Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Viewpoint
  • Published:

Mendelian disorders and multifactorial traits: the big divide or one for all?

Abstract

For the past century, Mendelian and multifactorial traits have existed at opposite ends of the disease spectrum in humans. Furthermore, the recent emphasis on genome-wide association studies for uncovering variants that underlie common diseases has risked deepening the divide — or has it? Four experienced human geneticists express their views on the changing landscape of human disease studies and the impact of new technologies and study designs on the age-old aim of connecting a genomic variant with its phenotypic consequences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Feasibility of identifying genetic variants by risk-allele frequency and strength of genetic effect (odds ratio).

Similar content being viewed by others

References

  1. Gibbs, J. R. & Singleton, A. Application of genome-wide single nucleotide polymorphism typing: simple association and beyond. PLoS Genet. 2, e150 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  2. van de Leemput, J. & Chandran, J. et al. Deletion at ITPR1 underlies ataxia in mice and spinocerebellar ataxia 15 in humans. PLoS Genet. 3, e108 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ng, S. B. et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461, 272–276 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Singleton, A., Myers, A. & Hardy, J. The law of mass action applied to neurodegenerative disease: a hypothesis concerning the etiology and pathogenesis of complex diseases. Hum. Mol. Genet. 13, R123–R126 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Hutton, M. et al. Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393, 702–705 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Harold, D., Abraham, R. & Hollingworth, P. et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nature Genet. 41, 1088–1093 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Lambert, J.-C. et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nature Genet. 41, 1094–1099 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. McGeer, E. G., Klegeris, A. & McGeer, P. L. Inflammation, the complement system and the diseases of aging. Neurobiol. Aging 26 (Suppl. 1), 94–97 (2005).

    Article  PubMed  Google Scholar 

  9. Alexander, J. J., Anderson, A. J., Barnum, S. R., Stevens, B. & Tenner, A. J. The complement cascade: Yin–Yang in neuroinflammation — neuro-protection and -degeneration. J. Neurochem. 107, 1169–1187 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Manolio, T. A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Weatherall, D. J. Phenotype–genotype relationships in monogenic disease: lessons from the thalassaemias. Nature Rev. Genet. 2, 245–255 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Botstein, D., White, R. L., Skolnick, M. & Davis, R. W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32, 314–331 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Gusella, J. F. et al. A polymorphic DNA marker genetically linked to Huntington's disease. Nature 306, 234–236 (1983).

    Article  CAS  PubMed  Google Scholar 

  14. Saiki, R. K. et al. Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1350–1354 (1985).

    Article  CAS  PubMed  Google Scholar 

  15. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Waterston, R. H. et al. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Altshuler, D. et al. A haplotype map of the human genome. Nature 437, 1299–1320 (2005).

    Article  Google Scholar 

  19. Ng, S. B. et al. Exome sequencing identifies the cause of a Mendelian disorder. Nature Genet. 42, 30–35 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Altshuler, D., Daly, M. J. & Lander, E. S. Genetic mapping in human disease. Science 322, 881–888 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dermitzakis, E. T., Reymond, A. & Antonarakis, S. E. Conserved non-genic sequences — an unexpected feature of mammalian genomes. Nature Rev. Genet. 6, 151–157 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

John Hardy consults on Alzheimer's disease and Parkinson's disease for Eisai and MerckSerono.

Related links

Related links

DATABASES

Human Gene Mutation Database

OMIM

Hirschsprung disease

Marfan syndrome

progressive supranuclear palsy

FURTHER INFORMATION

Stylianos E. Antonarakis's homepage

Aravinda Chakravarti's homepage

Jonathan C. Cohen's homepage

John Hardy's homepage

AnEUploidy

Frontiers in Genetics

'Lawyers, Guns and Money' by Warren Zevon

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antonarakis, S., Chakravarti, A., Cohen, J. et al. Mendelian disorders and multifactorial traits: the big divide or one for all?. Nat Rev Genet 11, 380–384 (2010). https://doi.org/10.1038/nrg2793

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2793

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing