Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

SGLT2 inhibition in diabetes mellitus: rationale and clinical prospects

Abstract

This Review covers the rationale, physiological consequences and clinical application of pharmacological sodium–glucose cotransporter 2 (SGLT2) inhibition. In patients with type 2 diabetes mellitus, in whom renal glucose reabsorption might be upregulated, orally active, selective SGLT2 inhibitors improve glycaemic control to a therapeutically useful extent. Chronic administration of several SGLT2 inhibitors dose-dependently lowers HbA1c levels by 0.5–1.5% without causing hypoglycaemia. The unique mechanism of action of SGLT2 inhibitors—which does not hinge upon β-cell function or tissue insulin sensitivity—means that they can exert their antihyperglycaemic effects in combination with any other oral antidiabetic drug as well as insulin. Available phase III studies confirm a good tolerability profile. Weight loss owing to urinary calorie leakage may be less than expected, but the negative energy balance offers a valuable clinical benefit. Offloading of sodium can assist blood pressure control. The progressive loss of efficacy in patients with reduced glomerular function will have to be balanced against the possibility of renal protection. The safety issues of genitourinary infections and cancer risk requires careful, proactive monitoring and analysis of robust exposure data, particularly in elderly, frail patients and in patients with impaired kidney function and/or high cardiovascular/cancer risk, who represent an increasing fraction of the population with diabetes mellitus.

Key Points

  • Sodium–glucose cotransporter 2 (SGLT2) is the major cotransporter involved in reabsorption of filtered glucose in the tubular nephron of the kidney

  • Chronic hyperglycaemia in patients with diabetes mellitus might upregulate glucose reabsorption in the kidneys above normal levels

  • SGLT2 inhibitors lower the threshold for glycosuria by lowering the maximum transport capacity or, more likely, by reducing the affinity of the transporter for glucose without causing hypoglycaemia

  • SGLT2 inhibitors cause proximal diuresis and calorie leakage into the urine; therefore, the benefits of these agents could include blood pressure lowering and weight control

  • Increased risk of genitourinary infections is a consistent adverse effect of SGLT2 inhibitors

  • Gauging the effect of SGLT2 inhibitors in the population at high risk for kidney failure and cancer will require analysis of robust exposure data in large populations

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the distribution of sodium–glucose cotransporters along an unrolled nephron.
Figure 2: Numerical simulation of renal glucose reabsorption (blue lines) and excretion (red lines) in an individual with a glomerular filtration rate of 120ml/min/1.73 m2 and a renal glucose threshold of 180mg/dl (10mmol/l).
Figure 3: Numerical simulation of renal glucose reabsorption (blue lines) and excretion (red lines) in a individual with a glomerular filtration rate of 120ml/min/1.73 m2 and a renal glucose threshold of 180mg/dl (10mmol/l).

Similar content being viewed by others

References

  1. DeFronzo, R. A. Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 58, 773–795 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Meier, J. J., Ueberberg, S., Korbas, S. & Schneider, S. Diminished glucagon suppression after β-cell reduction is due to impaired α-cell function rather than an expansion of α-cell mass. Am. J. Physiol. Endocrinol. Metab. 300, E717–E723 (2011).

    Article  CAS  Google Scholar 

  3. Ferrannini, E. The stunned beta cell: a brief history. Cell Metab. 11, 349–352 (2010).

    Article  CAS  Google Scholar 

  4. Schwanstecher, C. & Schwanstecher, M. Targeting type 2 diabetes. Handb. Exp. Pharmacol. 203, 1–33 (2011).

    Article  CAS  Google Scholar 

  5. Donath, M. Y. & Shoelson, S. E. Type 2 diabetes as an inflammatory disease. Nat. Rev. Immunol. 11, 98–107 (2011).

    Article  CAS  Google Scholar 

  6. Kaneto, H., Katakami, N., Matsuhisa, M. & Matsuoka, T. A. Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. Mediators Inflamm. 2010, 43892 (2010).

    Article  Google Scholar 

  7. Jonas, J. C. et al. Glucose regulation of islet stress responses and beta-cell failure in type 2 diabetes. Diabetes Obes. Metab. 11 (Suppl. 4), 65–81 (2009).

    Article  CAS  Google Scholar 

  8. Leibowitz, G. et al. Glucose regulation of β-cell stress in type 2 diabetes. Diabetes Obes. Metab. 12 (Suppl. 2), 66–75 (2010).

    Article  CAS  Google Scholar 

  9. Wright, E. M., Loo, D. D. & Hirayama, B. A. Biology of human sodium glucose transporters. Physiol. Rev. 91, 733–794 (2011).

    Article  CAS  Google Scholar 

  10. Hummel, C. S. et al. Glucose transport by human renal Na+/D-glucose cotransporters SGLT1 and SGLT2. Am. J. Physiol. Cell Physiol. 300, C14–C21 (2011).

    Article  CAS  Google Scholar 

  11. Banerjee, S. K. et al. SGLT1, a novel cardiac glucose transporter, mediates increased glucose uptake in PRKAG2 cardiomyopathy. J. Mol. Cell. Cardiol. 49, 683–692 (2010).

    Article  CAS  Google Scholar 

  12. Li, H., Gu, Y., Zhang, Y., Lucas, M. J. & Wang, Y. High glucose levels down-regulate glucose transporter expression that correlates with increased oxidative stress in placental trophoblast cells in vitro. J. Soc. Gynecol. Investig. 11, 75–81 (2004).

    Article  CAS  Google Scholar 

  13. von Lewinski, D. et al. Glucose-transporter-mediated positive inotropic effects in human myocardium of diabetic and nondiabetic patients. Metabolism 59, 1020–1028 (2010).

    Article  CAS  Google Scholar 

  14. Takata, K. Glucose transporters in the transepithelial transport of glucose. J. Electron Microsc. 45, 275–284 (1996).

    Article  CAS  Google Scholar 

  15. Vallon, V. et al. SGLT2 mediates glucose reabsorption in the early proximal tubule. J. Am. Soc. Nephrol. 22, 104–112 (2011).

    Article  CAS  Google Scholar 

  16. Wright, E. M., Hirayama, B. A. & Loo, D. F. Active sugar transport in health and disease. J. Intern. Med. 261, 32–43 (2007).

    Article  CAS  Google Scholar 

  17. Ruhnau, B., Faber, O. K., Borch-Johnsen, K. & Thorsteinsson, B. Renal threshold for glucose in non-insulin-dependent diabetic patients. Diabetes Res. Clin. Pract. 36, 27–33 (1997).

    Article  CAS  Google Scholar 

  18. Farber, S. J., Berger, E. Y. & Earle, D. P. Effect of diabetes and insulin on the maximum capacity of the renal tubules to reabsorb glucose. J. Clin. Invest. 30, 125–129 (1951).

    Article  CAS  Google Scholar 

  19. Elsas, L. J. & Rosenberg, L. E. Familial renal glycosuria: a genetic reappraisal of hexose transport by kidney and intestine. J. Clin. Invest. 48, 1845–1854 (1969).

    Article  CAS  Google Scholar 

  20. Sha, S. et al. Canagliflozin, a novel inhibitor of sodium glucose co-transporter 2, dose dependently reduces calculated renal threshold for glucose excretion and increases urinary glucose excretion in healthy subjects. Diabetes Obes. Metab. 13, 669–672 (2011).

    Article  CAS  Google Scholar 

  21. Maurer, T. S. et al. Pharmacodynamic model of sodium-glucose transporter 2 (SGLT2) inhibition: implications for quantitative translational pharmacology. AAPS J. 13, 576–584 (2011).

    Article  CAS  Google Scholar 

  22. Mogensen, C. E. Maximum tubular reabsorption capacity for glucose and renal hemodynamics during rapid hypertonic glucose infusion in normal and diabetic subjects. Scand. J. Clin. Lab. Invest. 28, 101–109 (1971).

    Article  CAS  Google Scholar 

  23. Rahmoune, H. et al. Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with non-insulin-dependent diabetes. Diabetes 54, 3427–3434 (2005).

    Article  CAS  Google Scholar 

  24. Jurczak, M. J. et al. SGLT2 deletion improves glucose homeostasis and preserves pancreatic beta-cell function. Diabetes 60, 890–898 (2011).

    Article  CAS  Google Scholar 

  25. Pontoglio, M. et al. HNF1alpha controls renal glucose reabsorption in mouse and man. EMBO Rep. 1, 359–365 (2000).

    Article  CAS  Google Scholar 

  26. Yamagata, K. et al. Mutations in the hepatocyte nuclear factor-1alpha gene in maturity-onset diabetes of the young (MODY3). Nature 384, 455–458 (1996).

    Article  CAS  Google Scholar 

  27. Schmidt, C., Höcherl, K. & Bucher, M. Regulation of renal glucose transporters during severe inflammation. Am. J. Physiol. Renal Physiol. 292, F804–F811 (2007).

    Article  CAS  Google Scholar 

  28. Bautista, R. et al. Angiotensin II-dependent increased expression of Na+-glucose cotransporter in hypertension. Am. J. Physiol. Renal Physiol. 286, F127–F133 (2004).

    Article  CAS  Google Scholar 

  29. Ly, J. P. et al. The Sweet Pee model for Sglt2 mutation. J. Am. Soc. Nephrol. 22, 113–123 (2011).

    Article  CAS  Google Scholar 

  30. Wright, E. M., Turk, E. & Martin, M. G. Molecular basis for glucose-galactose malabsorption. Cell Biochem. Biophys. 36, 115–121 (2002).

    Article  CAS  Google Scholar 

  31. Calado, J., Soto, K., Clemente, C., Correia, P. & Rueff, J. Novel compound heterozygous mutations in SLC5A2 are responsible for autosomal recessive renal glucosuria. Hum. Genet. 114, 314–316 (2004).

    Article  Google Scholar 

  32. Calado, J. et al. Twenty-one additional cases of familial renal glucosuria: absence of genetic heterogeneity, high prevalence of private mutations and further evidence of volume depletion. Nephrol. Dial. Transplant. 23, 3874–3879 (2008).

    Article  CAS  Google Scholar 

  33. Calado, J. et al. Familial renal glucosuria: SLC5A2 mutation analysis and evidence of salt-wasting. Kidney Int. 69, 852–855 (2006).

    Article  CAS  Google Scholar 

  34. Oemar, B. S., Byrd, D. J. & Brodehl, J. Complete absence of tubular glucose reabsorption: a new type of renal glucosuria (type 0). Clin. Nephrol. 27, 156–160 (1987).

    CAS  PubMed  Google Scholar 

  35. Gopalakrishnan, A., Kumar, M., Krishnamurthy, S., Sakamoto, O. & Srinivasan, S. Fanconi-Bickel syndrome in a 3-year-old Indian boy with a novel mutation in the GLUT2 gene. Clin. Exp. Nephrol. 15, 745–748 (2011).

    Article  Google Scholar 

  36. Ehrenkranz, J. R., Lewis, N. G., Kahn, C. R. & Roth, J. Phlorizin: a review. Diabetes Metab. Res. Rev. 21, 31–38 (2005).

    Article  CAS  Google Scholar 

  37. Ellsworth, B. A. et al. Aglycone exploration of C-arylglucoside inhibitors of renal sodium-dependent glucose transporter SGLT2. Bioorg. Med. Chem. Lett. 18, 4770–4773 (2008).

    Article  CAS  Google Scholar 

  38. Meng, W. et al. Discovery of dapagliflozin: a potent, selective renal sodium-dependent glucose cotransporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes. J. Med. Chem. 51, 1145–1149 (2008).

    Article  CAS  Google Scholar 

  39. Nomura, S. et al. Discovery of canagliflozin, a novel C-glucoside with thiophene ring, as sodium-dependent glucose cotransporter 2 inhibitor for the treatment of type 2 diabetes mellitus. J. Med. Chem. 53, 6355–6360 (2010).

    Article  CAS  Google Scholar 

  40. Obermeier, M. et al. In vitro characterization and pharmacokinetics of dapagliflozin (BMS-512148), a potent sodium-glucose cotransporter type II inhibitor, in animals and humans. Drug Metab. Dispos. 38, 405–414 (2010).

    Article  CAS  Google Scholar 

  41. Ferrannini, E., Ramos, S. J., Salsali, A., Tang, W. & List, J. F. Dapagliflozin monotherapy in type 2 diabetic patients with inadequate glycemic control by diet and exercise: a randomized, double-blind, placebo-controlled, phase 3 trial. Diabetes Care 33, 2217–2224 (2010).

    Article  Google Scholar 

  42. Bailey, C. J., Gross, J. L., Pieters, A., Bastien, A. & List, J. F. Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with metformin: a randomized, double-blind, placebo-controlled trial. Lancet 375, 2223–2233 (2010).

    Article  CAS  Google Scholar 

  43. Wilding, J. P. et al. A study of dapagliflozin in patients with type 2 diabetes receiving high doses of insulin plus insulin sensitizers: applicability of a novel insulin-independent treatment. Diabetes Care 32, 1656–1662 (2009).

    Article  CAS  Google Scholar 

  44. Kasichayanula, S. et al. Effect of a high-fat meal on the pharmacokinetics of dapagliflozin, a selective SGLT2 inhibitor, in healthy subjects. Diabetes Obes. Metab. 13, 770–773 (2011).

    Article  CAS  Google Scholar 

  45. Kasichayanula, S. et al. Lack of pharmacokinetic interaction between dapagliflozin, a novel sodium-glucose transporter 2 inhibitor, and metformin, pioglitazone, glimepiride or sitagliptin in healthy subjects. Diabetes Obes. Metab. 13, 47–54 (2011).

    Article  CAS  Google Scholar 

  46. Hussey, E. K. et al. Multiple-dose pharmacokinetics and pharmacodynamics of sergliflozin etabonate, a novel inhibitor of glucose reabsorption, in healthy overweight and obese subjects: a randomized double-blind study. J. Clin. Pharmacol. 50, 636–646 (2010).

    Article  CAS  Google Scholar 

  47. Fujimori, Y. et al. Remogliflozin etabonate, in a novel category of selective low-affinity sodium glucose cotransporter (SGLT2) inhibitors, exhibits antidiabetic efficacy in rodent models. J. Pharmacol. Exp. Ther. 327, 268–276 (2008).

    Article  CAS  Google Scholar 

  48. Kashiwagi, A. et al. Ipragliflozin improved glycemic control with additional benefits of reductions of body weight and blood pressure in Japanese patients with type 2 diabetes mellitus: BRIGHTEN Study [abstract]. Diabetologia 54 (Suppl. 1), S68, a149 (2011).

    Google Scholar 

  49. Seman, L. et al. ENCORE: efficacy and safety of BI 10773, a new sodium glucose co-transporter-2 (SGLT-2) inhibitor, in type 2 diabetes patients inadequately controlled on metformin [abstract]. Diabetologia 54 (Suppl. 1), S67, a147 (2011).

    Google Scholar 

  50. Powell, D. et al. Single doses of LX4211, a dual inhibitor of SGLT1 and SGLT2, improves parameters of glycaemic control and increases GLP-1 and PYY in patients with type 2 diabetes [abstract]. Diabetologia 54 (Suppl. 1), S69, a150 (2011).

    Google Scholar 

  51. Isaji, M. SGLT2 inhibitors: molecular design and potential differences in effect. Kidney Int. Suppl. 120, S14–S19 (2011).

    Article  CAS  Google Scholar 

  52. Yamamoto, K. et al. TS-071 is a novel, potent and selective renal sodium-glucose cotransporter 2 (SGLT2) inhibitor with anti-hyperglycemic activity. Br. J. Pharmacol. 164, 181–191 (2011).

    Article  CAS  Google Scholar 

  53. Yao, C. H. et al. Discovery of novel N-β-D-xylosylindole derivatives as sodium-dependent glucose cotransporter 2 (SGLT2) inhibitors for the management of hyperglycemia in diabetes. J. Med. Chem. 54, 166–178 (2011).

    Article  CAS  Google Scholar 

  54. Kadokura, T. et al. The effect of renal impairment on the pharmacokinetics and urinary glucose excretion of the SGLT2 inhibitor ipragliflozin (ASP1941) in Japanese type 2 diabetes mellitus patients [abstract]. Diabetologia 54 (Suppl. 1), S346, a847 (2011).

    Google Scholar 

  55. Abdul-Ghani, M. A., Norton, L. & DeFronzo, R. A. Role of sodium-glucose cotransporter 2 (SGLT 2) inhibitors in the treatment of type 2 diabetes. Endocr. Rev. 32, 515–531 (2011).

    Article  CAS  Google Scholar 

  56. Piya, M. K., Tahrani, A. A. & Barnett, A. H. Emerging treatment options for type 2 diabetes. Br. J. Clin. Pharmacol. 70, 631–644 (2010).

    Article  CAS  Google Scholar 

  57. Ghosh, R. K., Ghosh, S. M., Chawla, S. & Jasdanwala, S. A. SGLT2 inhibitors: a new emerging therapeutic class in the treatment of type 2 diabetes mellitus. J. Clin. Pharmacol. http://dx.doi.org/10.1177/0091270011400604

  58. Komoroski, B. et al. Dapagliflozin, a novel, selective SGLT2 inhibitor, improved glycemic control over 2 weeks in patients with type 2 diabetes mellitus. Clin. Pharmacol. Ther. 85, 513–519 (2009).

    Article  CAS  Google Scholar 

  59. Osorio, H. et al. Effect of phlorizin on SGLT2 expression in the kidney of diabetic rats. J. Nephrol. 23, 541–546 (2010).

    PubMed  Google Scholar 

  60. Vallon, V., Richter, K., Blantz, R. C., Thomson, S. & Osswald, H. Glomerular hyperfiltration in experimental diabetes mellitus: potential role of tubular reabsorption. J. Am. Soc. Nephrol. 10, 2569–2576 (1999).

    CAS  Google Scholar 

  61. Hannedouche, T. P. et al. Renal hemodynamics and segmental tubular reabsorption in early type 1 diabetes. Kidney Int. 37, 1126–1133 (1990).

    Article  CAS  Google Scholar 

  62. Vervoort, G., Veldman, B., Berden, J. H., Smits, P. & Wetzels, J. F. Glomerular hyperfiltration in type 1 diabetes mellitus results from primary changes in proximal tubular sodium handling without changes in volume expansion. Eur. J. Clin. Invest. 35, 330–336 (2005).

    Article  CAS  Google Scholar 

  63. List, J. F., Woo, V., Morales, E., Tang, W. & Fiedorek, F. T. Sodium-glucose cotransport inhibition with dapagliflozin in type 2 diabetes. Diabetes Care 32, 650–657 (2009).

    Article  CAS  Google Scholar 

  64. Quiñones Galvan, A. et al. Effect of insulin on uric acid excretion in humans. Am. J. Physiol. 268, E1–E5 (1995).

    PubMed  Google Scholar 

  65. Doblado, M. & Moley, K. H. Facilitative glucose transporter 9, a unique hexose and urate transporter. Am. J. Physiol. Endocrinol. Metab. 297, E831–E835 (2009).

    Article  CAS  Google Scholar 

  66. Zhang, L., Feng, Y., List, J., Kasichayanula, S. & Pfister, M. Dapagliflozin treatment in patients with different stages of type 2 diabetes mellitus: effects on glycaemic control and body weight. Diabetes Obes. Metab. 12, 510–516 (2010).

    Article  CAS  Google Scholar 

  67. Lam, T. K. Neuronal regulation of homeostasis by nutrient sensing. Nat. Med. 16, 392–395 (2010).

    Article  CAS  Google Scholar 

  68. Yu, A. S. et al. Functional expression of SGLTs in rat brain. Am. J. Physiol. Cell Physiol. 299, C1277–C1284 (2010).

    Article  CAS  Google Scholar 

  69. FDA. FDA Briefing Document. NDA 202293. Dapagliflozin Tablets, 5 and 10 mg. Sponsor: Bristol-Myers Squibb. Advisory Committee Meeting, July 19, 2011 [online]. (2011).

  70. Nauck, M. A. et al. Dapagliflozin versus glipizide as add-on therapy in patients with type 2 diabetes who have inadequate glycemic control with metformin: a randomized, 52-week, double-blind, active-controlled noninferiority trial. Diabetes Care 34, 2015–2022 (2011).

    Article  CAS  Google Scholar 

  71. Johnston, S. S. et al. Evidence linking hypoglycemic events to an increased risk of acute cardiovascular events in patients with type 2 diabetes. Diabetes Care 34, 1164–1170 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of this article (researching data for the article, writing the manuscript, discussions of the content and review or editing of the manuscript before submission).

Corresponding author

Correspondence to Ele Ferrannini.

Ethics declarations

Competing interests

E. Ferrannini declares associations with the following companies: Astellas (consultant), Bristol-Myers Squibb/AstraZeneca (consultant), Boehringer Ingelheim (consultant, grant/research support). See the article online for full details of the relationships. A. Solini declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrannini, E., Solini, A. SGLT2 inhibition in diabetes mellitus: rationale and clinical prospects. Nat Rev Endocrinol 8, 495–502 (2012). https://doi.org/10.1038/nrendo.2011.243

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2011.243

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing