Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Endocrine-disrupting chemicals and the regulation of energy balance

This article has been updated

Key Points

  • Humans are exposed to a cocktail of common metabolism-disrupting chemicals (MDCs) that affect every aspect of energy balance

  • MDCs alter energy intake by targeting the gut cells involved in nutrient transport and peptide secretion, as well as the gut microbiota and hypothalamic neurons

  • Energy expenditure is affected by the influence of MDCs on brown adipose tissue function, skeletal muscle metabolism and thyroid hormone production and action

  • MDCs act on the most important metabolic tissues involved in energy storage: the endocrine pancreas, the liver, white adipose tissue and skeletal muscle

  • MDCs disrupt insulin secretion in pancreatic β cells and alter insulin-dependent glucose metabolism in the liver, skeletal muscle and adipocytes, modifying lipogenesis and glucose metabolism after altering the expression of essential genes

  • MDCs also affect energy homeostasis, as they alter the metabolic cues that connect the different organs involved in metabolism

Abstract

Energy balance involves the adjustment of food intake, energy expenditure and body fat reserves through homeostatic pathways. These pathways include a multitude of biochemical reactions, as well as hormonal cues. Dysfunction of this homeostatic control system results in common metabolism-related pathologies, which include obesity and type 2 diabetes mellitus. Metabolism-disrupting chemicals (MDCs) are a particular class of endocrine-disrupting chemicals that affect energy homeostasis. MDCs affect multiple endocrine mechanisms and thus different cell types that are implicated in metabolic control. MDCs affect gene expression and the biosynthesis of key enzymes, hormones and adipokines that are essential for controlling energy homeostasis. This multifaceted spectrum of actions precludes compensatory responses and favours metabolic disorders. Herein, we review the main mechanisms used by MDCs to alter energy balance. This work should help to identify new MDCs, as well as novel targets of their action.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Organs targeted by metabolism-disrupting chemicals.
Figure 2: Lipid metabolism and metabolism-disrupting chemicals.

Similar content being viewed by others

Change history

  • 02 June 2017

    In the original published article, figure 1 was incorrect. The editors apologize to the authors and the readers for this error. This error has been corrected in the HTML and PDF versions of the article.

References

  1. Speakman, J. R. Evolutionary perspectives on the obesity epidemic: adaptive, maladaptive, and neutral viewpoints. Annu. Rev. Nutr. 33, 289–317 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Bouret, S., Levin, B. E. & Ozanne, S. E. Gene–environment interactions controlling energy and glucose homeostasis and the developmental origins of obesity. Physiol. Rev. 95, 47–82 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Zoeller, R. T. et al. Endocrine-disrupting chemicals and public health protection: a statement of principles from The Endocrine Society. Endocrinology 153, 4097–4110 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Grun, F. & Blumberg, B. Environmental obesogens: organotins and endocrine disruption via nuclear receptor signaling. Endocrinology 147, S50–S55 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Gore, A. C. et al. EDC-2: The Endocrine Society's second scientific statement on endocrine-disrupting chemicals. Endocr. Rev. 36, E1–E150 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Heindel, J. J., Newbold, R. & Schug, T. T. Endocrine disruptors and obesity. Nat. Rev. Endocrinol. 11, 653–661 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Alonso-Magdalena, P., Quesada, I. & Nadal, A. Endocrine disruptors in the etiology of type 2 diabetes mellitus. Nat. Rev. Endocrinol. 7, 346–353 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Neel, B. A. & Sargis, R. M. The paradox of progress: environmental disruption of metabolism and the diabetes epidemic. Diabetes 60, 1838–1848 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Cave, M. et al. Toxicant-associated steatohepatitis in vinyl chloride workers. Hepatology 51, 474–481 (2010).

    Article  PubMed  CAS  Google Scholar 

  10. Heindel, J. J. et al. Metabolism disrupting chemicals and metabolic disorders. Reprod. Toxicol. 68, 3–33 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Flahr, L. M., Michel, N. L., Zahara, A. R., Jones, P. D. & Morrissey, C. A. Developmental exposure to Aroclor 1254 alters migratory behavior in juvenile European starlings (Sturnus vulgaris). Environ. Sci. Technol. 49, 6274–6283 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Bost, P. C. et al. U.S. domestic cats as sentinels for perfluoroalkyl substances: possible linkages with housing, obesity, and disease. Environ. Res. 151, 145–153 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Kuo, C. C., Moon, K., Thayer, K. A. & Navas-Acien, A. Environmental chemicals and type 2 diabetes: an updated systematic review of the epidemiologic evidence. Curr. Diab. Rep. 13, 831–849 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Braun, J. M. Early-life exposure to EDCs: role in childhood obesity and neurodevelopment. Nat. Rev. Endocrinol. 13, 161–173 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Rubin, B. S. et al. Perinatal BPA exposure alters body weight and composition in a dose specific and sex specific manner: the addition of peripubertal exposure exacerbates adverse effects in female mice. Reprod. Toxicol. 68, 130–144 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Guillette, L. J. Jr, Crain, D. A., Rooney, A. A. & Pickford, D. B. Organization versus activation: the role of endocrine-disrupting contaminants (EDCs) during embryonic development in wildlife. Environ. Health Perspect. 103 (Suppl. 7), 157–164 (1995).

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Soto, A. M. & Sonnenschein, C. Environmental causes of cancer: endocrine disruptors as carcinogens. Nat. Rev. Endocrinol. 6, 363–370 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Centers for Disease Control and Prevention. Fourth national report on human exposure to environmental chemicals. CDC https://www.cdc.gov/exposurereport/pdf/fourthreport.pdf (2009).

  19. Centers for Disease Control and Prevention. Fourth national exposure report, updated tables. CDC https://www.cdc.gov/biomonitoring/pdf/fourthreport_updatedtables_feb2015.pdf (2015).

  20. DeFronzo, R. A. et al. Type 2 diabetes mellitus. Nat. Rev. Dis. Primers 1, 15019 (2015).

    Article  PubMed  Google Scholar 

  21. Biddinger, S. B. & Kahn, C. R. From mice to men: insights into the insulin resistance syndromes. Annu. Rev. Physiol. 68, 123–158 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Ishida, T. et al. 2,3,7,8-Tetrachlorodibenzo-p-dioxin-induced change in intestinal function and pathology: evidence for the involvement of arylhydrocarbon receptor-mediated alteration of glucose transportation. Toxicol. Appl. Pharmacol. 205, 89–97 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Sui, Y. et al. Intestinal pregnane X receptor links xenobiotic exposure and hypercholesterolemia. Mol. Endocrinol. 29, 765–776 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Zietek, T. & Rath, E. Inflammation meets metabolic disease: gut feeling mediated by GLP-1. Front. Immunol. 7, 154 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Braniste, V. et al. Impact of oral bisphenol A at reference doses on intestinal barrier function and sex differences after perinatal exposure in rats. Proc. Natl Acad. Sci. USA 107, 448–453 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Menard, S. et al. Food intolerance at adulthood after perinatal exposure to the endocrine disruptor bisphenol A. FASEB J. 28, 4893–4900 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Khalil, A. et al. Polycyclic aromatic hydrocarbons potentiate high-fat diet effects on intestinal inflammation. Toxicol. Lett. 196, 161–167 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Bauer, P. V., Hamr, S. C. & Duca, F. A. Regulation of energy balance by a gut–brain axis and involvement of the gut microbiota. Cell. Mol. Life Sci. 73, 737–755 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Lee, H. M., He, Q., Englander, E. W. & Greeley, G. H. Jr. Endocrine disruptive effects of polychlorinated aromatic hydrocarbons on intestinal cholecystokinin in rats. Endocrinology 141, 2938–2944 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Rosenbaum, M., Knight, R. & Leibel, R. L. The gut microbiota in human energy homeostasis and obesity. Trends Endocrinol. Metab. 26, 493–501 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Fetissov, S. O. Role of the gut microbiota in host appetite control: bacterial growth to animal feeding behaviour. Nat. Rev. Endocrinol. 13, 11–25 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, L. et al. Persistent organic pollutants modify gut microbiota–host metabolic homeostasis in mice through aryl hydrocarbon receptor activation. Environ. Health Perspect. 123, 679–688 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Choi, J. J. et al. Exercise attenuates PCB-induced changes in the mouse gut microbiome. Environ. Health Perspect. 121, 725–730 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lu, K. et al. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis. Environ. Health Perspect. 122, 284–291 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Dheer, R. et al. Arsenic induces structural and compositional colonic microbiome change and promotes host nitrogen and amino acid metabolism. Toxicol. Appl. Pharmacol. 289, 397–408 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Joly, C. et al. Impact of chronic exposure to low doses of chlorpyrifos on the intestinal microbiota in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME) and in the rat. Environ. Sci. Pollut. Res. Int. 20, 2726–2734 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, S., Jin, Y., Zeng, Z., Liu, Z. & Fu, Z. Subchronic exposure of mice to cadmium perturbs their hepatic energy metabolism and gut microbiome. Chem. Res. Toxicol. 28, 2000–2009 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Gao, B., Bian, X., Mahbub, R. & Lu, K. Sex-specific effects of organophosphate diazinon on the gut microbiome and its metabolic functions. Environ. Health Perspect. 125, 198–206 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Snedeker, S. M. & Hay, A. G. Do interactions between gut ecology and environmental chemicals contribute to obesity and diabetes? Environ. Health Perspect. 120, 332–339 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Claus, S. P., Guillou, H. & Ellero-Simatos, S. The gut microbiota: a major player in the toxicity of environmental pollutants? NPJ Biofilms Microbiomes 2, 16003 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lopez, M. & Tena-Sempere, M. Estrogens and the control of energy homeostasis: a brain perspective. Trends Endocrinol. Metab. 26, 411–421 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Mackay, H. et al. Organizational effects of perinatal exposure to bisphenol-A and diethylstilbestrol on arcuate nucleus circuitry controlling food intake and energy expenditure in male and female CD-1 mice. Endocrinology 154, 1465–1475 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Batista, T. M. et al. Short-term treatment with bisphenol-A leads to metabolic abnormalities in adult male mice. PLoS ONE 7, e33814 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Garcia-Arevalo, M. et al. Exposure to bisphenol-A during pregnancy partially mimics the effects of a high-fat diet altering glucose homeostasis and gene expression in adult male mice. PLoS ONE 9, e100214 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Anderson, O. S. et al. Perinatal bisphenol A exposure promotes hyperactivity, lean body composition, and hormonal responses across the murine life course. FASEB J. 27, 1784–1792 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Angle, B. M. et al. Metabolic disruption in male mice due to fetal exposure to low but not high doses of bisphenol A (BPA): evidence for effects on body weight, food intake, adipocytes, leptin, adiponectin, insulin and glucose regulation. Reprod. Toxicol. 42, 256–268 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Asakawa, A. et al. Perfluorooctane sulfonate influences feeding behavior and gut motility via the hypothalamus. Int. J. Mol. Med. 19, 733–739 (2007).

    CAS  PubMed  Google Scholar 

  48. Asakawa, A. et al. The ubiquitous environmental pollutant perfluorooctanoicacid inhibits feeding behavior via peroxisome proliferator-activated receptor-α. Int. J. Mol. Med. 21, 439–445 (2008).

    CAS  PubMed  Google Scholar 

  49. Austin, M. E. et al. Neuroendocrine effects of perfluorooctane sulfonate in rats. Environ. Health Perspect. 111, 1485–1489 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Bo, E. et al. Adult exposure to tributyltin affects hypothalamic neuropeptide Y, Y1 receptor distribution, and circulating leptin in mice. Andrology 4, 723–734 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Schmidt, J. S., Schaedlich, K., Fiandanese, N., Pocar, P. & Fischer, B. Effects of di(2-ethylhexyl) phthalate (DEHP) on female fertility and adipogenesis in C3H/N mice. Environ. Health Perspect. 120, 1123–1129 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Monje, L., Varayoud, J., Munoz-de-Toro, M., Luque, E. H. & Ramos, J. G. Exposure of neonatal female rats to bisphenol A disrupts hypothalamic LHRH pre-mRNA processing and estrogen receptor alpha expression in nuclei controlling estrous cyclicity. Reprod. Toxicol. 30, 625–634 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Musatov, S. et al. Silencing of estrogen receptor α in the ventromedial nucleus of hypothalamus leads to metabolic syndrome. Proc. Natl Acad. Sci. USA 104, 2501–2506 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Decherf, S., Seugnet, I., Fini, J. B., Clerget-Froidevaux, M. S. & Demeneix, B. A. Disruption of thyroid hormone-dependent hypothalamic set-points by environmental contaminants. Mol. Cell. Endocrinol. 323, 172–182 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Farooqi, I. S. et al. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N. Engl. J. Med. 348, 1085–1095 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Walker, D. M., Goetz, B. M. & Gore, A. C. Dynamic postnatal developmental and sex-specific neuroendocrine effects of prenatal polychlorinated biphenyls in rats. Mol. Endocrinol. 28, 99–115 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Rabaglino, M. B. et al. Genomic effect of triclosan on the fetal hypothalamus: evidence for altered neuropeptide regulation. Endocrinology 157, 2686–2697 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Fetissov, S. O. et al. Expression of hypothalamic neuropeptides after acute TCDD treatment and distribution of Ah receptor repressor. Regul. Pept. 119, 113–124 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Sullivan, A. W. et al. A novel model for neuroendocrine toxicology: neurobehavioral effects of BPA exposure in a prosocial species, the prairie vole (Microtus ochrogaster). Endocrinology 155, 3867–3881 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Elsworth, J. D. et al. Prenatal exposure to bisphenol A impacts midbrain dopamine neurons and hippocampal spine synapses in non-human primates. Neurotoxicology 35, 113–120 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Coban, A. & Filipov, N. M. Dopaminergic toxicity associated with oral exposure to the herbicide atrazine in juvenile male C57BL/6 mice. J. Neurochem. 100, 1177–1187 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Salgado, R., Lopez-Doval, S., Pereiro, N. & Lafuente, A. Perfluorooctane sulfonate (PFOS) exposure could modify the dopaminergic system in several limbic brain regions. Toxicol. Lett. 240, 226–235 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Jiang, Y. et al. BPA-induced DNA hypermethylation of the master mitochondrial gene PGC-1α contributes to cardiomyopathy in male rats. Toxicology 329, 21–31 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Mailloux, R. J. et al. Exposure to a northern contaminant mixture (NCM) alters hepatic energy and lipid metabolism exacerbating hepatic steatosis in obese JCR rats. PLoS ONE 9, e106832 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Cocco, S. et al. Polychlorinated biphenyls induce mitochondrial dysfunction in SH-SY5Y neuroblastoma cells. PLoS ONE 10, e0129481 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Yamada, S. et al. Tributyltin induces mitochondrial fission through Mfn1 degradation in human induced pluripotent stem cells. Toxicol. In Vitro 34, 257–263 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. La Merrill, M. et al. Perinatal exposure of mice to the pesticide DDT impairs energy expenditure and metabolism in adult female offspring. PLoS ONE 9, e103337 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Shabalina, I. G. et al. The environmental pollutants perfluorooctane sulfonate and perfluorooctanoic acid upregulate uncoupling protein 1 (UCP1) in brown-fat mitochondria through a UCP1-dependent reduction in food intake. Toxicol. Sci. 146, 334–343 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Shabalina, I. G., Kalinovich, A. V., Cannon, B. & Nedergaard, J. Metabolically inert perfluorinated fatty acids directly activate uncoupling protein 1 in brown-fat mitochondria. Arch. Toxicol. 90, 1117–1128 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Hines, E. P. et al. Phenotypic dichotomy following developmental exposure to perfluorooctanoic acid (PFOA) in female CD-1 mice: low doses induce elevated serum leptin and insulin, and overweight in mid-life. Mol. Cell. Endocrinol. 304, 97–105 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Apelberg, B. J. et al. Cord serum concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in relation to weight and size at birth. Environ. Health Perspect. 115, 1670–1676 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Whitworth, K. W. et al. Perfluorinated compounds in relation to birth weight in the Norwegian Mother and Child Cohort Study. Am. J. Epidemiol. 175, 1209–1216 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  73. van Esterik, J. C. et al. Programming of metabolic effects in C57BL/6JxFVB mice by exposure to bisphenol A during gestation and lactation. Toxicology 321, 40–52 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Johnson, S. A. et al. Sex-dependent effects of developmental exposure to bisphenol A and ethinyl estradiol on metabolic parameters and voluntary physical activity. J. Dev. Orig. Health Dis. 6, 539–552 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Ishido, M., Yonemoto, J. & Morita, M. Mesencephalic neurodegeneration in the orally administered bisphenol A-caused hyperactive rats. Toxicol. Lett. 173, 66–72 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Masuo, Y., Ishido, M., Morita, M. & Oka, S. Effects of neonatal treatment with 6-hydroxydopamine and endocrine disruptors on motor activity and gene expression in rats. Neural Plast. 11, 59–76 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Nojima, K., Takata, T. & Masuno, H. Prolonged exposure to a low-dose of bisphenol A increases spontaneous motor activity in adult male rats. J. Physiol. Sci. 63, 311–315 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Sobolewski, M. et al. Sex-specific enhanced behavioral toxicity induced by maternal exposure to a mixture of low dose endocrine-disrupting chemicals. Neurotoxicology 45, 121–130 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Zhou, R., Zhang, Z., Zhu, Y., Chen, L. & Sokabe, M. Deficits in development of synaptic plasticity in rat dorsal striatum following prenatal and neonatal exposure to low-dose bisphenol A. Neuroscience 159, 161–171 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Onishchenko, N. et al. Prenatal exposure to PFOS or PFOA alters motor function in mice in a sex-related manner. Neurotox. Res. 19, 452–461 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Cauli, O., Piedrafita, B., Llansola, M. & Felipo, V. Gender differential effects of developmental exposure to methyl-mercury, polychlorinated biphenyls 126 or 153, or its combinations on motor activity and coordination. Toxicology 311, 61–68 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Elnar, A. A. et al. Neurodevelopmental and behavioral toxicity via lactational exposure to the sum of six indicator non-dioxin-like-polychlorinated biphenyls (∑6 NDL-PCBs) in mice. Toxicology 299, 44–54 (2013).

    Article  CAS  Google Scholar 

  83. Lee, D. W. et al. Subchronic polychlorinated biphenyl (Aroclor 1254) exposure produces oxidative damage and neuronal death of ventral midbrain dopaminergic systems. Toxicol. Sci. 125, 496–508 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Lesmana, R., Shimokawa, N., Takatsuru, Y., Iwasaki, T. & Koibuchi, N. Lactational exposure to hydroxylated polychlorinated biphenyl (OH-PCB 106) causes hyperactivity in male rat pups by aberrant increase in dopamine and its receptor. Environ. Toxicol. 29, 876–883 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Tanida, T. et al. Fetal and neonatal exposure to three typical environmental chemicals with different mechanisms of action: mixed exposure to phenol, phthalate, and dioxin cancels the effects of sole exposure on mouse midbrain dopaminergic nuclei. Toxicol. Lett. 189, 40–47 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Ibrahim, M. M. et al. Chronic consumption of farmed salmon containing persistent organic pollutants causes insulin resistance and obesity in mice. PLoS ONE 6, e25170 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Williams, A. A. et al. Protective role of lycopene against Aroclor 1254-induced changes on GLUT4 in the skeletal muscles of adult male rat. Drug Chem. Toxicol. 36, 320–328 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Mauger, J. F., Nadeau, L., Caron, A., Chapados, N. A. & Aguer, C. Polychlorinated biphenyl 126 exposure in L6 myotubes alters glucose metabolism: a pilot study. Environ. Sci. Pollut. Res. Int. 23, 8133–8140 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Li, S., Brown, M. S. & Goldstein, J. L. Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis. Proc. Natl Acad. Sci. USA 107, 3441–3446 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Kurita, H. et al. Aryl hydrocarbon receptor-mediated effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on glucose-stimulated insulin secretion in mice. J. Appl. Toxicol. 29, 689–694 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Sato, S. et al. Low-dose dioxins alter gene expression related to cholesterol biosynthesis, lipogenesis, and glucose metabolism through the aryl hydrocarbon receptor-mediated pathway in mouse liver. Toxicol. Appl. Pharmacol. 229, 10–19 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Lee, J. H. et al. A novel role for the dioxin receptor in fatty acid metabolism and hepatic steatosis. Gastroenterology 139, 653–663 (2010).

    Article  PubMed  CAS  Google Scholar 

  93. Angrish, M. M., Dominici, C. Y. & Zacharewski, T. R. TCDD-elicited effects on liver, serum, and adipose lipid composition in C57BL/6 mice. Toxicol. Sci. 131, 108–115 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Diani-Moore, S. et al. Identification of the aryl hydrocarbon receptor target gene TiPARP as a mediator of suppression of hepatic gluconeogenesis by 2,3,7,8-tetrachlorodibenzo-p-dioxin and of nicotinamide as a corrective agent for this effect. J. Biol. Chem. 285, 38801–38810 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Lee, D. H., Porta, M., Jacobs, D. R. Jr & Vandenberg, L. N. Chlorinated persistent organic pollutants, obesity, and type 2 diabetes. Endocr. Rev. 35, 557–601 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Feige, J. N. et al. The pollutant diethylhexyl phthalate regulates hepatic energy metabolism via species-specific PPARα-dependent mechanisms. Environ. Health Perspect. 118, 234–241 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Nadal, A., Alonso-Magdalena, P., Soriano, S., Quesada, I. & Ropero, A. B. The pancreatic β-cell as a target of estrogens and xenoestrogens: implications for blood glucose homeostasis and diabetes. Mol. Cell. Endocrinol. 304, 63–68 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Alonso-Magdalena, P., Morimoto, S., Ripoll, C., Fuentes, E. & Nadal, A. The estrogenic effect of bisphenol A disrupts pancreatic β-cell function in vivo and induces insulin resistance. Environ. Health Perspect. 114, 106–112 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Marmugi, A. et al. Low doses of bisphenol A induce gene expression related to lipid synthesis and trigger triglyceride accumulation in adult mouse liver. Hepatology 55, 395–407 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Jayashree, S. et al. Effect of bisphenol-A on insulin signal transduction and glucose oxidation in liver of adult male albino rat. Environ. Toxicol. Pharmacol. 35, 300–310 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Jin, Y. et al. Chronic exposure of mice to environmental endocrine-disrupting chemicals disturbs their energy metabolism. Toxicol. Lett. 225, 392–400 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Cabaton, N. J. et al. Effects of low doses of bisphenol A on the metabolome of perinatally exposed CD-1 mice. Environ. Health Perspect. 121, 586–593 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Tremblay-Franco, M. et al. Dynamic metabolic disruption in rats perinatally exposed to low doses of bisphenol-A. PLoS ONE 10, e0141698 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Somm, E. et al. Perinatal exposure to bisphenol A alters early adipogenesis in the rat. Environ. Health Perspect. 117, 1549–1555 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Wei, J. et al. Perinatal exposure to bisphenol A exacerbates nonalcoholic steatohepatitis-like phenotype in male rat offspring fed on a high-fat diet. J. Endocrinol. 222, 313–325 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Jiang, Y. et al. Mitochondrial dysfunction in early life resulted from perinatal bisphenol A exposure contributes to hepatic steatosis in rat offspring. Toxicol. Lett. 228, 85–92 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Huc, L., Lemarie, A., Gueraud, F. & Helies-Toussaint, C. Low concentrations of bisphenol A induce lipid accumulation mediated by the production of reactive oxygen species in the mitochondria of HepG2 cells. Toxicol. In Vitro 26, 709–717 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Ma, Y. et al. Hepatic DNA methylation modifications in early development of rats resulting from perinatal BPA exposure contribute to insulin resistance in adulthood. Diabetologia 56, 2059–2067 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Li, G. et al. F0 maternal BPA exposure induced glucose intolerance of F2 generation through DNA methylation change in Gck. Toxicol. Lett. 228, 192–199 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Perreault, L. et al. Bisphenol A impairs hepatic glucose sensing in C57BL/6 male mice. PLoS ONE 8, e69991 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Alonso-Magdalena, P. et al. Bisphenol A exposure during pregnancy disrupts glucose homeostasis in mothers and adult male offspring. Environ. Health Perspect. 118, 1243–1250 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Wei, J. et al. Perinatal exposure to bisphenol A at reference dose predisposes offspring to metabolic syndrome in adult rats on a high-fat diet. Endocrinology 152, 3049–3061 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Lasram, M. M. et al. Changes in glucose metabolism and reversion of genes expression in the liver of insulin-resistant rats exposed to malathion. The protective effects of N-acetylcysteine. Gen. Comp. Endocrinol. 215, 88–97 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Gadupudi, G. S., Klaren, W. D., Olivier, A. K., Klingelhutz, A. J. & Robertson, L. W. PCB126-induced disruption in gluconeogenesis and fatty acid oxidation precedes fatty liver in male rats. Toxicol. Sci. 149, 98–110 (2016).

    Article  CAS  PubMed  Google Scholar 

  115. Gadupudi, G. S., Klingelhutz, A. J. & Robertson, L. W. Diminished phosphorylation of CREB is a key event in the dysregulation of gluconeogenesis and glycogenolysis in PCB126 hepatotoxicity. Chem. Res. Toxicol. 29, 1504–1509 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Wahlang, B. et al. Polychlorinated biphenyl 153 is a diet-dependent obesogen that worsens nonalcoholic fatty liver disease in male C57BL6/J mice. J. Nutr. Biochem. 24, 1587–1595 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Casals-Casas, C. & Desvergne, B. Endocrine disruptors: from endocrine to metabolic disruption. Annu. Rev. Physiol. 73, 135–162 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. Sargis, R. M. Metabolic disruption in context: clinical avenues for synergistic perturbations in energy homeostasis by endocrine disrupting chemicals. Endocr. Disruptors (Austin) 3, e1080788 (2015).

    Article  Google Scholar 

  119. Grun, F. & Blumberg, B. Endocrine disrupters as obesogens. Mol. Cell. Endocrinol. 304, 19–29 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Janesick, A. S. & Blumberg, B. Obesogens: an emerging threat to public health. Am. J. Obstet. Gynecol. 214, 559–565 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Newbold, R. R., Padilla-Banks, E. & Jefferson, W. N. Environmental estrogens and obesity. Mol. Cell. Endocrinol. 304, 84–89 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Soto, A. M., Rubin, B. S. & Sonnenschein, C. Interpreting endocrine disruption from an integrative biology perspective. Mol. Cell. Endocrinol. 304, 3–7 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Strong, A. L. et al. Effects of the endocrine-disrupting chemical DDT on self-renewal and differentiation of human mesenchymal stem cells. Environ. Health Perspect. 123, 42–48 (2015).

    Article  CAS  PubMed  Google Scholar 

  124. Janesick, A. & Blumberg, B. Minireview: PPARγ as the target of obesogens. J. Steroid Biochem. Mol. Biol. 127, 4–8 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Biemann, R. et al. Endocrine disrupting chemicals affect the adipogenic differentiation of mesenchymal stem cells in distinct ontogenetic windows. Biochem. Biophys. Res. Commun. 417, 747–752 (2012).

    Article  CAS  PubMed  Google Scholar 

  126. Biemann, R., Fischer, B. & Navarrete Santos, A. Adipogenic effects of a combination of the endocrine-disrupting compounds bisphenol A, diethylhexylphthalate, and tributyltin. Obes. Facts 7, 48–56 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Sonkar, R., Powell, C. A. & Choudhury, M. Benzyl butyl phthalate induces epigenetic stress to enhance adipogenesis in mesenchymal stem cells. Mol. Cell. Endocrinol. 431, 109–122 (2016).

    Article  CAS  PubMed  Google Scholar 

  128. Regnier, S. M. & Sargis, R. M. Adipocytes under assault: environmental disruption of adipose physiology. Biochim. Biophys. Acta 1842, 520–533 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. Riu, A. et al. Peroxisome proliferator-activated receptor γ is a target for halogenated analogs of bisphenol A. Environ. Health Perspect. 119, 1227–1232 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Neel, B. A., Brady, M. J. & Sargis, R. M. The endocrine disrupting chemical tolylfluanid alters adipocyte metabolism via glucocorticoid receptor activation. Mol. Endocrinol. 27, 394–406 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Riu, A. et al. Characterization of novel ligands of ERα, ERβ, and PPARγ: the case of halogenated bisphenol A and their conjugated metabolites. Toxicol. Sci. 122, 372–382 (2011).

    Article  CAS  PubMed  Google Scholar 

  132. Riu, A. et al. Halogenated bisphenol-A analogs act as obesogens in zebrafish larvae (Danio rerio). Toxicol. Sci. 139, 48–58 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Miyawaki, J., Sakayama, K., Kato, H., Yamamoto, H. & Masuno, H. Perinatal and postnatal exposure to bisphenol A increases adipose tissue mass and serum cholesterol level in mice. J. Atheroscler. Thromb. 14, 245–252 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. Hugo, E. R. et al. Bisphenol A at environmentally relevant doses inhibits adiponectin release from human adipose tissue explants and adipocytes. Environ. Health Perspect. 116, 1642–1647 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Valentino, R. et al. Bisphenol-A impairs insulin action and up-regulates inflammatory pathways in human subcutaneous adipocytes and 3T3-L1 cells. PLoS ONE 8, e82099 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Janesick, A. S., Shioda, T. & Blumberg, B. Transgenerational inheritance of prenatal obesogen exposure. Mol. Cell. Endocrinol. 398, 31–35 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Garcia-Arevalo, M. et al. Maternal exposure to bisphenol-A during pregnancy increases pancreatic β-cell growth during early life in male mice offspring. Endocrinology 157, 4158–4171 (2016).

    Article  CAS  PubMed  Google Scholar 

  138. Alonso-Magdalena, P., Garcia-Arevalo, M., Quesada, I. & Nadal, A. Bisphenol-A treatment during pregnancy in mice: a new window of susceptibility for the development of diabetes in mothers later in life. Endocrinology 156, 1659–1670 (2015).

    Article  CAS  PubMed  Google Scholar 

  139. Stern, J. H., Rutkowski, J. M. & Scherer, P. E. Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell Metab. 23, 770–784 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Zoeller, T. R. Environmental chemicals targeting thyroid. Hormones (Athens) 9, 28–40 (2009).

    Article  Google Scholar 

  141. Yanez, L., Ortiz-Perez, D., Batres, L. E., Borja-Aburto, V. H. & Diaz-Barriga, F. Levels of dichlorodiphenyltrichloroethane and deltamethrin in humans and environmental samples in malarious areas of Mexico. Environ. Res. 88, 174–181 (2002).

    Article  CAS  PubMed  Google Scholar 

  142. Wong, M. H., Leung, A. O., Chan, J. K. & Choi, M. P. A review on the usage of POP pesticides in China, with emphasis on DDT loadings in human milk. Chemosphere 60, 740–752 (2005).

    Article  CAS  PubMed  Google Scholar 

  143. Centers for Disease Control and Prevention. TCDD (Dioxin) Manufacturers (2) (Dioxin Exposure) CDC https://www.cdc.gov/niosh/pgms/worknotify/dioxinmedstudy.html (2016).

  144. United States Environmental Protection Agency. Integrated Risk Information System (IRIS), chemical assessment summary. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD); CASRN 1746-01-6. EPA https://cfpub.epa.gov/ncea/iris/iris_documents/documents/subst/1024_summary.pdf (2012).

  145. United States Environmental Protection Agency. Drinking water health advisory for perfluorooctanoic acid (PFOA). EPA https://www.epa.gov/sites/production/files/2016-05/documents/pfoa_health_advisory_final-plain.pdf (2016).

  146. Wu, Y. et al. Tetrabromobisphenol A and heavy metal exposure via dust ingestion in an e-waste recycling region in Southeast China. Sci. Total Environ. 541, 356–364 (2016).

    Article  CAS  PubMed  Google Scholar 

  147. Calafat, A. M., Ye, X., Wong, L. Y., Reidy, J. A. & Needham, L. L. Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003–2004. Environ. Health Perspect. 116, 39–44 (2008).

    Article  CAS  PubMed  Google Scholar 

  148. United States Environmental Protection Agency. Bisphenol-A. EPA https://cfpub.epa.gov/ncea/iris2/chemicalLanding.cfm?substance_nmbr=356 (2016).

  149. United States Environmental Protection Agency. Integrated Risk Information System (IRIS), chemical assessment summary. Di(2-ethylhexyl)phthalate (DEHP); CASRN 117-81-7. EPA https://cfpub.epa.gov/ncea/iris/iris_documents/documents/subst/0014_summary.pdf (2016).

Download references

Acknowledgements

The authors acknowledge C. Sala-Ripoll for designing the figures. The authors' laboratories are funded by grants from Ministerio de Economia y Competitividad (SAF2014-58335-P, BFU2013-42789-P and BFU2015-70664-R); Xunta de Galicia (2015-CP080 and PIE13/00024); the European Community's Seventh Framework Programme (ERC StG-2011-OBESITY53-281408); and Generalitat Valenciana PROMETEOII/2015/016. CIBERDEM and CIBERobn are initiatives of the Instituto de Salud Carlos III.

Author information

Authors and Affiliations

Authors

Contributions

A.N., I.Q., E.T., R.N. and P.A.-M. researched data for the article, made substantial contributions to discussions about the content, wrote the Review and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Angel Nadal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Supplementary information

Supplementary information S1 (table)

Epidemiological studies examining the association between MDCs and obesity. (PDF 914 kb)

Supplementary information S2 (table)

Epidemiological studies examining the association between MDCs and diabetes mellitus (PDF 488 kb)

Supplementary information S3 (table)

Main effects of MDCs that might alter energy balance from in vitro studies. (PDF 759 kb)

Supplementary information S4 (table)

Main effects of MDCs that might alter energy balance from in vitro studies (PDF 234 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadal, A., Quesada, I., Tudurí, E. et al. Endocrine-disrupting chemicals and the regulation of energy balance. Nat Rev Endocrinol 13, 536–546 (2017). https://doi.org/10.1038/nrendo.2017.51

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2017.51

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing