Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Deregulation of microRNA expression in thyroid neoplasias

Key Points

  • MicroRNAs (miRNAs) have a fundamental role in the onset and progression of human cancers, including thyroid neoplasias; the deregulation of miRNA expression seems to be a crucial event in thyroid carcinogenesis

  • Thyroid neoplasias are among the most frequent endocrine malignancies and can be distinguished from benign hyperplastic nodules on the basis of their distinctive miRNA expression profile

  • miRNA signatures could be used as an additional tool for the diagnosis of thyroid neoplasias

  • Previous studies have associated several miRNAs with a poor prognosis in human neoplasias; hence, the miRNA expression profile might be used to predict clinical outcome in patients with thyroid malignancies

  • New strategies for the treatment of patients with thyroid malignancies could implement inhibition or restoration of the expression levels of deregulated miRNAs

Abstract

MicroRNAs (miRNAs) have emerged as a class of powerful gene expression regulators. Acting at the post-transcriptional level, miRNAs modulate the expression of at least one-third of the mRNAs that are encoded by the human genome. The expression of a single gene can be regulated by several miRNAs, and every miRNA has more than one target gene. Thus, the miRNA regulatory circuit, which affects essential cellular functions, is of enormous complexity. Moreover, a fundamental role for miRNAs has been determined in the onset and progression of human cancers. Here, we summarize the main alterations in miRNA expression that have been identified in thyroid neoplasias and examine the mechanisms through which miRNA deregulation might promote thyroid cell transformation. We also discuss how the emerging knowledge on miRNA deregulation could be harnessed for the diagnosis and treatment of thyroid neoplasias.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Classification of human thyroid carcinomas and subtype-specific genetic alterations.
Figure 2: Deregulated microRNA (miRNA) networks in thyroid carcinomas.

Similar content being viewed by others

References

  1. Fabian, M. R., Sonenberg, N. & Filipowicz, W. Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem. 79, 351–379 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Rigoutsos, I. New tricks for animal microRNAS: targeting of amino acid coding regions at conserved and nonconserved sites. Cancer Res. 69, 3245–3248 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Griffiths-Jones, S., Saini, H. K., van Dongen, S. & Enright, A. J. miRBase: tools for microRNA genomics. Nucleic Acids Res. 36, D154–D158 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Iorio, M. V. et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 65, 7065–7070 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Cummins, J. M. et al. The colorectal microRNAome. Proc. Natl Acad. Sci. USA 103, 3687–3692 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yanaihara, N. et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9, 189–198 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Roldo, C. et al. MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J. Clin. Oncol. 24, 4677–4684 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Calin, G. A. & Croce, C. M. MicroRNA signatures in human cancers. Nat. Rev. Cancer 6, 857–866 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Volinia, S. et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl Acad. Sci. USA 103, 2257–2261 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Carcangiu, M. L., Zampi, G. & Rosai, J. Poorly differentiated (“insular”) thyroid carcinoma. A reinterpretation of Langhans' “wuchernde Struma”. Am. J. Surg. Pathol. 8, 655–668 (1984).

    Article  CAS  PubMed  Google Scholar 

  12. DeLellis, R. A., Lloyd, R. V., Heitz, P. U. & Eng., C. in World Health Organization Classification of Tumours Pathology and Genetics of Tumours of Endocrine Organs 51–56 (IARC press, Lyon, 2004).

    Google Scholar 

  13. Kondo, T., Ezzat, S. & Asa, S. L. Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat. Rev. Cancer 6, 292–306 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. LiVolsi, V. A. & Asa, S. L. The demise of follicular carcinoma of the thyroid gland. Thyroid 4, 233–236 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Lupoli, G. et al. Familial papillary thyroid microcarcinoma: a new clinical entity. Lancet 353, 637–639 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Lindor, N. M. & Greene, M. H. The concise handbook of family cancer syndromes. Mayo Familial Cancer Program. J. Natl Cancer Inst. 90, 1039–1071 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Gudmundsson, J. et al. Common variants on 9q22.33 and 14q13.3 predispose to thyroid cancer in European populations. Nat. Genet. 41, 460–464 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Frattini, M. et al. Alternative mutations of BRAF, RET and NTRK1 are associated with similar but distinct gene expression patterns in papillary thyroid cancer. Oncogene 23, 7436–7440 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Kimura, E. T. et al. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. 63, 1454–1457 (2003).

    CAS  PubMed  Google Scholar 

  20. Soares, P. et al. BRAF mutations and RET/PTC rearrangements are alternative events in the etiopathogenesis of PTC. Oncogene 22, 4578–4580 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Santoro, M., Carlomagno, F., Melillo, R. M. & Fusco, A. Dysfunction of the RET receptor in human cancer. Cell. Mol. Life Sci. 61, 2954–2964 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Pierotti, M. A. et al. Rearrangements of TRK proto-oncogene in papillary thyroid carcinomas. J. Endocrinol. Invest. 18, 130–133 (1995).

    Article  CAS  Google Scholar 

  23. Xing, M. BRAF mutation in thyroid cancer. Endocr. Relat. Cancer 12, 245–262 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Wan, P. T. et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116, 855–867 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Ciampi, R. et al. Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. J. Clin. Invest. 115, 94–101 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fusco, A., Viglietto, G. & Santoro, M. A new mechanism of BRAF activation in human thyroid papillary carcinomas. J. Clin. Invest. 115, 20–23 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Motoi, N. et al. Role of ras mutation in the progression of thyroid carcinoma of follicular epithelial origin. Pathol. Res. Pract. 196, 1–7 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Namba, H., Rubin, S. A. & Fagin, J. A. Point mutations of ras oncogenes are an early event in thyroid tumorigenesis. Mol. Endocrinol. 4, 1474–1479 (1990).

    Article  CAS  PubMed  Google Scholar 

  30. Nikiforova, M. N. et al. RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J. Clin. Endocrinol. Metab. 88, 2318–2326 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Suarez, H. G. et al. Presence of mutations in all three ras genes in human thyroid tumors. Oncogene 5, 565–570 (1990).

    CAS  PubMed  Google Scholar 

  32. Volante, M. et al. RAS mutations are the predominant molecular alteration in poorly differentiated thyroid carcinomas and bear prognostic impact. J. Clin. Endocrinol. Metab. 94, 4735–4741 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Dwight, T. et al. Involvement of the PAX8/peroxisome proliferator-activated receptor gamma rearrangement in follicular thyroid tumors. J. Clin. Endocrinol. Metab. 88, 4440–4445 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Kroll, T. G. et al. PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma [corrected]. Science 289, 1357–1360 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. García-Rostán, G. et al. Mutation of the PIK3CA gene in anaplastic thyroid cancer. Cancer Res. 65, 10199–10207 (2005).

    Article  PubMed  Google Scholar 

  36. Paes, J. E. & Ringel, M. D. Dysregulation of the phosphatidylinositol 3-kinase pathway in thyroid neoplasia. Endocrinol. Metab. Clin. North Am. 37, 375–387, viii–ix (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ricarte-Filho, J. C. et al. Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res. 69, 4885–4893 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Donghi, R. et al. Gene p53 mutations are restricted to poorly differentiated and undifferentiated carcinomas of the thyroid gland. J. Clin. Invest. 91, 1753–1760 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fagin, J. A. et al. High prevalence of mutations of the p53 gene in poorly differentiated human thyroid carcinomas. J. Clin. Invest. 91, 179–184 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ito, T. et al. Unique association of p53 mutations with undifferentiated but not with differentiated carcinomas of the thyroid gland. Cancer Res. 52, 1369–1371 (1992).

    CAS  PubMed  Google Scholar 

  41. He, H. et al. The role of microRNA genes in papillary thyroid carcinoma. Proc. Natl Acad. Sci. USA 102, 19075–19080 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pallante, P. et al. MicroRNA deregulation in human thyroid papillary carcinomas. Endocr. Relat. Cancer 13, 497–508 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Tetzlaff, M. T. et al. Differential expression of miRNAs in papillary thyroid carcinoma compared to multinodular goiter using formalin fixed paraffin embedded tissues. Endocr. Pathol. 18, 163–173 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Wang, Z. et al. Association between the expression of four upregulated miRNAs and extrathyroidal invasion in papillary thyroid carcinoma. Onco Targets. Ther. 6, 281–287 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yip, L. et al. MicroRNA signature distinguishes the degree of aggressiveness of papillary thyroid carcinoma. Ann. Surg. Oncol. 18, 2035–2041 (2011).

    Article  PubMed  Google Scholar 

  46. Braun, J., Hoang-Vu, C., Dralle, H. & Hüttelmaier, S. Downregulation of microRNAs directs the EMT and invasive potential of anaplastic thyroid carcinomas. Oncogene 29, 4237–4244 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Colamaio, M. et al. miR-191 down-regulation plays a role in thyroid follicular tumors through CDK6 targeting. J. Clin. Endocrinol. Metab. 96, E1915–E1924 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Leone, V. et al. MiR-1 is a tumor suppressor in thyroid carcinogenesis targeting CCND2, CXCR4, and SDF-1α. J. Clin. Endocrinol. Metab. 96, E1388–E1398 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Nikiforova, M. N., Tseng, G. C., Steward, D., Diorio, D. & Nikiforov, Y. E. MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility. J. Clin. Endocrinol. Metab. 93, 1600–1608 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cahill, S. et al. Effect of ret/PTC 1 rearrangement on transcription and post-transcriptional regulation in a papillary thyroid carcinoma model. Mol. Cancer 5, 70 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Cahill, S. et al. Effect of BRAFV600E mutation on transcription and post-transcriptional regulation in a papillary thyroid carcinoma model. Mol. Cancer 6, 21 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Dettmer, M. S. et al. Comprehensive microRNA expression profiling identifies novel markers in follicular variant of papillary thyroid carcinoma. Thyroid http://dx.doi.org/10.1089/thy.2012.0632.

  53. Jazdzewski, K. et al. Polymorphic mature microRNAs from passenger strand of pre-miR-146a contribute to thyroid cancer. Proc. Natl Acad. Sci. USA 106, 1502–1505 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hurst, D. R. et al. Breast cancer metastasis suppressor 1 up-regulates miR-146, which suppresses breast cancer metastasis. Cancer Res. 69, 1279–1283 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen, Y. T., Kitabayashi, N., Zhou, X. K., Fahey, T. J. 3rd & Scognamiglio, T. MicroRNA analysis as a potential diagnostic tool for papillary thyroid carcinoma. Mod. Pathol. 21, 1139–1146 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Jazdzewski, K. et al. Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc. Natl Acad. Sci. USA 105, 7269–7274 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chou, C. K. et al. Prognostic implications of miR-146b expression and its functional role in papillary thyroid carcinoma. J. Clin. Endocrinol. Metab. 98, E196–E205 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Agretti, P. et al. MicroRNA expression profile helps to distinguish benign nodules from papillary thyroid carcinomas starting from cells of fine-needle aspiration. Eur. J. Endocrinol. 167, 393–400 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Shen, R. et al. MicroRNA signature in thyroid fine needle aspiration cytology applied to “atypia of undetermined significance” cases. Thyroid 22, 9–16 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bhaumik, D. et al. Expression of microRNA-146 suppresses NF-κB activity with reduction of metastatic potential in breast cancer cells. Oncogene 27, 5643–5647 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Taganov, K. D., Boldin, M. P., Chang, K. J. & Baltimore, D. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl Acad. Sci. USA 103, 12481–12486 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. McCall, K. D. et al. High basal levels of functional toll-like receptor 3 (TLR3) and noncanonical Wnt5a are expressed in papillary thyroid cancer and are coordinately decreased by phenylmethimazole together with cell proliferation and migration. Endocrinology 148, 4226–4237 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Pacifico, F. et al. Oncogenic and anti-apoptotic activity of NF-κB in human thyroid carcinomas. J. Biol. Chem. 279, 54610–54619 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Visconti, R. et al. Expression of the neoplastic phenotype by human thyroid carcinoma cell lines requires NFκB p65 protein expression. Oncogene 15, 1987–1994 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Sun, K. et al. MicroRNA-221 inhibits CDKN1C/p57 expression in human colorectal carcinoma. Acta Pharmacol. Sin. 32, 375–384 (2011).

    Article  CAS  Google Scholar 

  66. Tokarz, P. & Blasiak, J. The role of microRNA in metastatic colorectal cancer and its significance in cancer prognosis and treatment. Acta Biochim. Pol. 59, 467–474 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Acunzo, M. et al. miR-130a targets MET and induces TRAIL-sensitivity in NSCLC by downregulating miR-221 and 222. Oncogene 31, 634–642 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Duncavage, E., Goodgame, B., Sezhiyan, A., Govindan, R. & Pfeifer, J. Use of microRNA expression levels to predict outcomes in resected stage I non-small cell lung cancer. J. Thorac. Oncol. 5, 1755–1763 (2010).

    Article  PubMed  Google Scholar 

  69. Garofalo, M. et al. miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell 16, 498–509 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Garofalo, M. et al. MicroRNA signatures of TRAIL resistance in human non-small cell lung cancer. Oncogene 27, 3845–3855 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Garofalo, M. et al. EGFR and MET receptor tyrosine kinase-altered microRNA expression induces tumorigenesis and gefitinib resistance in lung cancers. Nat. Med. 18, 74–82 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Wurz, K. et al. MiR-221 and MiR-222 alterations in sporadic ovarian carcinoma: Relationship to CDKN1B, CDKNIC and overall survival. Genes Chromosomes Cancer 49, 577–584 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Chen, W. X. et al. miR-221/222: promising biomarkers for breast cancer. Tumour Biol. 34, 1361–1370 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Miller, T. E. et al. MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J. Biol. Chem. 283, 29897–29903 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nassirpour, R., Mehta, P. P., Baxi, S. M. & Yin, M. J. miR-221 Promotes tumorigenesis in human triple negative breast cancer cells. PLoS ONE 8, e62170 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Radojicic, J. et al. MicroRNA expression analysis in triple-negative (ER, PR and Her2/neu) breast cancer. Cell Cycle 10, 507–517 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Shah, M. Y. & Calin, G. A. MicroRNAs miR-221 and miR-222: a new level of regulation in aggressive breast cancer. Genome Med. 3, 56 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Stinson, S. et al. miR-221/222 targeting of trichorhinophalangeal 1 (TRPS1) promotes epithelial-to-mesenchymal transition in breast cancer. Sci. Signal 4, pt 5 (2011).

    CAS  Google Scholar 

  79. Stinson, S. et al. TRPS1 targeting by miR-221/222 promotes the epithelial-to-mesenchymal transition in breast cancer. Sci. Signal 4, ra41 (2011).

    PubMed  Google Scholar 

  80. Zhao, J. J. et al. MicroRNA-221/222 negatively regulates estrogen receptor α and is associated with tamoxifen resistance in breast cancer. J. Biol. Chem. 283, 31079–31086 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yang, C. J. et al. miR-221 and miR-222 expression increased the growth and tumorigenesis of oral carcinoma cells. J. Oral Pathol. Med. 40, 560–566 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Gramantieri, L. et al. MicroRNA-221 targets Bmf in hepatocellular carcinoma and correlates with tumor multifocality. Clin. Cancer Res. 15, 5073–5081 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rong, M., Chen, G. & Dang, Y. Increased miR-221 expression in hepatocellular carcinoma tissues and its role in enhancing cell growth and inhibiting apoptosis in vitro. BMC Cancer 13, 21 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chen, Y. et al. MicroRNAs 221/222 and genistein-mediated regulation of ARHI tumor suppressor gene in prostate cancer. Cancer Prev. Res. (Phila.) 4, 76–86 (2011).

    Article  CAS  Google Scholar 

  85. Galardi, S., Mercatelli, N., Farace, M. G. & Ciafrè, S. A. NF-κB and c-Jun induce the expression of the oncogenic miR-221 and miR-222 in prostate carcinoma and glioblastoma cells. Nucleic Acids Res. 39, 3892–3902 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Galardi, S. et al. miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J. Biol. Chem. 282, 23716–23724 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Mercatelli, N. et al. The inhibition of the highly expressed miR-221 and miR-222 impairs the growth of prostate carcinoma xenografts in mice. PLoS ONE 3, e4029 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Schaefer, A. et al. Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int. J. Cancer 126, 1166–1176 (2010).

    CAS  PubMed  Google Scholar 

  89. Spahn, M. et al. Expression of microRNA-221 is progressively reduced in aggressive prostate cancer and metastasis and predicts clinical recurrence. Int. J. Cancer 127, 394–403 (2010).

    CAS  PubMed  Google Scholar 

  90. Sun, T. et al. The role of microRNA-221 and microRNA-222 in androgen-independent prostate cancer cell lines. Cancer Res. 69, 3356–3363 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fridman, E. et al. Accurate molecular classification of renal tumors using microRNA expression. J. Mol. Diagn. 12, 687–696 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Heinzelmann, J. et al. Specific miRNA signatures are associated with metastasis and poor prognosis in clear cell renal cell carcinoma. World J. Urol. 29, 367–373 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Lee, E. J. et al. Expression profiling identifies microRNA signature in pancreatic cancer. Int. J. Cancer 120, 1046–1054 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Papaconstantinou, I. G. et al. Expression of microRNAs in patients with pancreatic cancer and its prognostic significance. Pancreas 42, 67–71 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Bing, Z. et al. MicroRNA expression profiles of seminoma from paraffin-embedded formalin-fixed tissue. Virchows Arch. 461, 663–668 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Chen, L. et al. Downregulation of miR-221/222 sensitizes glioma cells to temozolomide by regulating apoptosis independently of p53 status. Oncol. Rep. 27, 854–860 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Hao, J. et al. miR-221/222 is the regulator of Cx43 expression in human glioblastoma cells. Oncol. Rep. 27, 1504–1510 (2012).

    CAS  PubMed  Google Scholar 

  98. Lu, X. et al. Analysis of miR-221 and p27 expression in human gliomas. Mol. Med. Rep. 2, 651–656 (2009).

    CAS  PubMed  Google Scholar 

  99. Quintavalle, C. et al. miR-221/222 overexpession in human glioblastoma increases invasiveness by targeting the protein phosphate PTPmu. Oncogene 31, 858–868 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Zhang, C. et al. High level of miR-221/222 confers increased cell invasion and poor prognosis in glioma. J. Transl. Med. 10, 119 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhang, C. Z. et al. MiR-221 and miR-222 target PUMA to induce cell survival in glioblastoma. Mol. Cancer 9, 229 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Schulte, J. H. et al. MYCN regulates oncogenic MicroRNAs in neuroblastoma. Int. J. Cancer 122, 699–704 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Di Martino, M. T. et al. In vitro and in vivo anti-tumor activity of miR-221/222 inhibitors in multiple myeloma. Oncotarget 4, 242–255 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Cammarata, G. et al. Differential expression of specific microRNA and their targets in acute myeloid leukemia. Am. J. Hematol. 85, 331–339 (2010).

    CAS  PubMed  Google Scholar 

  105. Frenquelli, M. et al. MicroRNA and proliferation control in chronic lymphocytic leukemia: functional relationship between miR-221/222 cluster and p27. Blood 115, 3949–3959 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Gimenes-Teixeira, H. L. et al. Increased expression of miR-221 is associated with shorter overall survival in T-cell acute lymphoid leukemia. Exp. Hematol. Oncol. 2, 10 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wang, Y. et al. MicroRNAs expression signatures are associated with lineage and survival in acute leukemias. Blood Cells Mol. Dis. 44, 191–197 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Koelz, M. et al. Down-regulation of miR-221 and miR-222 correlates with pronounced Kit expression in gastrointestinal stromal tumors. Int. J. Oncol. 38, 503–511 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Mattia, G. et al. Constitutive activation of the ETS-1-miR-222 circuitry in metastatic melanoma. Pigment Cell. Melanoma Res. 24, 953–965 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Errico, M. C. et al. The abrogation of the HOXB7/PBX2 complex induces apoptosis in melanoma through the miR-221&222-c-FOS pathway. Int. J. Cancer 133, 879–892 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Mardente, S. et al. HMGB1 induces the overexpression of miR-222 and miR-221 and increases growth and motility in papillary thyroid cancer cells. Oncol. Rep. 28, 2285–2289 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. Visone, R. et al. MicroRNAs (miR)-221 and miR-222, both overexpressed in human thyroid papillary carcinomas, regulate p27Kip1 protein levels and cell cycle. Endocr. Relat. Cancer 14, 791–798 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Kedde, M. et al. A Pumilio-induced RNA structure switch in p27–3′ UTR controls miR-221 and miR-222 accessibility. Nat. Cell Biol. 12, 1014–1020 (2010).

    Article  CAS  PubMed  Google Scholar 

  114. Di Leva, G. et al. MicroRNA cluster 221–222 and estrogen receptor α interactions in breast cancer. J. Natl Cancer Inst. 102, 706–721 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Fornari, F. et al. MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene 27, 5651–5661 (2008).

    Article  CAS  PubMed  Google Scholar 

  116. Giepmans, B. N. Gap junctions and connexin-interacting proteins. Cardiovasc. Res. 62, 233–245 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Bruni, P. et al. PTEN expression is reduced in a subset of sporadic thyroid carcinomas: evidence that PTEN-growth suppressing activity in thyroid cancer cells mediated by p27kip1. Oncogene 19, 3146–3155 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Wu, Y. H. et al. The manipulation of miRNA-gene regulatory networks by KSHV induces endothelial cell motility. Blood 118, 2896–2905 (2011).

    Article  CAS  PubMed  Google Scholar 

  119. Felli, N. et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc. Natl Acad. Sci. USA 102, 18081–18086 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Natali, P. G. et al. Transformation of thyroid epithelium is associated with loss of c-kit receptor. Cancer Res. 55, 1787–1791 (1995).

    CAS  PubMed  Google Scholar 

  121. Ji, J. et al. Identification of microRNA-181 by genome-wide screening as a critical player in EpCAM-positive hepatic cancer stem cells. Hepatology 50, 472–480 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Kim, C. H. et al. miRNA signature associated with outcome of gastric cancer patients following chemotherapy. BMC Med. Genomics 4, 79 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Meng, F. et al. Functional analysis of microRNAs in human hepatocellular cancer stem cells. J. Cell. Mol. Med. 16, 160–173 (2012).

    Article  CAS  PubMed  Google Scholar 

  124. Schulte, J. H. et al. Deep sequencing reveals differential expression of microRNAs in favorable versus unfavorable neuroblastoma. Nucleic Acids Res. 38, 5919–5928 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Taylor, M. A., Sossey-Alaoui, K., Thompson, C. L., Danielpour, D. & Schiemann, W. P. TGF-β upregulates miR-181a expression to promote breast cancer metastasis. J. Clin. Invest. 123, 150–163 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. Wang, B. et al. TGF-β-mediated upregulation of hepatic miR-181b promotes hepatocarcinogenesis by targeting TIMP3. Oncogene 29, 1787–1797 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. Yang, C. C. et al. miR-181 as a putative biomarker for lymph-node metastasis of oral squamous cell carcinoma. J. Oral Pathol. Med. 40, 397–404 (2011).

    Article  CAS  PubMed  Google Scholar 

  128. Panda, H., Chuang, T. D., Luo, X. & Chegini, N. Endometrial miR-181a and miR-98 expression is altered during transition from normal into cancerous state and target PGR, PGRMC1, CYP19A1, DDX3X, and TIMP3. J. Clin. Endocrinol. Metab. 97, E1316–E1326 (2012).

    Article  CAS  Google Scholar 

  129. Ke, G. et al. MiR-181a confers resistance of cervical cancer to radiation therapy through targeting the pro-apoptotic PRKCD gene. Oncogene 32, 3019–3027 (2013).

    Article  CAS  PubMed  Google Scholar 

  130. Mansueto, G. et al. Identification of a New Pathway for Tumor Progression: MicroRNA-181b Up-Regulation and CBX7 Down-Regulation by HMGA1 Protein. Genes Cancer 1, 210–224 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Schuettengruber, B., Chourrout, D., Vervoort, M., Leblanc, B. & Cavalli, G. Genome regulation by polycomb and trithorax proteins. Cell 128, 735–745 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Scott, C. L. et al. Role of the chromobox protein CBX7 in lymphomagenesis. Proc. Natl Acad. Sci. USA 104, 5389–5394 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wu, J. I., Lessard, J. & Crabtree, G. R. Understanding the words of chromatin regulation. Cell 136, 200–206 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Karamitopoulou, E. et al. Loss of the CBX7 protein expression correlates with a more aggressive phenotype in pancreatic cancer. Eur. J. Cancer 46, 1438–1444 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. Pallante, P. et al. Loss of the CBX7 gene expression correlates with a highly malignant phenotype in thyroid cancer. Cancer Res. 68, 6770–6778 (2008).

    Article  CAS  PubMed  Google Scholar 

  136. Chiappetta, G. et al. Detection of high mobility group I HMGI(Y) protein in the diagnosis of thyroid tumors: HMGI(Y) expression represents a potential diagnostic indicator of carcinoma. Cancer Res. 58, 4193–4198 (1998).

    CAS  PubMed  Google Scholar 

  137. Calin, G. A., Pekarsky, Y. & Croce, C. M. The role of microRNA and other non-coding RNA in the pathogenesis of chronic lymphocytic leukemia. Best Pract. Res. Clin. Haematol. 20, 425–437 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Chen, G. et al. MicroRNA-181a sensitizes human malignant glioma U87MG cells to radiation by targeting Bcl-2. Oncol. Rep. 23, 997–1003 (2010).

    CAS  PubMed  Google Scholar 

  139. Li, Z. et al. Up-regulation of a HOXA-PBX3 homeobox-gene signature following down-regulation of miR-181 is associated with adverse prognosis in patients with cytogenetically abnormal AML. Blood 119, 2314–2324 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Shi, L. et al. hsa-mir-181a and hsa-mir-181b function as tumor suppressors in human glioma cells. Brain Res. 1236, 185–193 (2008).

    Article  CAS  PubMed  Google Scholar 

  141. Ouyang, Y. B., Lu, Y., Yue, S. & Giffard, R. G. miR-181 targets multiple Bcl-2 family members and influences apoptosis and mitochondrial function in astrocytes. Mitochondrion 12, 213–219 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Castellone, M. D. et al. Functional expression of the CXCR4 chemokine receptor is induced by RET/PTC oncogenes and is a common event in human papillary thyroid carcinomas. Oncogene 23, 5958–5967 (2004).

    Article  CAS  PubMed  Google Scholar 

  143. Migliore, C. et al. MiR-1 downregulation cooperates with MACC1 in promoting MET overexpression in human colon cancer. Clin. Cancer Res. 18, 737–747 (2012).

    Article  CAS  PubMed  Google Scholar 

  144. Yan, D. et al. MicroRNA-1/206 targets c-Met and inhibits rhabdomyosarcoma development. J. Biol. Chem. 284, 29596–29604 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Leone, V. et al. A TSH-CREB1-microRNA loop is required for thyroid cell growth. Mol. Endocrinol. 25, 1819–1830 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ambs, S. et al. Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. Cancer Res. 68, 6162–6170 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Datta, J. et al. Methylation mediated silencing of MicroRNA-1 gene and its role in hepatocellular carcinogenesis. Cancer Res. 68, 5049–5058 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Hamfjord, J. et al. Differential expression of miRNAs in colorectal cancer: comparison of paired tumor tissue and adjacent normal mucosa using high-throughput sequencing. PLoS ONE 7, e34150 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Hudson, R. S. et al. MicroRNA-1 is a candidate tumor suppressor and prognostic marker in human prostate cancer. Nucleic Acids Res. 40, 3689–3703 (2012).

    Article  CAS  PubMed  Google Scholar 

  150. Kowalewska, M. et al. microRNAs in uterine sarcomas and mixed epithelial-mesenchymal uterine tumors: a preliminary report. Tumour Biol. 34, 2153–2160 (2013).

    Article  CAS  PubMed  Google Scholar 

  151. Li, L., Sarver, A. L., Alamgir, S. & Subramanian, S. Downregulation of microRNAs miR-1, -206 and -29 stabilizes PAX3 and CCND2 expression in rhabdomyosarcoma. Lab. Invest. 92, 571–583 (2012).

    Article  CAS  PubMed  Google Scholar 

  152. Nasser, M. W. et al. Down-regulation of micro-RNA-1 (miR-1) in lung cancer. Suppression of tumorigenic property of lung cancer cells and their sensitization to doxorubicin-induced apoptosis by miR-1. J. Biol. Chem. 283, 33394–33405 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Oberg, A. L. et al. miRNA expression in colon polyps provides evidence for a multihit model of colon cancer. PLoS ONE 6, e20465 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Pignot, G. et al. microRNA expression profile in a large series of bladder tumors: identification of a 3-miRNA signature associated with aggressiveness of muscle-invasive bladder cancer. Int. J. Cancer 132, 2479–2491 (2013).

    Article  CAS  PubMed  Google Scholar 

  155. Rao, P. K. et al. Distinct roles for miR-1 and miR-133a in the proliferation and differentiation of rhabdomyosarcoma cells. FASEB J. 24, 3427–3437 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Reid, J. F. et al. miRNA profiling in colorectal cancer highlights miR-1 involvement in MET-dependent proliferation. Mol. Cancer Res. 10, 504–515 (2012).

    Article  CAS  PubMed  Google Scholar 

  157. Tominaga, E., Yuasa, K., Shimazaki, S. & Hijikata, T. MicroRNA-1 targets Slug and endows lung cancer A549 cells with epithelial and anti-tumorigenic properties. Exp. Cell Res. 319, 77–88 (2013).

    Article  CAS  PubMed  Google Scholar 

  158. Wu, C. D., Kuo, Y. S., Wu, H. C. & Lin, C. T. MicroRNA-1 induces apoptosis by targeting prothymosin α in nasopharyngeal carcinoma cells. J. Biomed. Sci. 18, 80 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Yamasaki, T. et al. Novel molecular targets regulated by tumor suppressors microRNA-1 and microRNA-133a in bladder cancer. Int. J. Oncol. 40, 1821–1830 (2012).

    CAS  PubMed  Google Scholar 

  160. Yoshino, H. et al. Tumor suppressive microRNA-1 mediated novel apoptosis pathways through direct inhibition of splicing factor serine/arginine-rich 9 (SRSF9/SRp30c) in bladder cancer. Biochem. Biophys. Res. Commun. 417, 588–593 (2012).

    Article  CAS  PubMed  Google Scholar 

  161. Chen, W. S. et al. Silencing of miR-1-1 and miR-133a-2 cluster expression by DNA hypermethylation in colorectal cancer. Oncol. Rep. 28, 1069–1076 (2012).

    Article  CAS  PubMed  Google Scholar 

  162. Suzuki, H. et al. Genome-wide profiling of chromatin signatures reveals epigenetic regulation of MicroRNA genes in colorectal cancer. Cancer Res. 71, 5646–5658 (2011).

    Article  CAS  PubMed  Google Scholar 

  163. Weber, F., Teresi, R. E., Broelsch, C. E., Frilling, A. & Eng., C. A limited set of human MicroRNA is deregulated in follicular thyroid carcinoma. J. Clin. Endocrinol. Metab. 91, 3584–3591 (2006).

    Article  CAS  PubMed  Google Scholar 

  164. Rossing, M. et al. Down-regulation of microRNAs controlling tumourigenic factors in follicular thyroid carcinoma. J. Mol. Endocrinol. 48, 11–23 (2012).

    Article  CAS  Google Scholar 

  165. Dettmer, M. et al. MicroRNA expression array identifies novel diagnostic markers for conventional and oncocytic follicular thyroid carcinomas. J. Clin. Endocrinol. Metab. 98, E1–E7 (2013).

    Article  CAS  PubMed  Google Scholar 

  166. Colamaio, M. et al. Let-7a down-regulation plays a role in thyroid neoplasias of follicular histotype affecting cell adhesion and migration through its ability to target the FXYD5 (Dysadherin) gene. J. Clin. Endocrinol. Metab. 97, E2168–E2178 (2012).

    Article  CAS  PubMed  Google Scholar 

  167. Lena, A. M. et al. MicroRNA-191 triggers keratinocytes senescence by SATB1 and CDK6 downregulation. Biochem. Biophys. Res. Commun. 423, 509–514 (2012).

    Article  CAS  PubMed  Google Scholar 

  168. Ferretti, E. et al. MicroRNA profiling in human medulloblastoma. Int. J. Cancer 124, 568–577 (2009).

    Article  CAS  PubMed  Google Scholar 

  169. Calin, G. A. et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc. Natl Acad. Sci. USA 101, 11755–11760 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Caramuta, S. et al. MicroRNA expression profiles associated with mutational status and survival in malignant melanoma. J. Invest. Dermatol. 130, 2062–2070 (2010).

    Article  CAS  PubMed  Google Scholar 

  171. Di Leva, G. et al. Estrogen mediated-activation of miR-191/425 cluster modulates tumorigenicity of breast cancer cells depending on estrogen receptor status. PLoS Genet. 9, e1003311 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Nagpal, N., Ahmad, H. M., Molparia, B. & Kulshreshtha, R. MicroRNA-191, an estrogen-responsive microRNA, functions as an oncogenic regulator in human breast cancer. Carcinogenesis 34, 1889–1899 (2013).

    Article  CAS  PubMed  Google Scholar 

  173. Shimamura, T. et al. Dysadherin expression facilitates cell motility and metastatic potential of human pancreatic cancer cells. Cancer Res. 64, 6989–6995 (2004).

    Article  CAS  PubMed  Google Scholar 

  174. Frezzetti, D. et al. The microRNA-processing enzyme Dicer is essential for thyroid function. PLoS ONE 6, e27648 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Johnson, C. D. et al. The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res. 67, 7713–7722 (2007).

    Article  CAS  PubMed  Google Scholar 

  176. Johnson, S. M. et al. RAS is regulated by the let-7 microRNA family. Cell 120, 635–647 (2005).

    Article  CAS  PubMed  Google Scholar 

  177. Lee, Y. S. & Dutta, A. The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev. 21, 1025–1030 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Sampson, V. B. et al. MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res. 67, 9762–9770 (2007).

    Article  CAS  PubMed  Google Scholar 

  179. Boyerinas, B. et al. Identification of let-7-regulated oncofetal genes. Cancer Res. 68, 2587–2591 (2008).

    Article  CAS  PubMed  Google Scholar 

  180. Guo, Y. et al. Identification and characterization of lin-28 homolog B (LIN28B) in human hepatocellular carcinoma. Gene 384, 51–61 (2006).

    Article  CAS  PubMed  Google Scholar 

  181. Montero-Conde, C. et al. Molecular profiling related to poor prognosis in thyroid carcinoma. Combining gene expression data and biological information. Oncogene 27, 1554–1561 (2008).

    Article  CAS  PubMed  Google Scholar 

  182. Chang, T. C. et al. Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation. Proc. Natl Acad. Sci. USA 106, 3384–3389 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Fusco, A. & Fedele, M. Roles of HMGA proteins in cancer. Nat. Rev. Cancer 7, 899–910 (2007).

    Article  CAS  PubMed  Google Scholar 

  184. Visone, R. et al. Specific microRNAs are downregulated in human thyroid anaplastic carcinomas. Oncogene 26, 7590–7595 (2007).

    Article  CAS  PubMed  Google Scholar 

  185. Mitomo, S. et al. Downregulation of miR-138 is associated with overexpression of human telomerase reverse transcriptase protein in human anaplastic thyroid carcinoma cell lines. Cancer Sci. 99, 280–286 (2008).

    Article  CAS  PubMed  Google Scholar 

  186. Ledent, C., Dumont, J., Vassart, G. & Parmentier, M. Thyroid adenocarcinomas secondary to tissue-specific expression of simian virus-40 large T-antigen in transgenic mice. Endocrinology 129, 1391–1401 (1991).

    Article  CAS  PubMed  Google Scholar 

  187. Kleer, C. G. et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc. Natl Acad. Sci. USA 100, 11606–11611 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Varambally, S. et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419, 624–629 (2002).

    Article  CAS  PubMed  Google Scholar 

  189. Borbone, E. et al. Enhancer of zeste homolog 2 overexpression has a role in the development of anaplastic thyroid carcinomas. J. Clin. Endocrinol. Metab. 96, 1029–1038 (2011).

    Article  CAS  PubMed  Google Scholar 

  190. Esposito, F. et al. Down-regulation of the miR-25 and miR-30d contributes to the development of anaplastic thyroid carcinoma targeting the polycomb protein EZH2. J. Clin. Endocrinol. Metab. 97, E710–E718 (2012).

    Article  CAS  PubMed  Google Scholar 

  191. Burk, U. et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 9, 582–589 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Park, S. M., Gaur, A. B., Lengyel, E. & Peter, M. E. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 22, 894–907 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Bracken, C. P. et al. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res. 68, 7846–7854 (2008).

    Article  CAS  PubMed  Google Scholar 

  194. Pennelli, G. et al. PDCD4 expression in thyroid neoplasia. Virchows Arch. 462, 95–100 (2013).

    Article  CAS  PubMed  Google Scholar 

  195. Frezzetti, D. et al. Upregulation of miR-21 by Ras in vivo and its role in tumor growth. Oncogene 30, 275–286 (2011).

    Article  CAS  PubMed  Google Scholar 

  196. Takakura, S. et al. Oncogenic role of miR-17-92 cluster in anaplastic thyroid cancer cells. Cancer Sci. 99, 1147–1154 (2008).

    Article  CAS  PubMed  Google Scholar 

  197. Pacifico, F. et al. Nuclear factor-κB contributes to anaplastic thyroid carcinomas through up-regulation of miR-146a. J. Clin. Endocrinol. Metab. 95, 1421–1430 (2010).

    Article  CAS  PubMed  Google Scholar 

  198. Krichevsky, A. M. & Gabriely, G. miR-21: a small multi-faceted RNA. J. Cell. Mol. Med. 13, 39–53 (2009).

    Article  CAS  PubMed  Google Scholar 

  199. Ali, S., Almhanna, K., Chen, W., Philip, P. A. & Sarkar, F. H. Differentially expressed miRNAs in the plasma may provide a molecular signature for aggressive pancreatic cancer. Am. J. Transl. Res. 3, 28–47 (2010).

    PubMed  PubMed Central  Google Scholar 

  200. Abraham, D. et al. MicroRNA profiling of sporadic and hereditary medullary thyroid cancer identifies predictors of nodal metastasis, prognosis, and potential therapeutic targets. Clin. Cancer Res. 17, 4772–4781 (2011).

    Article  CAS  PubMed  Google Scholar 

  201. Mian, C. et al. MicroRNA profiles in familial and sporadic medullary thyroid carcinoma: preliminary relationships with RET status and outcome. Thyroid 22, 890–896 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Ma, R., Jiang, T. & Kang, X. Circulating microRNAs in cancer: origin, function and application. J. Exp. Clin. Cancer Res. 31, 38 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Yu, S. et al. Circulating microRNA profiles as potential biomarkers for diagnosis of papillary thyroid carcinoma. J. Clin. Endocrinol. Metab. 97, 2084–2092 (2012).

    Article  CAS  PubMed  Google Scholar 

  204. Lassalle, S. et al. Can the microRNA signature distinguish between thyroid tumors of uncertain malignant potential and other well-differentiated tumors of the thyroid gland? Endocr. Relat. Cancer 18, 579–594 (2011).

    Article  CAS  PubMed  Google Scholar 

  205. Vriens, M. R. et al. MicroRNA expression profiling is a potential diagnostic tool for thyroid cancer. Cancer 118, 3426–3432 (2012).

    Article  CAS  PubMed  Google Scholar 

  206. Hirokawa, M. et al. Observer variation of encapsulated follicular lesions of the thyroid gland. Am. J. Surg. Pathol. 26, 1508–1514 (2002).

    Article  PubMed  Google Scholar 

  207. Kakudo, K. et al. Thyroid gland: international case conference. Endocr. Pathol. 13, 131–134 (2002).

    Article  PubMed  Google Scholar 

  208. Kota, J. et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137, 1005–1017 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Brest, P. et al. MiR-129-5p is required for histone deacetylase inhibitor-induced cell death in thyroid cancer cells. Endocr. Relat. Cancer 18, 711–719 (2011).

    Article  CAS  PubMed  Google Scholar 

  210. Krützfeldt, J. et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature 438, 685–689 (2005).

    Article  PubMed  CAS  Google Scholar 

  211. Elmén, J. et al. LNA-mediated microRNA silencing in non-human primates. Nature 452, 896–899 (2008).

    Article  PubMed  CAS  Google Scholar 

  212. Prentice, R. L., Kato, H., Yoshimoto, K. & Mason, M. Radiation exposure and thyroid cancer incidence among Hiroshima and Nagasaki residents. Natl Cancer Inst. Monogr. 62, 207–212 (1982).

    CAS  PubMed  Google Scholar 

  213. Wood, J. W. et al. Thyroid carcinoma in atomic bomb survivors Hiroshima and Nagasaki. Am. J. Epidemiol. 89, 4–14 (1969).

    Article  CAS  PubMed  Google Scholar 

  214. Williams, D. Cancer after nuclear fallout: lessons from the Chernobyl accident. Nat. Rev. Cancer 2, 543–549 (2002).

    Article  CAS  PubMed  Google Scholar 

  215. Ain, K. B. Anaplastic thyroid carcinoma: a therapeutic challenge. Semin. Surg. Oncol. 16, 64–69 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' work was supported by grants from AIRC (I G 5346). We are grateful to Prof. Carlo Maria Croce, Ohio State University, for his continuous support. We are grateful to Jean Ann Gilder (Scientific Communication SRL, Naples, Italy) for substantial language and structural editing of this article; this edit had no influence on the choice or interpretation of the scientific content presented in this Review.

Author information

Authors and Affiliations

Authors

Contributions

P. Pallante, S. Battista, G. M. Pierantoni and A. Fusco researched the data for article. P. Pallante and A. Fusco provided a substantial contribution to discussions of the content. All authors contributed equally to writing the article.

Corresponding author

Correspondence to Alfredo Fusco.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pallante, P., Battista, S., Pierantoni, G. et al. Deregulation of microRNA expression in thyroid neoplasias. Nat Rev Endocrinol 10, 88–101 (2014). https://doi.org/10.1038/nrendo.2013.223

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2013.223

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing