Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus

Abstract

In healthy humans, the incretin glucagon-like peptide 1 (GLP-1) is secreted after eating and lowers glucose concentrations by augmenting insulin secretion and suppressing glucagon release. Additional effects of GLP-1 include retardation of gastric emptying, suppression of appetite and, potentially, inhibition of β-cell apoptosis. Native GLP-1 is degraded within 2–3 min in the circulation; various GLP-1 receptor agonists have, therefore, been developed to provide prolonged in vivo actions. These GLP-1 receptor agonists can be categorized as either short-acting compounds, which provide short-lived receptor activation (such as exenatide and lixisenatide) or as long-acting compounds (for example albiglutide, dulaglutide, exenatide long-acting release, and liraglutide), which activate the GLP-1 receptor continuously at their recommended dose. The pharmacokinetic differences between these drugs lead to important differences in their pharmacodynamic profiles. The short-acting GLP-1 receptor agonists primarily lower postprandial blood glucose levels through inhibition of gastric emptying, whereas the long-acting compounds have a stronger effect on fasting glucose levels, which is mediated predominantly through their insulinotropic and glucagonostatic actions. The adverse effect profiles of these compounds also differ. The individual properties of the various GLP-1 receptor agonists might enable incretin-based treatment of type 2 diabetes mellitus to be tailored to the needs of each patient.

Key Points

  • Native human GLP-1 normalizes hyperglycaemia in patients with type 2 diabetes mellitus, but the short in vivo half-life of this hormone limits its therapeutic application

  • A number of synthetic GLP-1 receptor agonists, with half-lives between 2–3 h and several days, have been developed for the long-term treatment of type 2 diabetes mellitus

  • Short-acting GLP-1 receptor agonists (such as exenatide and lixisenatide) predominantly lower postprandial glucose levels and insulin concentrations via retardation of gastric emptying

  • Long-acting GLP-1 receptor agonists (such as albiglutide, dulaglutide, exenatide long-acting release and liraglutide) predominantly lower blood glucose levels through stimulation of insulin secretion and reduction of glucagon levels

  • Adverse effects of GLP-1 receptor agonists include nausea, vomiting and diarrhoea, injection-site reactions, antibody formation and increased heart rate

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reported pleiotropic effects of GLP-1 or GLP-1 receptor agonists on various tissues and organs under experimental conditions.
Figure 2: GLP-1 has differential dose-dependent effects on glucose and insulin levels in the postprandial and fasting states.
Figure 3: Gastric emptying is inhibited in a dose-dependent manner by GLP-1 administration.
Figure 4: Strategies employed to develop GLP-1 receptor agonists with prolonged in vivo half-lives.
Figure 5: Physiological role of GLP-1 and proposed working models for the actions of short-acting and long-acting GLP-1 receptor agonists in the postprandial state.

Similar content being viewed by others

References

  1. Elrick, H., Stimmler, L., Hlad, C. J. Jr & Arai, Y. Plasma insulin response to oral and intravenous glucose administration. J. Clin. Endocrinol. Metab. 24, 1076–1082 (1964).

    Article  CAS  PubMed  Google Scholar 

  2. Shuster, L. T., Go, V. L., Rizza, R. A., O'Brien, P. C. & Service, F. J. Incretin effect due to increased secretion and decreased clearance of insulin in normal humans. Diabetes 37, 200–203 (1988).

    Article  CAS  PubMed  Google Scholar 

  3. Creutzfeldt, W. The incretin concept today. Diabetologia 16, 75–85 (1979).

    Article  CAS  PubMed  Google Scholar 

  4. Nauck, M. A. et al. Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. J. Clin. Endocrinol. Metab. 63, 492–498 (1986).

    Article  CAS  PubMed  Google Scholar 

  5. Brown, J. C. & Dryburgh, J. R. A gastric inhibitory polypeptide. II. The complete amino acid sequence. Can. J. Biochem. 49, 867–872 (1971).

    Article  CAS  PubMed  Google Scholar 

  6. Brown, J. C., Mutt, V. & Pederson, R. A. Further purification of a polypeptide demonstrating enterogastrone activity. J. Physiol. 209, 57–64 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bell, G. I., Sanchez-Pescador, R., Laybourn, P. J. & Najarian, R. C. Exon duplication and divergence in the human preproglucagon gene. Nature 304, 368–371 (1983).

    Article  CAS  PubMed  Google Scholar 

  8. Gutniak, M., Ørskov, C., Holst, J. J., Åhren, B. & Efendic, S. Antidiabetogenic effect of glucagon-like peptide-17–36 amide in normal subjects and patients with diabetes mellitus. N. Engl. J. Med. 326, 1316–1322 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Nauck, M. A., Bartels, E., Ørskov, C., Ebert, R. & Creutzfeldt, W. Additive insulinotropic effects of exogenous synthetic human gastric inhibitory polypeptide and glucagon-like peptide-1-7–36 amide infused at near-physiological insulinotropic hormone and glucose concentrations. J. Clin. Endocrinol. Metab. 76, 912–917 (1993).

    CAS  PubMed  Google Scholar 

  10. Nauck, M. A. et al. Preserved incretin activity of glucagon-like peptide 17–36 amide but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J. Clin. Invest. 91, 301–307 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nauck, M. A. et al. Normalization of fasting hyperglycaemia by exogenous glucagon-like peptide 17–36 amide in type 2 (non-insulin-dependent) diabetic patients. Diabetologia 36, 741–744 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Nauck, M. A. et al. Effects of glucagon-like peptide 1 on counterregulatory hormone responses, cognitive functions, and insulin secretion during hyperinsulinemic, stepped hypoglycemic clamp experiments in healthy volunteers. J. Clin. Endocrinol. Metab. 87, 1239–1246 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Ørskov, C., Holst, J. J. & Nielsen, O. V. Effect of truncated glucagon-like peptide-1 (proglucagon78–107 amide) on endocrine secretion from pig pancreas, antrum, and nonantral stomach. Endocrinology 123, 2009–2013 (1988).

    Article  PubMed  Google Scholar 

  14. Hansen, L. et al. Somatostatin restrains the secretion of glucagon-like peptide-1 and -2 from isolated perfused porcine ileum. Am. J. Physiol. Endocrinol. Metab. 278, E1010–E1018 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Hare, K. J. et al. The glucagonostatic and insulinotropic effects of glucagon-like peptide 1 contribute equally to its glucose-lowering action. Diabetes 59, 1765–1770 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Meier, J. J. et al. Normalization of glucose concentrations and deceleration of gastric emptying after solid meals during intravenous glucagon-like peptide 1 in patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 88, 2719–2725 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Meier, J. J., Kemmeries, G., Holst, J. J. & Nauck, M. A. Erythromycin antagonises the deceleration of gastric emptying by glucagon-like peptide 1 (GLP-1) and unmasks its insulinotropic effect in healthy subjects. Diabetes 54, 2212–2218 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Flint, A., Raben, A., Astrup, A. & Holst, J. J. Glucagon-like peptide-1 promotes satiety and suppresses energy intake in humans. J. Clin. Invest. 101, 515–520 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Garber, A. et al. Liraglutide versus glimepiride monotherapy for type 2 diabetes (LEAD-3 Mono): a randomised, 52-week, phase III, double-blind, parallel-treatment trial. Lancet 373, 473–481 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Meier, J. J. et al. Glucagon-like peptide 1 abolishes the postprandial rise in triglyceride concentrations and lowers levels of non-esterified fatty acids in humans. Diabetologia 49, 452–458 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Farilla, L. et al. Glucagon-like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets. Endocrinology 144, 5149–5158 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Buteau, J., Foisy, S., Joly, E. & Prentki, M. Glucagon-like peptide 1 induces pancreatic β-cell proliferation via transactivation of the epidermal growth factor receptor. Diabetes 52, 124–132 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Buteau, J., Roduit, R., Susini, S. & Prentki, M. Glucagon-like peptide-1 promotes DNA synthesis, activates phosphatidylinositol 3-kinase and increases transcription factor pancreatic and duodenal homeobox gene 1 (PDX-1) DNA binding activity in β (INS-1)-cells. Diabetologia 42, 856–864 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Tschen, S. I., Dhawan, S., Gurlo, T. & Bhushan, A. Age-dependent decline in β-cell proliferation restricts the capacity of β-cell regeneration in mice. Diabetes 58, 1312–1320 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bunck, M. C. et al. Effects of exenatide on measures of β-cell function after 3 years in metformin-treated patients with type 2 diabetes. Diabetes Care 34, 2041–2047 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ban, K. et al. Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation 117, 2340–2350 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Sonne, D. P., Engstrom, T. & Treiman, M. Protective effects of GLP-1 analogues exendin-4 and GLP-19–36 amide against ischemia–reperfusion injury in rat heart. Regul. Pept. 146, 243–249 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Noyan-Ashraf, M. H. et al. GLP-1R agonist liraglutide activates cytoprotective pathways and improves outcomes after experimental myocardial infarction in mice. Diabetes 58, 975–983 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nikolaidis, L. A. et al. Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation 109, 962–965 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Read, P. A., Khan, F. Z., Heck, P. M., Hoole, S. P., & Dutka, D. P. DPP-4 inhibition by sitagliptin improves the myocardial response to dobutamine stress and mitigates stunning in a pilot study of patients with coronary artery disease. Circ. Cardiovasc. Imaging 3, 195–201 (2010).

    Article  PubMed  Google Scholar 

  31. Basu, A. et al. Beneficial effects of GLP-1 on endothelial function in humans: dampening by glyburide but not by glimepiride. Am. J. Physiol. Endocrinol. Metab. 293, E1289–E1295 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Nystrom, T. et al. Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease. Am. J. Physiol. Endocrinol. Metab. 287, E1209–E1215 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Deacon C. F. et al. Both subcutaneously and intravenously administered glucagon-like peptide I are rapidly degraded from the NH2-terminus in type II diabetic patients and in healthy subjects. Diabetes 44, 1126–1131 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Nikolaidis, L. A., Elahi, D., Shen, Y. T. & Shannon, R. P. Active metabolite of GLP-1 mediates myocardial glucose uptake and improves left ventricular performance in conscious dogs with dilated cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 289, H2401–H2408 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. McClean, P. L., Parthsarathy, V., Faivre, E. & Holscher, C. The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer's disease. J. Neurosci. 31, 6587–6594 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Teramoto, S. et al. Exendin-4, a glucagon-like peptide-1 receptor agonist, provides neuroprotection in mice transient focal cerebral ischemia. J. Cereb. Blood Flow Metab. 31, 1696–1705 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Harkavyi, A. Glucagon-like peptide 1 receptor stimulation reverses key deficits in distinct rodent models of Parkinson's disease. J. Neuroinflammation 5, 19 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mentlein, R., Gallwitz, B. & Schmidt, W. E. Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-17–36 amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur. J. Biochem. 214, 829–835 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Kieffer, T. J., McIntosh, C. H. & Pederson, R. A. Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology 136, 3585–3596 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Meier, J. J. et al. Secretion, degradation, and elimination of glucagon-like peptide 1 (GLP-1) and gastric inhibitory polypeptide (GIP) in patients with chronic renal insufficiency and healthy controls. Diabetes 53, 654–662 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Zander, M., Madsbad, S., Madsen, J. L. & Holst, J. J. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and β-cell function in type 2 diabetes: a parallel-group study. Lancet 359, 824–830 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Kolterman, O. G. et al. Synthetic exendin-4 (exenatide) significantly reduces postprandial and fasting plasma glucose in subjects with type 2 diabetes. J. Clin. Endocrinol. Metab. 88, 3082–3089 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Agersø, H., Jensen, L. B., Elbrønd, B., Rolan, P. & Zdravkovic, M. The pharmacokinetics, pharmacodynamics, safety and tolerability of NN2211, a new long-acting GLP-1 derivative, in healthy men. Diabetologia 45, 195–202 (2002).

    Article  PubMed  Google Scholar 

  44. Drucker, D. J. et al. Exenatide once weekly versus twice daily for the treatment of type 2 diabetes: a randomised, open-label, non-inferiority study. Lancet 372, 1240–1250 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Gallwitz, B. et al. GLP-1-analogues resistant to degradation by dipeptidyl-peptidase IV in vitro. Regul. Pept. 86, 103–111 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Knudsen, L. B. et al. Potent derivatives of glucagon-like peptide-1 with pharmacokinetic properties suitable for once daily administration. J. Med. Chem. 43, 1664–1669 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Kim, D. et al. Effects of once-weekly dosing of a long-acting release formulation of exenatide on glucose control and body weight in subjects with type 2 diabetes. Diabetes Care 30, 1487–1493 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Fineman, M. S. et al. Effect on glycemic control of exenatide (synthetic exendin-4) additive to existing metformin and/or sulfonylurea treatment in patients with type 2 diabetes. Diabetes Care 26, 2370–2377 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Werner, U., Haschke, G., Herling, A. W. & Kramer, W. Pharmacological profile of lixisenatide: a new GLP-1 receptor agonist for the treatment of type 2 diabetes. Regul. Pept. 164, 58–64 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Buse, J. B. et al. Liraglutide once a day versus exenatide twice a day for type 2 diabetes: a 26-week randomised, parallel-group, multinational, open-label trial (LEAD-6). Lancet 374, 39–47 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Linnebjerg, H. et al. Effect of exenatide on gastric emptying and relationship to postprandial glycemia in type 2 diabetes. Regul. Pept. 151, 123–129 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Nauck, M. A., Kemmeries, G., Holst, J. J. & Meier, J. J. Rapid tachyphylaxis of the glucagon-like peptide 1-induced deceleration of gastric emptying in humans. Diabetes 60, 1561–1565 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fehse, F. et al. Exenatide augments first- and second-phase insulin secretion in response to intravenous glucose in subjects with type 2 diabetes. J. Clin. Endocrinol. Metab. 90, 5991–5997 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Becker, R. H. A., Ruus, P., Liu Y.-H. & Kapitza, C. Restoration of insulin release with lixisenatide in patients with type 2 diabetes [abstract 850]. Diabetologia 53, S339 (2010).

    Google Scholar 

  55. Ratner, R. E., Rosenstock, J., Boka, G. & Silvestre, L. Post-meal pharmacodynamic profile of AVE0010, a once-daily GLP-1 receptor agonist, in patients with type 2 diabetes inadequately controlled on metformin [abstract 131]. Diabetologia 52, S60 (2009).

    Article  CAS  Google Scholar 

  56. Willms, B. et al. Gastric emptying, glucose responses, and insulin secretion after a liquid test meal: effects of exogenous glucagon-like peptide-1 (GLP-1)7–36 amide in type 2 (noninsulin-dependent) diabetic patients. J. Clin. Endocrinol. Metab. 81, 327–332 (1996).

    CAS  PubMed  Google Scholar 

  57. Edwards, C. M. et al. Exendin-4 reduces fasting and postprandial glucose and decreases energy intake in healthy volunteers. Am. J. Physiol. Endocrinol. Metab. 281, E155–E161 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. O'Donovan, D. G. et al. Effect of variations in small intestinal glucose delivery on plasma glucose, insulin, and incretin hormones in healthy subjects and type 2 diabetes. J. Clin. Endocrinol. Metab. 89, 3431–3435 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. DeFronzo, R. A. et al. Effects of exenatide versus sitagliptin on postprandial glucose, insulin and glucagon secretion, gastric emptying, and caloric intake: a randomized, cross-over study. Curr. Med. Res. Opin. 24, 2943–2952 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Farr, S. & Adeli, K. Incretin-based therapies for treatment of postprandial dyslipidemia in insulin-resistant states. Curr. Opin. Lipidol. 23, 56–61 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Eng, J., Kleinman, W. A., Singh, L., Singh, G. & Raufman, J. P. Isolation and characterisation of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom: further evidence for an exendin receptor on dispersed acini from guinea pig pancreas. J. Biol. Chem. 267, 7402–7405 (1992).

    CAS  PubMed  Google Scholar 

  62. Nielsen, L. L., Young, A. A. & Parkes, D. G. Pharmacology of exenatide (synthetic exendin-4): a potential therapeutic for improved glycemic control of type 2 diabetes. Regul. Pept. 117, 77–88 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Kendall, D. M. et al. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in patients with type 2 diabetes treated with metformin and a sulfonylurea. Diabetes Care 28, 1083–1091 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Buse, J. B. et al. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in sulfonylurea-treated patients with type 2 diabetes. Diabetes Care 27, 2628–2635 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Defronzo, R. A. et al. Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes. Diabetes Care 28, 1092–1100 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Heine, R. J. et al. Exenatide versus insulin glargine in patients with suboptimally controlled type 2 diabetes: a randomized trial. Ann. Intern. Med. 143, 559–569 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Buse, J. B. et al. Liraglutide treatment is associated with a low frequency and magnitude of antibody formation with no apparent impact on glycemic response or increased frequency of adverse events: results from the Liraglutide Effect and Action in Diabetes (LEAD) trials. J. Clin. Endocrinol. Metab. 96, 1695–1702 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Christensen, M., Knop, F. K., Holst, J. J. & Vilsboll, T. Lixisenatide, a novel GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus. IDrugs 12, 503–513 (2009).

    CAS  PubMed  Google Scholar 

  69. Ratner, R. A., Rosenstock, J., Boka, G. & DRI6012 Study Investigatiors. Dose-dependent effects of the once-daily GLP-1 receptor agonist lixisenatide in patients with type 2 diabetes inadequately controlled with metformin: a randomized, double-blind, placebo-controlled trial. Diabetic Med. 27, 1024–1032 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Distiller, L. A. & Ruus, R. Pharmacokinetics and pharmacodynamics of a new GLP-1 agonist AVE0010 in type 2 diabetes patients. Diabetes 57 (Suppl. 1), A154–A155 (2008).

    Google Scholar 

  71. Gerich, J. E. et al. Monotherapy with GLP-1 receptor agonist, lixisenatide, significantly improves glycaemic control in type 2 diabetic patients [abstract 830]. Diabetologia 53 (Suppl. 1), S330 (2010).

    Google Scholar 

  72. Ratner, R. E. et al. Efficacy and safety of lixisenatide once-daily versus placebo in patients with type 2 diabetes mellitus insufficiently controlled on sulfonylurea ± metformin (GetGoal-S.) [abstract 785]. Diabetologia 54, S317 (2011).

    Google Scholar 

  73. Rosenstock, J. et al. Efficacy and safety of lixisenatide once-daily versus exenatide twice-daily in patients with type 2 diabetes insufficiently controlled on metformin (GetGoal-X) [abstract 786]. Diabetologia 54, S317 (2011).

    Google Scholar 

  74. Madsen, K. et al. Structure–activity and protraction relationship of long-acting glucagon-like peptide-1 derivatives: importance of fatty acid length, polarity, and bulkiness. J. Med. Chem. 50, 6126–6132 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Buse, J. B. et al. Efficacy and safety of exenatide once weekly versus liraglutide in subjects with type 2 diabetes (DURATION-6): a randomised, open-label study [abstract 75]. Diabetologia 54, S38 (2011).

    Google Scholar 

  76. Degn, K. B. et al. One week's treatment with the long-acting glucagon-like peptide 1 derivative liraglutide (NN2211) markedly improves 24-h glycemia and α- and β-cell function and reduces endogenous glucose release in patients with type 2 diabetes. Diabetes 53, 1187–1194 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Flint, A., Kapitza, C., Hindsberger, C. & Zdravkovic, M. The once-daily human glucagon-like peptide-1 (GLP-1) analog liraglutide improves postprandial glucose levels in type 2 diabetes patients. Adv. Ther. 28, 213–226 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Meier, J. J., Gallwitz, B., Schmidt, W. E. & Nauck, M. A. Glucagon-like peptide 1 (GLP-1) as a regulator of food intake and body weight: therapeutic perspectives. Eur. J. Pharmacol. 440, 269–279 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Tang-Christensen, M., Vrang, N. & Larsen, P. J. Glucagon-like peptide containing pathways in the regulation of feeding behaviour. Int. J. Obes. Relat. Metab. Disord. 25 (Suppl. 5), S42–S47 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Turton, M. D. et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379, 69–72 (1996).

    Article  CAS  PubMed  Google Scholar 

  81. Meeran, K. et al. Repeated intracerebroventricular administration of glucagon-like peptide-1-7–36 amide or exendin9–39 alters body weight in the rat. Endocrinology 140, 244–250 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Seino, Y. et al. Safety, tolerability, pharmacokinetics and pharmacodynamics of albiglutide, a long-acting GLP-1-receptor agonist, in Japanese subjects with type 2 diabetes mellitus. Curr. Med. Res. Opin. 25, 3049–3057 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Matthews, J. E. et al. Pharmacodynamics, pharmacokinetics, safety, and tolerability of albiglutide, a long-acting glucagon-like peptide-1 mimetic, in patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 93, 4810–4817 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Bush, M. A. et al. Safety, tolerability, pharmacodynamics and pharmacokinetics of albiglutide, a long-acting glucagon-like peptide-1 mimetic, in healthy subjects. Diabetes Obes. Metab. 11, 498–505 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Reusch, J. E. B., Rosenstock, J., Bush, M. A., Yang, F. & Stewart, M. W. Albiglutide, a long-acting GLP-1 receptor agonist, improves glycemia in type 2 diabetes: time-course analysis [abstract]. Diabetes 58, 461-P (2009).

    Google Scholar 

  86. [No authors listed] GSK receives initial data from the first completed phase lll study of albiglutide in type 2 diabetes. GlaxoSmithKline [online], (2011).

  87. Ørskov, C., Poulsen, S. S., Møller, M. & Holst, J. J. Glucagon-like peptide I receptors in the subfornical organ and the area postrema are accessible to circulating glucagon-like peptide I. Diabetes 45, 832–835 (1996).

    Article  PubMed  Google Scholar 

  88. Rosenstock, J., Reusch, J., Bush, M., Yang, F., Stewart, M. Potential of albiglutide, a long-acting GLP-1 receptor agonist, in type 2 diabetes: a randomized controlled trial exploring weekly, biweekly, and monthly dosing. Diabetes Care 32, 1880–1886 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rosenstock J., Reusch, J., Bush, M., Yang, F. & Stewart, M. The potential of albiglutide, a long-acting GLP-1 receptor agonist, in type 2 diabetes: a randomized controlled trial exploring weekly, biweekly, and monthly dosing [abstract]. Diabetes 59, 163-OR (2009).

    Google Scholar 

  90. Stewart, M. W., Reusch, J. E., Bush, M. A., Yang, F., Rosenstock, J. The gastrointestinal adverse event profile of albiglutide, a long-acting GLP-1 receptor agonist, in type 2 diabetes [abstract]. Diabetes 59, 598-P (2009).

    Google Scholar 

  91. Glaesner, W. et al. Engineering and characterization of the long-acting glucagon-like peptide-1 analogue LY2189265, an Fc fusion protein. Diabetes 26, 287–296 (2010).

    CAS  Google Scholar 

  92. Barrington, P. et al. LY2189265, a long-acting glucagon-like peptide-1 analogue, showed a dose-dependent effect on insulin secretion in healthy subjects. Diabetes Obes. Metab. 13, 434–438 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Barrington, P. et al. A 5-week study of the pharmacokinetics and pharmacodynamics of LY2189265, a novel, long-acting glucagon-like peptide-1 analogue, in patients with type 2 diabetes. Diabetes Obes. Metab. 13, 426–433 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Umpierrez, G. E. The effects of LY2189265, a long-acting glucagon-like peptide-1 analogue, in a randomized, placebo-controlled, double-blind study of overweight/obese patients with type 2 diabetes: the EGO study. Diabetes Obes. Metab. 13, 418–425 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Diamant, M. et al. Once weekly exenatide compared with insulin glargine titrated to target in patients with type 2 diabetes (DURATION-3): an open-label randomised trial. Lancet 375, 2234–2243 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Bergenstal, R. M. et al. Efficacy and safety of exenatide once weekly versus sitagliptin or pioglitazone as an adjunct to metformin for treatment of type 2 diabetes (DURATION-2): a randomised trial. Lancet 376, 431–439 (2010).

    Article  PubMed  Google Scholar 

  97. Blevins, T. et al. DURATION-5: exenatide once weekly resulted in greater improvements in glycemic control compared with exenatide twice daily in patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 96, 1301–1310 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Buse, J. B. et al. Efficacy and safety of exenatide once weekly versus liraglutide in subjects with type 2 diabetes (DURATION-6): a randomised, open-label study [abstract 75]. Diabetologia 54, S38 (2011).

    Google Scholar 

  99. Fineman, M. et al. Antibodies to exenatide did not cross-react with human GLP-1 or glucagon or alter the efficacy or safety of exenatide [abstract 858]. Diabetologia 53, S342 (2010).

    Google Scholar 

  100. Marre, M. et al. Liraglutide, a once-daily human GLP-1 analogue, added to a sulphonylurea over 26 weeks produces greater improvements in glycaemic and weight control compared with adding rosiglitazone or placebo in subjects with type 2 diabetes (LEAD-1 SU). Diabet. Med. 26, 268–278 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Nauck, M. et al. Efficacy and safety comparison of liraglutide, glimepiride, and placebo, all in combination with metformin, in type 2 diabetes: the LEAD (Liraglutide Effect and Action in Diabetes)-2 study. Diabetes Care 32, 84–90 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zinman, B. et al. Efficacy and safety of the human glucagon-like peptide-1 analog liraglutide in combination with metformin and thiazolidinedione in patients with type 2 diabetes (LEAD-4 Met + TZD). Diabetes Care 32, 1224–1230 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Montanya, E. & Sesti, G. A review of efficacy and safety data regarding the use of liraglutide, a once-daily human glucagon-like peptide 1 analogue, in the treatment of type 2 diabetes mellitus. Clin. Ther. 31, 2472–2488 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Astrup, A. et al. Effects of liraglutide in the treatment of obesity: a randomised, double-blind, placebo-controlled study. Lancet 374, 1606–1616 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Pratley, R. E. et al. Liraglutide versus sitagliptin for patients with type 2 diabetes who did not have adequate glycaemic control with metformin: a 26-week, randomised, parallel-group, open-label trial. Lancet 375, 1447–1456 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Guivarc P.-H. et al. CJC-1131, a long acting GLP-1 analog, safely normalizes post-prandial glucose excursion and fasting glycemia in type 2 diabetes mellitus [abstract]. Diabetes 53, 535-P (2004).

    Article  Google Scholar 

  107. Baggio, L. L., Huang, Q., Brown, T. J. & Drucker, D. J. A recombinant human glucagon-like peptide (GLP)-1-albumin protein (albugon) mimics peptidergic activation of GLP-1 receptor-dependent pathways coupled with satiety, gastrointestinal motility, and glucose homeostasis. Diabetes 53, 2492–2500 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Gill, A. et al. Effect of exenatide on heart rate and blood pressure in subjects with type 2 diabetes mellitus: a double-blind, placebo-controlled, randomized pilot study. Cardiovasc. Diabetol. 9, 6 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Nauck, M. A. & Meier, J. J. Individualised incretin-based treatment for type 2 diabetes. Lancet 376, 393–394 (2010).

    Article  PubMed  Google Scholar 

  110. Monnier, L., Lapinski, H. & Colette, C. Contributions of fasting and postprandial plasma glucose increments to the overall diurnal hyperglycemia of type 2 diabetic patients: variations with increasing levels of HbA1c . Diabetes Care 26, 881–885 (2003).

    Article  PubMed  Google Scholar 

  111. Nauck, M. A. & Meier, J. J. Pharmacotherapy: GLP-1 analogues and insulin: sound the wedding bells? Nat. Rev. Endocrinol. 7, 193–195 (2011).

    Article  CAS  PubMed  Google Scholar 

  112. Arnolds, S. et al. Further improvement in postprandial glucose control with addition of exenatide or sitagliptin to combination therapy with insulin glargine and metformin: a proof-of-concept study. Diabetes Care 33, 1509–1515 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Buse, J. B. et al. Use of twice-daily exenatide in basal insulin-treated patients with type 2 diabetes: a randomized, controlled trial. Ann. Intern. Med. 154, 103–112 (2011).

    Article  PubMed  Google Scholar 

  114. DeVries J. H. et al. Sequential intensification of metformin treatment in type 2 diabetes with liraglutide followed by randomized addition of basal insulin prompted by A1c targets. Diabetes Care 35, 1446–1454 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kaku, K., Rasmussen, M. F., Clauson, P. & Seino, Y. Improved glycaemic control with minimal hypoglycaemia and no weight change with the once-daily human glucagon-like peptide-1 analogue liraglutide as add-on to sulphonylurea in Japanese patients with type 2 diabetes. Diabetes Obes. Metab. 12, 341–347 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Lovshin, J. A. & Drucker, D. J. Incretin-based therapies for type 2 diabetes mellitus. Nat. Rev. Endocrinol. 5, 262–269 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Elashoff, M., Matveyenko, A. V., Gier, B., Elashoff, R. & Butler, P. C. Pancreatitis, pancreatic, and thyroid cancer with glucagon-like peptide-1-based therapies. Gastroenterology 141, 150–156 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. Noel, R. A., Braun, D. K., Patterson, R. E. & Bloomgren, G. L. Increased risk of acute pancreatitis and biliary disease observed in patients with type 2 diabetes: a retrospective cohort study. Diabetes Care 32, 834–838 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Garg, R., Chen, W. & Pendergrass, M. Acute pancreatitis in type 2 diabetes treated with exenatide or sitagliptin: a retrospective observational pharmacy claims analysis. Diabetes Care 33, 2349–2354 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Steinberg, W. M. et al. Longitudinal monitoring of lipase and amylase in adults with type 2 diabetes and obesity: evidence from two phase 3 randomized clinical trials with the once-daily GLP-1 analog liraglutide [poster presentation at Digestive Disease Week 2012]. Gastroenterology 142 (Suppl. 1) S-850–S-851 (2012).

    Article  Google Scholar 

  121. Lankisch, P. G. et al. Hyperamylasaemia and/or hyperlipasaemia: incidence and underlying causes in hospitalized patients with non-pancreatic diseases. Scand. J. Gastroenterol. 44, 237–241 (2009).

    Article  PubMed  Google Scholar 

  122. Bjerre Knudsen, L. et al. Glucagon-like peptide-1 receptor agonists activate rodent thyroid C-cells causing calcitonin release and C-cell proliferation. Endocrinology 151, 1473–1486 (2011).

    Article  CAS  Google Scholar 

  123. Hegedus, L., Moses, A. C., Zdravkovic, M., Le Thi, T. & Daniels, G. H. GLP-1 and calcitonin concentration in humans: lack of evidence of calcitonin release from sequential screening in over 5000 subjects with type 2 diabetes or nondiabetic obese subjects treated with the human GLP-1 analog, liraglutide. J. Clin. Endocrinol. Metab. 96, 853–860 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Diamant, M. et al. Once weekly exenatide compared with insulin glargine titrated to target in patients with type 2 diabetes (DURATION-3): an open-label randomised trial. Lancet 375, 2234–2243 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. Kapitza, C. et al. Pharmacodynamic characteristics of lixisenatide QD vs liraglutide QD in patients with T2DM inadequately controlled with metformin. Presented at the 2011 International Diabetes Federation World Diabetes congress.

  126. Imeryuz, N. et al. Glucagon-like peptide-1 inhibits gastric emptying via vagal afferent-mediated central mechanisms. Am. J. Physiol. 273, G920–G927 (1997).

    CAS  PubMed  Google Scholar 

  127. Parks, M. & Rosebraugh, C. Weighing risks and benefits of liraglutide—the FDA's review of a new antidiabetic therapy. N. Engl. J. Med. 362, 774–777 (2010).

    Article  CAS  PubMed  Google Scholar 

  128. Linnebjerg, H. et al. A thorough QT study to evaluate the effects of single dose exenatide 10 μg on cardiac repolarization in healthy subjects. Int. J. Clin. Pharmacol. Ther. 49, 594–604 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Chatterjee, D. J., Khutoryansky, N., Zdravkovic, M., Sprenger, C. R. & Litwin, J. S. Absence of QTc prolongation in a thorough QT study with subcutaneous liraglutide, a once-daily human GLP-1 analog for treatment of type 2 diabetes. J. Clin. Pharmacol. 49, 1353–1362 (2009).

    Article  CAS  PubMed  Google Scholar 

  130. Zinman, B., Schmidt, W. E., Moses, A., Lund, N. & Gough, S. Achieving a clinically relevant composite outcome of an HbA1c of <7% without weight gain or hypoglycaemia in type 2 diabetes: a meta-analysis of the liraglutide clinical trial programme. Diabetes Obes. Metab. 14, 77–82 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. Madsbad, S. Treatment of type 2 diabetes with incretin-based therapies. Lancet 373, 438–439 (2009).

    Article  PubMed  Google Scholar 

  132. Kielgast, U., Krarup, T., Holst, J. J. & Madsbad, S. Four weeks of treatment with liraglutide reduces insulin dose without loss of glycemic control in type 1 diabetic patients with and without residual β-cell function. Diabetes Care 34, 1463–1468 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Creutzfeldt, W. O. et al. Glucagonostatic actions and reduction of fasting hyperglycemia by exogenous glucagon-like peptide I7–36 amide in type I diabetic patients. Diabetes Care 19, 580–586 (1996).

    Article  CAS  PubMed  Google Scholar 

  134. During, M. J. et al. Glucagon-like peptide-1 receptor is involved in learning and neuroprotection. Nat. Med. 9, 1173–1179 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. Nikolaidis, L. A. et al. Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy. Circulation 110, 955–961 (2004).

    Article  CAS  PubMed  Google Scholar 

  136. Bose, A. K, Mocanu, M. M., Carr, R. D., Brand, C. L. & Yellon, D. M. Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes 54, 146–151 (2005).

    Article  CAS  PubMed  Google Scholar 

  137. Buteau, J. et al. Protein kinase Cζ activation mediates glucagon-like peptide-1-induced pancreatic β-cell proliferation. Diabetes 50, 2237–2243 (2001).

    Article  CAS  PubMed  Google Scholar 

  138. Luque, M. A. et al. Glucagon-like peptide-1 (GLP-1) and glucose metabolism in human myocytes. J. Endocrinol. 173, 465–473 (2002).

    Article  CAS  PubMed  Google Scholar 

  139. Gutzwiller, J. P. et al. Glucagon-like peptide 1 induces natriuresis in healthy subjects and in insulin-resistant obese men. J. Clin. Endocrinol. Metab. 89, 3055–3061 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Villanueva-Penacarrillo, M. L., Marquez, L., Gonzalez, N., Diaz-Miguel, M. & Valverde, I. Effect of GLP-1 on lipid metabolism in human adipocytes. Horm. Metab. Res. 33, 73–77 (2001).

    Article  CAS  PubMed  Google Scholar 

  141. Valverde, I. et al. Glucagon-like peptide 1: a potent glycogenic hormone. FEBS Lett. 349, 313–316 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juris J. Meier.

Ethics declarations

Competing interests

The author declares associations with the following companies: Astra-Zeneca, Bristol-Myers Squibb, Merck Sharpe & Dohme, NovoNordisk and Sanofi-Aventis (advisory board membership; speakers bureau); Berlin-Chemie and Roche (speakers bureau); Boehringer-Ingelheim (advisory board membership); Eli Lilly and Novartis (speakers bureau; research support).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meier, J. GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat Rev Endocrinol 8, 728–742 (2012). https://doi.org/10.1038/nrendo.2012.140

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2012.140

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing