Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The evolution of hierarchical gene regulatory networks

Abstract

Comparative developmental evidence indicates that reorganizations in developmental gene regulatory networks (GRNs) underlie evolutionary changes in animal morphology, including body plans. We argue here that the nature of the evolutionary alterations that arise from regulatory changes depends on the hierarchical position of the change within a GRN. This concept cannot be accomodated by microevolutionary nor macroevolutionary theory. It will soon be possible to investigate these ideas experimentally, by assessing the effects of GRN changes on morphological evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Key features of gene regulatory networks (GRNs), and consequences of changes in GRN components.
Figure 2: Developmental effect of gene regulatory network change depends on location.

Similar content being viewed by others

References

  1. Davidson, E. H. The Regulatory Genome (Academic, San Diego, 2006).

    Google Scholar 

  2. Oliveri, P., Tu, Q. & Davidson, E. H. Global regulatory logic for specification of an embryonic cell lineage. Proc. Natl Acad. Sci. USA 105, 5955–5962 (2008).

    Article  CAS  Google Scholar 

  3. Smith, J. & Davidson, E. H. Gene regulatory network subcircuit controlling a dynamic spatial pattern of signaling in the sea urchin embryo. Proc. Natl Acad. Sci. USA 105, 20089–20094 (2008).

    Article  CAS  Google Scholar 

  4. Stathopoulos, A. & Levine, M. Genomic regulatory networks and animal development. Dev. Cell 9, 449–462 (2005).

    Article  CAS  Google Scholar 

  5. Nikitina, N., Sauka-Spengler, T. & Bronner-Fraser, M. Dissecting early regulatory relationships in the lamprey neural crest gene regulatory network. Proc. Natl Acad. Sci. USA 105, 20083–20088 (2008).

    Article  CAS  Google Scholar 

  6. Georgescu, C. et al. A gene regulatory network armature for T-lymphocyte specification. Proc. Natl Acad. Sci. USA 105, 200100–200105 (2008).

    Google Scholar 

  7. Ben-Tabou de-Leon, S. & Davidson, E. H. Experimentally based sea urchin gene regulatory network and the causal explanation of developmental phenomenology. Wiley Interdiscip. Rev. Syst. Biol. Med. (in the press).

  8. Gene networks in animal development and evolution special feature Sackler Colloquium. Proc. Natl Acad. Sci. USA (in the press).

  9. Davidson, E. H. Developmental biology at the systems level. Biochim. Biophys. Acta Gene Reg. Mech. (in the press).

  10. Davidson, E. H. & Erwin, D. H. Gene regulatory networks and the evolution of animal body plans. Science 311, 796–800 (2006).

    Article  CAS  Google Scholar 

  11. Wray, G. A. The evolutionary significance of cis-regulatory mutations. Nature Rev. Genet. 8, 206–216 (2007).

    Article  CAS  Google Scholar 

  12. Carroll, S. B. Evo–devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134, 25–36 (2008).

    Article  CAS  Google Scholar 

  13. Prud'homme, B. et al. Repeated morphological evolution through cis-regulatory changes in a pleiotropic gene. Nature 440, 1060–1053 (2006).

    Article  Google Scholar 

  14. Wray, G. A. et al. The evolution of transcriptional regulation in eukaryotes. Mol. Biol. Evol. 20, 1377–1419 (2003).

    Article  CAS  Google Scholar 

  15. Davidson, E. H. A view from the genome: spatial control of transcription in sea urchin development. Curr. Opin. Genet. Dev. 9, 530–541 (1999).

    Article  CAS  Google Scholar 

  16. Wittkopp, P. J., True, J. R. & Carroll, S. B. Reciprocal functions of the Drosophila Yellow and Ebony proteins in the development and evolution of pigment patterns. Development 129, 1849–1858 (2002).

    CAS  PubMed  Google Scholar 

  17. Gompel, N., Prud'homme, B., Wittkopp, P. J., Kassner, V. A. & Carroll, S. B. Chance caught on the wing: cis-regulatory evolution and the origin of pigment patterns in Drosophila. Nature 433, 481–487 (2005).

    Article  CAS  Google Scholar 

  18. Wittkopp, P. J., Vaccaro, K. & Carroll, S. B. Evolution of yellow gene regulation and pigmentation in Drosophila. Curr. Biol. 12, 1547–1556 (2002).

    Article  CAS  Google Scholar 

  19. Jeong, S., Rokas, A. & Carroll, S. B. Regulation of body pigmentation by the Abdominal-B Hox protein and its gain and loss in Drosophila evolution. Cell 125, 1387–1399 (2006).

    Article  CAS  Google Scholar 

  20. Shapiro, M. D. et al. Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks. Nature 428, 717–723 (2004).

    Article  CAS  Google Scholar 

  21. Jeong, S. et al. The evolution of gene regulation underlies a morphological difference between two Drosophila sister species. Cell 132, 783–793 (2008).

    Article  CAS  Google Scholar 

  22. Chanut-Delalande, H., Fernandes, I., Roch, F., Payre, F. & Plaza, S. Shavenbaby couples patterning to epidermal cell shape control. PLoS Biol. 4, e290 (2006).

    Article  Google Scholar 

  23. McGregor, A. P. et al. Morphological evolution through multiple cis-regulatory mutations at a single gene. Nature 448, 587–590 (2007).

    Article  CAS  Google Scholar 

  24. Sucena, E., Delon, I., Jones, I., Payre, F. & Stern, D. L. Regulatory evolution of shavenbaby/ovo underlies multiple cases of morphological parallelism. Nature 424, 935–938 (2003).

    Article  CAS  Google Scholar 

  25. Hersh, B. M. & Carroll, S. B. Direct regulation of knot gene expression by Ultrabithorax and the evolution of cis-regulatory elements in Drosophila. Development 132, 1567–1577 (2005).

    Article  CAS  Google Scholar 

  26. Walsh, C. M. & Carroll, S. B. Collaboration between Smads and a Hox protein in target gene repression. Development 134, 3585–3592 (2007).

    Article  CAS  Google Scholar 

  27. Weatherbee, S. D., Halder, G., Kim, J., Hudson, A. & Carroll, S. Ultrabithorax regulates genes at several levels of the wing-patterning hierarchy to shape the development of the Drosophila haltere. Genes Dev. 12, 1474–1482 (1998).

    Article  CAS  Google Scholar 

  28. Galant, R. & Carroll, S. B. Evolution of a transcriptional repression domain in an insect Hox protein. Nature 415, 910–913 (2002).

    Article  CAS  Google Scholar 

  29. Hersh, B. M. et al. The UBX-regulated network in the haltere imaginal disc of D. melanogaster. Dev. Biol. 302, 717–727 (2007).

    Article  CAS  Google Scholar 

  30. Hinman, V. F., Nguyen, A. T., Cameron, R. A. & Davidson, E. H. Developmental gene regulatory network architecture across 500 million years of echinoderm evolution. Proc. Natl Acad. Sci. USA 100, 13356–13361 (2003).

    Article  CAS  Google Scholar 

  31. Hinman, V. F., Nguyen, A. & Davidson, E. H. Caught in the evolutionary act: precise cis-regulatory basis of difference in the organization of gene networks of sea stars and sea urchins. Dev. Biol. 312, 584–595 (2007).

    Article  CAS  Google Scholar 

  32. Angelini, D. R. & Kaufman, T. C. Insect appendages and comparative ontogenetics. Dev. Biol. 286, 57–77 (2005).

    Article  CAS  Google Scholar 

  33. Stopper, G. F. & Wagner, G. P. Of chicken wings and frog legs: a smorgasbord of evolutionary variation in mechanisms of tetrapod limb development. Dev. Biol. 288, 21–39 (2005).

    Article  CAS  Google Scholar 

  34. Abzhanov, A. et al. The calmodulin pathway and evolution of elongated beak morphology in Darwin's finches. Nature 442, 563–567 (2006).

    Article  CAS  Google Scholar 

  35. Abzhanov, A., Protas, M., Grant, B. R., Grant, P. R. & Tabin, C. J. Bmp4 and morphological variation of beaks in Darwin's finches. Science 305, 1462–1465 (2004).

    Article  CAS  Google Scholar 

  36. Lin, C. M., Jiang, T. X., Widelitz, R. B. & Chuong, C. M. Molecular signaling in feather morphogenesis. Curr. Opin. Cell Biol. 18, 730–741 (2006).

    Article  CAS  Google Scholar 

  37. Wu, P. et al. Evo–devo of amniote integuments and appendages. Int. J. Dev. Biol. 48, 249–270 (2004).

    Article  CAS  Google Scholar 

  38. Revilla-i-Domingo, R., Minokawa, T. & Davidson, E. H. R11: a cis-regulatory node of the sea urchin embryo gene network that controls early expression of SpDelta in micromeres. Dev. Biol. 274, 438–451 (2004).

    Article  CAS  Google Scholar 

  39. Ransick, A. & Davidson, E. H. cis-regulatory processing of Notch signaling input to the sea urchin glial cells missing gene during mesoderm specification. Dev. Biol. 297, 587–602 (2006).

    Article  CAS  Google Scholar 

  40. Shapiro, M. D., Bell, M. A. & Kingsley, D. M. Parallel genetic origins of pelvic reduction in vertebrates. Proc. Natl Acad. Sci. USA 103, 13753–13758 (2006).

    Article  CAS  Google Scholar 

  41. Gomez-Skarmeta, J. L. et al. Cis-regulation of achaete and scute: shared enhancer-like elements drive their coexpression in proneural clusters of the imaginal discs. Genes Dev. 9, 1869–1882 (1995).

    Article  CAS  Google Scholar 

  42. Calleja, M. et al. How to pattern an epithelium: lessons from achaete–scute regulation on the notum of Drosophila. Gene 292, 1–12 (2002).

    Article  CAS  Google Scholar 

  43. Maeder, M. L., Polansky, B. J., Robson, B. E. & Eastman, D. A. Phylogenetic footprinting analysis in the upstream regulatory regions of the Drosophila Enhancer of split genes. Genetics 177, 1377–1394 (2007).

    Article  CAS  Google Scholar 

  44. Singson, A., Leviten, M. W., Bang, A. G., Hua, X. H. & Posakony, J. W. Direct downstream targets of proneural activators in the imaginal disc include genes involved in lateral inhibitory signaling. Genes Dev. 8, 2058–2071 (1994).

    Article  CAS  Google Scholar 

  45. Wulbeck, C. & Simpson, P. Expression of achaete–scute homologues in discrete proneural clusters on the developing notum of the medfly Ceratitis capitata, suggests a common origin for the stereotyped bristle patterns of higher Diptera. Development 127, 1411–1420 (2000).

    CAS  PubMed  Google Scholar 

  46. Wulbeck, C. & Simpson, P. The expression of pannier and achaete–scute homologues in a mosquito suggests an ancient role of pannier as a selector gene in the regulation of the dorsal body pattern. Development 129, 3861–3871 (2002).

    CAS  PubMed  Google Scholar 

  47. Pistillo, D., Skaer, N. & Simpson, P. scute expression in Calliphora vicina reveals an ancestral pattern of longitudinal stripes on the thorax of higher Diptera. Development 129, 563–572 (2002).

    CAS  PubMed  Google Scholar 

  48. Keys, D. N. et al. Recruitment of a hedgehog regulatory circuit in butterfly eyespot evolution. Science 283, 532–534 (1999).

    Article  CAS  Google Scholar 

  49. Gao, F. & Davidson, E. H. Transfer of a large regulatory apparatus to a new developmental address in echinoid evolution. Proc. Natl Acad. Sci. USA 105, 6091–6096 (2008).

    Article  CAS  Google Scholar 

  50. Ronshaugen, M., McGinnis, N. & McGinnis, W. Hox protein mutation and macroevolution of the insect body plan. Nature 415, 914–917 (2002).

    Article  Google Scholar 

  51. Fondon, J. W. III & Garner, H. R. Molecular origins of rapid and continuous morphological evolution. Proc. Natl Acad. Sci. USA 101, 18058–18063 (2004).

    Article  CAS  Google Scholar 

  52. Schwenk, K. & Wagner, G. P. Function and the evolution of phenotypic stability: connecting pattern to process. Am. Zool. 41, 552–563 (2001).

    Google Scholar 

  53. Stern, D. L. Evolutionary developmental biology and the problem of variation. Evolution 54, 1079–1091 (2000).

    Article  CAS  Google Scholar 

  54. Riedl, R. Order in Living Organisms (John Wiley & Sons, Chichester, 1978).

    Google Scholar 

  55. Wimsatt, W. C. in From Embryology to Evo–Devo (eds Laubichler, M. D. & Mainenschein, J.) 310–355 (MIT Press, Cambridge, Massachusetts, 2007).

    Google Scholar 

  56. Wimsatt, W. C. in Cycles of Contingency (eds Oyama, S., Griffiths, P. E. & Gray, R. D.) 219–237 (MIT Press, Cambridge, Massachusetts, 2001).

    Google Scholar 

  57. Jablonski, D. Scale and hierarchy in macroevolution. Palaeontology 50, 87–109 (2007).

    Article  Google Scholar 

  58. Gould, S. J. The Structure of Evolutionary Theory (Harvard Univ. Press, Cambridge, Massachusetts, 2002).

    Google Scholar 

  59. Stanley, S. M. Macroevolution (W. H. Freeman, San Francisco, 1979).

    Google Scholar 

  60. Jablonski, D. Micro- and macroevolution: scale and hierarchy in evolutionary biology and paleobiology. Paleobiology 26, 15–52 (2000).

    Article  Google Scholar 

  61. Dean, A. M. & Thornton, J. W. Mechanistic approaches to the study of evolution: the functional synthesis. Nature Rev. Genet. 8, 675–688 (2007).

    Article  CAS  Google Scholar 

  62. Cretekos, C. J. et al. Regulatory divergence modifies limb length between mammals. Genes Dev. 22, 141–151 (2008).

    Article  CAS  Google Scholar 

  63. Valentine, J. W. On the Origin of Phyla (Univ. Chicago Press, Chicago, 2004).

    Google Scholar 

  64. Erwin, D. H. Disparity: morphologic pattern and developmental context. Palaeontology 50, 57–73 (2007).

    Article  Google Scholar 

  65. Gilchrist, M. et al. Systems biology approaches identify ATF3as a negative regulator of Toll-like receptor 4. Nature 441, 173–178 (2006).

    Article  CAS  Google Scholar 

  66. Christiaen, L. et al. The transcription/migration interface in heart precursors of Ciona intestinalis. Science 320, 1349–1352 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the helpful comments from several reviewers. D.H.E. acknowledges support from the NASA Astrobiology Program, and E.H.D. from the National Science Foundation (IOS 0641398).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas H. Erwin.

Supplementary information

Related links

Related links

FURTHER INFORMATION

Douglas H. Erwin's homepage

Eric H. Davidson's homepage

Biotapestry

Glossary

Additive genetic variation

The portion of genetic variance that is attributable to the average effect of substitution of one allele for another at a locus; it is used to predict the rate of response to selection for quantitative traits.

Body plan

The conserved aspects of morphology that define major clades, recognized in a Linnean hierarchy as phyla, classes and perhaps orders.

Fixation

Describes the situation in which a mutation has achieved a frequency of 100% in a natural population.

Haltere

Club-shaped modified hind wings on Drosophila species that serve as gyroscopic sense organs.

Heterochronic

An evolutionary change in the timing of a developmental process, so that a character or process occurs earlier or later in ontogeny, or grows at a different rate.

Imaginal disc

Epidermal thickenings in the larvae of holometabolous insects. The discs contain mesodermal cells that give rise to adult organs.

Integumental

Relating to the skin; appendages that grow out of the skin.

Lockdown

Establishment of a stable regulatory state by instituting positive feedback between regulatory genes that ensures continued transcription of the participating genes and those operating downstream of them in the GRN.

Macroevolution

Evolution above the species level, including species-level trends, and putatively encompassing selection at the level of species and clades.

Microevolution

Evolution within species and often the formation of new species; this is experimentally accessible through studies of shifting gene frequencies in populations.

Neofunctionalization

Acquisition by a duplicated gene of a new function compared with the original common ancestral function.

Notum

The dorsal portion of an insects thoracic segment.

Outgroup

The most distantly related group in a phylogenetic analysis; it is used to establish the sequence and polarity of evolutionary changes.

Pleisiomorphic

Character states of an organism that were present before the last common ancestor of a clade.

Purifying internal selection

The elimination of genetic variation except around a single mode, by selection against non-viable developmental mutants.

Regulatory state

The set of active transcription factors in every cell at any time point.

Subfunctionalization

Retention by duplicated genes of different components of the original common ancestral function, which allows both gene copies to be preserved.

Trichome

Small hairs, specifically on the epidermis of Drosophila species.

Uniformitarianism

The assumption that studies of present processes are sufficient to understand past events, because there is a single common underlying evolutionary process that accounts for changes at every level.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erwin, D., Davidson, E. The evolution of hierarchical gene regulatory networks. Nat Rev Genet 10, 141–148 (2009). https://doi.org/10.1038/nrg2499

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2499

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing