perspect. Biol. 1, a003384 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Barral, Y. & Liakopoulos, D. Role of spindle asymmetry in cellular dynamics. Int. Rev. Cell Mol. Biol. 278, 149–213 (2009).

    Article  CAS  PubMed  Google Scholar 

  128. Shcheprova, Z., Baldi, S., Frei, S. B., Gonnet, G. & Barral, Y. A mechanism for asymmetric segregation of age during yeast budding. Nature 454, 728–734 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Paliwal, S. et al. MAPK-mediated bimodal gene expression and adaptive gradient sensing in yeast. Nature 446, 46–51 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Moore, T. I., Chou, C.-S., Nie, Q., Jeon, N. L. & Yi, T.-M. Robust spatial sensing of mating pheromone gradients by yeast cells. PloS ONE 3, e3865 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Knop, M. Evolution of the hemiascomycete yeasts: on the life styles and the importance of inbreeding. Bioessays 28, 696–708 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Albertin, W. et al. Evidence for autotetraploidy associated with reproductive isolation in Saccharomyces cerevisiae: towards a new domesticated species. J. Evol. Biol. 22, 2157–2170 (2009).

    Article  CAS  PubMed  Google Scholar 

  133. Reedy, J. L., Floyd, A. M. & Heitman, J. Mechanistic plasticity of sexual reproduction and meiosis in the Candida pathogenic species complex. Curr. Biol. 19, 891–899 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Fabre, E. et al. Comparative genomics in hemiascomycete yeasts: evolution of sex, silencing and subtelomeres. Mol. Biol. Evol. 22, 856–873 (2005).

    Article  CAS  PubMed  Google Scholar 

  135. Barsoum, E., Martinez, P. & Aström, S. U. Alpha3, a transposable element that promotes host sexual reproduction. Genes Dev. 24, 33–44 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Egel, R. Fission yeast mating-type switching: programmed damage and repair. DNA Repair (Amst.) 4, 525–536 (2005).

    Article  CAS  Google Scholar 

  137. Kurtzman, C. P. & Robnett, C. J. Phylogenetic relationships among yeasts of the 'Saccharomyces complex' determined from multigene sequence analyses. FEMS Yeast Res. 3, 417–432 (2003).

    Article  CAS  PubMed  Google Scholar 

  138. Fitzpatrick, D. A., Logue, M. E., Stajich, J. E. & Butler, G. A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis. BMC Evol. Biol. 6, 99 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Tsui, C. K. M. Daniel, H.-M., Robert, V. & Meyer, W. Re-examining the phylogeny of clinically relevant Candida species and allied genera based on multigene analysis. FEMS Yeast Res. 8, 651–659 (2008).

    Article  CAS  PubMed  Google Scholar 

  140. Hedges, S. B., Blair, J. E., Venturi, M. L. & Shoe, J. L. A molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC Evol. Biol. 4, 2 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Taylor, J. W. & Berbee, M. L. Dating divergence in the fungal tree of life: review and new analyses. Mycologia 98, 838–849 (2006).

    Article  PubMed  Google Scholar 

  142. Kellis, M., Patterson, N., Endrizzi, M., Birren, B. & Lander, E. S. Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423, 241–254 (2003).

    Article  CAS  PubMed  Google Scholar 

  143. Cliften, P. et al. Finding functional features in Saccharomyces cerevisiae by phylogenetic footprinting. Science 301, 71–76 (2003).

    Article  CAS  PubMed  Google Scholar 

  144. Souciet, J.-L. et al. Genomic exploration of the hemiascomycetous yeasts FEBS Lett. 487, 3–147 (2000).

    Article  PubMed  Google Scholar 

  145. Ramezani-Rad, M. et al. The Hansenula polymorpha (strain CBS4732) genome sequencing and analysis. FEMS Yeast Res. 4, 207–215 (2003).

    Article  CAS  PubMed  Google Scholar 

  146. Jeffries, T. W. et al. Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nature Biotech. 25, 319–326 (2007).

    Article  CAS  Google Scholar 

  147. Jones, T. et al. The diploid genome sequence of Candida albicans. Proc. Natl Acad. Sci. USA 101, 7329–7334 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. De Schutter, K. et al. Genome sequence of the recombinant protein production host Pichia pastoris. Nature Biotech. 27, 561–566 (2009).

    Article  CAS  Google Scholar 

  149. Mattanovich, D. et al. Genome, secretome and glucose transport highlight unique features of the protein production host Pichia pastoris. Microb. Cell Fact. 8, 29 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Loftus, B. J. et al. The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans. Science 307, 1321–1324 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Xu, J. et al. Dandruff-associated Malassezia genomes reveal convergent and divergent virulence traits shared with plant and human fungal pathogens. Proc. Natl Acad. Sci. USA 104, 18730–18735 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank the members of the Génolevures Consortium (GDR2354 Centre National de la Recherche Scientifique) for sharing unpublished data and for numerous stimulating discussions. B.D. is a member of Institut Universitaire de France.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Author's homepage

Broad Institute Fungal Genome Initiative

Génolevures — Genomic Exploration of the Hemiascomycete Yeasts

Glossary

Clade

A group of taxa that forms a monophyletic unit. It is applicable to any level of the taxonomical hierarchy.

Loss of heterozygosity

Formally, the loss of one active allele in a heterozygous pair. This loss can occur by any mechanism (mutation, deletion or gene conversion using the other allele as template). Loss of heterozygosity in yeast genomes corresponds to large-scale chromosomal regions encompassing multiple neighbouring genes.

Horizontal gene transfer

A process by which an organism incorporates genetic material from another organism that does not belong to its line of ancestry. This process is also called lateral gene transfer.

Allopatric

Refers to organisms, populations or species that inhabit distinct geographical regions.

Bateson–Dobzhansky–Muller effect

A negative effect of allelic reassortment by genetic recombination in hybrids between members of distinct populations. By extension, it is a lethal effect of reassortment by genetic recombination in crosses between parents that exhibit differential gene loss after genome duplication.

Differential gene loss

The loss of opposite copies in a pair of ohnologues between two cells that inherited the ohnologues from a common genome duplication.

Sympatric

Refers to organisms, populations or species inhabiting the same geographic area.

Ascospores

The four cellular products of a meiosis. The four ascospores are embedded in a sac called an ascus (observed in Ascomycota).

Protoploid

A general term created to designate all Saccharomycetaceae yeasts that do not originate from whole-genome duplication.

CTG group

This term is used here to designate a monophyletic group of yeast species that share a common genomic architecture and a common deviation from the universal genetic code (the CUG codon specifies serine) but are taxonomically classified in diverse families, some of which contain yeasts that do not share these genomic properties.

Autopolyploidization

The formation of cells or organisms with more than two pairs of homologous chromosomes as a result of self-fertilization or non-disjunctive segregation of chromosomes during mitosis or meiosis.

Allopolyploidization

The formation of cells or organisms with more than two pairs of homologous chromosomes as a result of hybridization between distinct species.

Synteny

The physical colocalization of genes, or genetic loci, along the same chromosome. It is more often used to designate subgroups of genes along a chromosomal segment.

Ohnologue

One of a pair of paralogues originating from a whole-genome duplication.

Neofunctionalization

The acquisition of a novel function by a gene after mutational changes. This usually applies to one of the two paralogues that are produced from a gene duplication.

Subfunctionalization

Functional specialization after mutational changes of the paralogues that are produced from a gene duplication.

Indels

Mutations due to the insertion or deletion of DNA sequences. In practice the term is often used to designate insertions or deletions that affect only one or a few nucleotides.

Pseudogenes

Genomic DNA sequences that are similar to normal genes but are rendered non-functional after mutations.

Commensal

Refers to an organism living at the expense of another one without causing substantial damage (a case of non-deleterious parasitism).

Introgression

The incorporation of genes of one species into the genetic pool of another. It is classically viewed as the result of hybridization followed by backcrossing, but could result from other mechanisms in yeasts.

Karyogamy

The fusion of distinct nuclei present in the same cell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dujon, B. Yeast evolutionary genomics. Nat Rev Genet 11, 512–524 (2010). https://doi.org/10.1038/nrg2811

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2811

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing