Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A role for fMRI in optimizing CNS drug development

Key Points

  • Functional MRI (fMRI) has fundamentally changed the way that we can question brain systems because we can see them in action, bringing systems neuroscience to life. fMRI lets neuroscientists visualize the activity of neural networks that underlie human behaviour and development.

  • fMRI is an indirect measure of neural activity that can be used to evaluate disease states as well as drug function in awake humans and animals.

  • Current problems with the translation of animal behaviour (assays) to the human condition might be overcome by using a circuit-based approach to define objective changes in neural systems.

  • fMRI is able to dissect complex brain function in terms of temporally coordinated activation of related neurocircuits rather than dissociated events associated with disparate nuclei. fMRI has given new dimensions to many areas of complex brain function such as pain, sensory systems, psychiatric disorders and their co-morbidity with other central nervous system (CNS) conditions, cognition, language consciousness and neural mechanisms that underlie the developmental plasticity of the brain or its recovery of function after trauma.

  • fMRI can report on the functional neuroanatomy of the brain and, in combination with targeted therapeutic agents, provide novel insights into CNS neuropharmacology that could inform the drug development process from preclinical stages to clinical evaluation.

  • Whole-system effects allow for the evaluation of drug effects or disease states over time, conferring a better understanding of the long-term effects of drugs by objective measures of these circuits.

Abstract

Drug development today needs to balance agility, speed and risk in defining the probability of success for molecules, mechanisms and therapeutic concepts. New techniques in functional magnetic resonance imaging (fMRI) promise to be part of a sequence that could transform drug development for disorders of the central nervous system (CNS) by examining brain systems and their functional activation dynamically. The brain is complex and multiple transmitters and intersecting brain circuits are implicated in many CNS disorders. CNS therapeutics are designed against specific CNS targets, many of which are unprecedented. The challenge is to reveal the functional consequences of these interactions to assess therapeutic potential. fMRI can help optimize CNS drug discovery by providing a key metric that can increase confidence in early decision-making, thereby improving success rates and reducing risk, development times and costs of drug development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Locus of imaging in drug development ? from disease to genomics and back again.
Figure 2: Functional neuropathomics ? integrating brain function.
Figure 3: The language of translation ? circuits not behaviour.
Figure 4: Functional brain arrays.
Figure 5: Surrogate models in drug evaluation.
Figure 6: Clinical applications in Phase I studies: enhanced information for go/no-go decisions.
Figure 7: Application of a defined systems approach to models and disease in humans.

Similar content being viewed by others

References

  1. Cohen, C. M. A path to improved pharmaceutical productivity. Nature Rev. Drug Discov. 2, 751?753 (2003). A critical article on the evaluation of performance metrics in the pharmaceutical industry.

    CAS  Google Scholar 

  2. Kola, I. & Landis, J. Can the pharmaceutical industry reduce attrition rates? Nature Rev. Drug Discov. 3, 711?715 (2004). An evaluation of fiscal issues facing R&D and how to improve this domain in the pharmaceutical industry.

    CAS  Google Scholar 

  3. Frank, R. & Hargreaves, R. Clinical biomarkers in drug discovery and development. Nature Rev. Drug Discov. 2, 566?580 (2003). Biomarkers will become highly valued processes to characterize drugs and disease states.

    CAS  Google Scholar 

  4. Pritchard, J. F. et al. Making better drugs: Decision gates in non-clinical drug development. Nature Rev. Drug Discov. 2, 542?553 (2003).

    CAS  Google Scholar 

  5. Bleicher, K. H., Bohm, H. J., Muller, K. & Alanine, A. I. Hit and lead generation: beyond high-throughput screening. Nature Rev. Drug Discov. 2, 369?378 (2003).

    CAS  Google Scholar 

  6. Bild, A. H. et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439, 353?357 (2006).

    CAS  PubMed  Google Scholar 

  7. DaSilva, A. F. et al. Somatotopic activation in the human trigeminal pain pathway. J. Neurosci. 22, 8183?8192 (2002). One of the first papers to describe pain activation in the spinal cord (brainstem) in humans. Imaging a complete pathway provides an approach to evaluate surrogate models and disease states affecting the trigeminal system.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hornung, J. P. The human raphe nuclei and the serotonergic system. J. Chem. Neuroanat. 26, 331?343 (2003).

    CAS  PubMed  Google Scholar 

  9. Grzanna, R. & Fritschy, J. M. Efferent projections of different subpopulations of central noradrenaline neurons. Prog. Brain. Res. 88, 89?101 (1991).

    CAS  PubMed  Google Scholar 

  10. Everitt, B. J. & Robbins, T. W. Central cholinergic systems and cognition. Annu. Rev. Psychol. 48, 649?684 (1997).

    CAS  PubMed  Google Scholar 

  11. Johansson, B. B. Brain plasticity in health and disease. Keio. J. Med. 53, 231?246 (2004).

    PubMed  Google Scholar 

  12. Raineteau, O. & Schwab, M. E. Plasticity of motor systems after incomplete spinal cord injury. Nature Rev. Neurosci. 2, 263?273 (2001).

    CAS  Google Scholar 

  13. Chen, R., Cohen, L. G. & Hallett, M. Nervous system reorganization following injury. Neuroscience 111, 761?773 (2002).

    CAS  PubMed  Google Scholar 

  14. Hatten, M. E. & Heintz, N. Large-scale genomic approaches to brain development and circuitry. Annu. Rev. Neurosci. 28, 89?108 (2005).

    CAS  PubMed  Google Scholar 

  15. Seitz, R. J., Kleiser, R. & Butefisch, C. M. Reorganization of cerebral circuits in human brain lesion. Acta Neurochir. Suppl. 93, 65?70 (2005).

    CAS  Google Scholar 

  16. Eden, G. F. et al. Neural changes following remediation in adult developmental dyslexia. Neuron 44, 411?422 (2004).

    CAS  PubMed  Google Scholar 

  17. Temple, E. et al. Neural deficits in children with dyslexia ameliorated by behavioral remediation: evidence from functional MRI. Proc. Natl Acad. Sci. USA 100, 2860?2865 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Stoeckel, M. C., Jorgens, S., Witte, O. W. & Seitz, R. J. Reduced somatosensory hand representation in thalidomide-induced dysmelia as revealed by fMRI. Eur. J. Neurosci. 21, 556?562 (2005).

    PubMed  Google Scholar 

  19. Baker, C. I., Peli, E., Knouf, N. & Kanwisher, N. G. Reorganization of visual processing in macular degeneration. J. Neurosci. 25, 614?618 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Borsook, D. et al. Acute plasticity in the human somatosensory cortex following amputation. Neuroreport 9, 1013?1017 (1998).

    CAS  PubMed  Google Scholar 

  21. Apkarian, A. V. et al. Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J. Neurosci. 24, 10410?10415 (2004). A revolutionary paper and quantum leap in understanding that chronic pain is a degenerative disease affecting the CNS.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Tracey, I. Prospects for human pharmacological functional magnetic resonance imaging (phMRI). J. Clin. Pharmacol. (Suppl.), 21S?28S (2001). A good review of the potential of fMRI in pharmacology.

  23. Borsook, D., Ploghaus, A. & Becerra, L. Utilizing brain imaging for analgesic drug development. Curr. Opin. Investig. Drugs. 3, 1342?1347 (2002).

    CAS  PubMed  Google Scholar 

  24. Borsook, D. & Becerra, L. Pain imaging: future applications to integrative clinical and basic neurobiology. Adv. Drug. Deliv. Rev. 55, 967?986 (2003).

    CAS  PubMed  Google Scholar 

  25. Fava, M., Mallinckrodt, C. H., Detke, M. J., Watkin, J. G. & Wohlreich, M. M. The effect of duloxetine on painful physical symptoms in depressed patients: do improvements in these symptoms result in higher remission rates? J. Clin. Psychiatry 65, 521?530 (2004).

    CAS  PubMed  Google Scholar 

  26. Ohayon, M. M. Specific characteristics of the pain/depression association in the general population. J. Clin. Psychiatry 65 (Suppl. 12), 5?9 (2004).

    PubMed  Google Scholar 

  27. Klein, T., Magerl, W., Rolke, R. & Treede, R. D. Human surrogate models of neuropathic pain. Pain 115, 227?233 (2005).

    PubMed  Google Scholar 

  28. Bennett, G. J. & Xie, Y. K. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33, 87?107 (1988).

    CAS  PubMed  Google Scholar 

  29. Decosterd, I. & Woolf, C. J. Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 87, 149?158 (2000).

    CAS  PubMed  Google Scholar 

  30. Mantyh, P. W. A mechanism-based understanding of bone cancer pain. Novartis Found. Symp. 261, 194?214 (2004).

    CAS  PubMed  Google Scholar 

  31. Blackburn-Munro, G. Pain-like behaviours in animals- how human are they? Trends Pharmacol. Sci. 25, 299?305 (2004).

    CAS  PubMed  Google Scholar 

  32. Mogil, J. S. & Crager, S. E. What should we be measuring in behavioral studies of chronic pain in animals? Pain 112, 12?15 (2004).

    PubMed  Google Scholar 

  33. Kachergus, J. et al. Identification of a novel LRRK2 mutation linked to autosomal dominant parkinsonism: evidence of a common founder across European populations. Am. J. Hum. Genet. 76, 672?680 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Grafton, S. T. Contributions of functional imaging to understanding parkinsonian symptoms. Curr. Opin. Neurobiol. 14, 715?719 (2004). A critical review on the use of imaging to evaluate specific circuits involved in this disease that clearly has applications to other CNS disease states.

    CAS  PubMed  Google Scholar 

  35. DiMasi, J. A., Hansen, R. W. & Grabowski, H. G. The price of innovation: new estimates of drug development costs. J. Health Econ. 22, 151?185 (2003).

    PubMed  Google Scholar 

  36. Rawlins, M. D. Cutting the cost of drug development? Nature Rev. Drug Discov. 3, 360?364 (2004).

    CAS  Google Scholar 

  37. Littman, B. H. & Williams, S. A. The ultimate model organism: progress in experimental medicine. Nature Rev. Drug Discov. 4, 631?638 (2005).

    CAS  Google Scholar 

  38. Leslie, R. A. & James, M. F. Pharmacological magnetic resonance imaging: a new application for functional MRI. Trends Pharmacol. Sci. 21, 314?318 (2000).

    CAS  PubMed  Google Scholar 

  39. Braus, D. F., Brassen, S., Weimer, E. & Tost, H. [Functional magnetic resonance imaging of psychopharmacological brain effects: an update]. Fortschr. Neurol. Psychiatr. 71, 72?83 (2003).

    CAS  PubMed  Google Scholar 

  40. Honey, G. & Bullmore, E. Human pharmacological MRI. Trends Pharmacol. Sci. 25, 366?374 (2004). An outstanding review of the state of the art of pharmacological fMRI.

    CAS  PubMed  Google Scholar 

  41. Shah, Y. B. & Marsden, C. A. The application of functional magnetic resonance imaging to neuropharmacology. Curr. Opin. Pharmacol. 4, 517?521 (2004).

    CAS  PubMed  Google Scholar 

  42. Vanduffel, W. et al. Visual motion processing investigated using contrast agent-enhanced fMRI in awake behaving monkeys. Neuron 32, 565?577 (2001).

    CAS  PubMed  Google Scholar 

  43. Febo, M. et al. Imaging cocaine-induced changes in the mesocorticolimbic dopaminergic system of conscious rats. J. Neurosci. Methods 139, 167?176 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Brewer, A. A., Press, W. A., Logothetis, N. K. & Wandell, B. A. Visual areas in macaque cortex measured using functional magnetic resonance imaging. J. Neurosci. 22, 10416?10426 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wilkinson, D. & Halligan, P. The relevance of behavioural measures for functional-imaging studies of cognition. Nature Rev. Neurosci. 5, 67?73 (2004).

    CAS  Google Scholar 

  46. Brunner, D., Nestler, E. & Leahy, E. In need of high-throughput behavioral systems. Drug Discov. Today 7, S107?S112 (2002).

    CAS  PubMed  Google Scholar 

  47. Ren, K., Thomas, D. A. & Dubner, R. Nerve growth factor alleviates a painful peripheral neuropathy in rats. Brain Res. 699, 286?292 (1995).

    CAS  PubMed  Google Scholar 

  48. Apfel, S. C. et al. Efficacy and safety of recombinant human nerve growth factor in patients with diabetic polyneuropathy: A randomized controlled trial. rhNGF Clinical Investigator Group. JAMA 284, 2215?2221 (2000).

    CAS  PubMed  Google Scholar 

  49. Goldstein, D. J., Wang, O., Gitter, B. D. & Iyengar, S. Dose-response study of the analgesic effect of lanepitant in patients with painful diabetic neuropathy. Clin. Neuropharmacol. 24, 16?22 (2001).

    CAS  PubMed  Google Scholar 

  50. Hill, R. NK1 (substance P) receptor antagonists--why are they not analgesic in humans? Trends Pharmacol. Sci. 21, 244?246 (2000).

    CAS  PubMed  Google Scholar 

  51. Duffy, R. A. Potential therapeutic targets for neurokinin-1 receptor antagonists. Expert Opin. Emerg. Drugs 9, 9?21 (2004).

    CAS  PubMed  Google Scholar 

  52. Keller, M. et al. Lack of efficacy of the substance P (neurokinin(1) receptor) antagonist aprepitant in the treatment of major depressive disorder. Biol. Psychiatry 59, 216?223 (2005).

    PubMed  Google Scholar 

  53. Diemunsch, P. & Grelot, L. Potential of substance P antagonists as antiemetics. Drugs 60, 533?546 (2000).

    CAS  PubMed  Google Scholar 

  54. Pendergrass, K. et al. Aprepitant: an oral NK1 antagonist for the prevention of nausea and vomiting induced by highly emetogenic chemotherapy. Drugs Today (Barc.) 40, 853?863 (2004).

    CAS  Google Scholar 

  55. Ashburn, T. T. & Thor, K. B. Drug repositioning: identifying and developing new uses for existing drugs. Nature Rev. Drug Discov. 3, 673?683 (2004).

    CAS  Google Scholar 

  56. Dimasi, J. A. & Paquette, C. The economics of follow-on drug research and development: trends in entry rates and the timing of development. Pharmacoeconomics 22, 1?14 (2004).

    PubMed  Google Scholar 

  57. Borras, M. C. et al. fMRI measurement of CNS responses to naloxone infusion and subsequent mild noxious thermal stimuli in healthy volunteers. J. Neurophysiol. 91, 2723?2733 (2004). One of the first studies evaluating CNS effects of a drug. Interestingly, there were no behavioural effects associated with the drug.

    CAS  PubMed  Google Scholar 

  58. Becerra, L., Harter, K., Gonalez, R. G. & Borsook, D. Morphine activates neural circuits involved in reward, sedation, and endogenous analgesia in drug-naive humans. Anesthesia And Analgesia (in the press).

  59. Borsook, D. & Edwards, A. D. Antineuropathic effects of the antibiotic derivative spicamycin KRN5500. Pain Med. 5, 104?108 (2004). A paper that defines emotional circuitry in response to pain and has opened the door to understanding the potential role of pain in affecting circuitry involved in the placebo response and in functional illness.

    PubMed  Google Scholar 

  60. Becerra, L., Breiter, H. C., Wise, R., Gonzalez, R. G. & Borsook, D. Reward circuitry activation by noxious thermal stimuli. Neuron 32, 927?946 (2001).

    CAS  PubMed  Google Scholar 

  61. Gear, R. W., Aley, K. O. & Levine, J. D. Pain-induced analgesia mediated by mesolimbic reward circuits. J. Neurosci. 19, 7175?7181 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Perucca, E. An introduction to antiepileptic drugs. Epilepsia 46 (Suppl. 4), 31?37 (2005). This paper provides evidence that fMRI signal has a neural basis.

    CAS  PubMed  Google Scholar 

  63. Becerra, L. et al. Dissecting drug efficacy for neuropathic pain in healthy subjects. Annu. Meeting Soc. Neurosci. Washington DC, A50.10 (2005).

  64. Apkarian, A. V., Bushnell, M. C., Treede, R. D. & Zubieta, J. K. Human brain mechanisms of pain perception and regulation in health and disease. Eur. J. Pain 9, 463?484 (2005).

    PubMed  Google Scholar 

  65. Ramaekers, J. G. Behavioural toxicity of medicinal drugs. Practical consequences, incidence, management and avoidance. Drug Saf. 18, 189?208 (1998).

    CAS  PubMed  Google Scholar 

  66. Bazil, C. W. Effects of antiepileptic drugs on sleep structure: are all drugs equal? CNS Drugs 17, 719?728 (2003).

    CAS  PubMed  Google Scholar 

  67. Hornby, P. J. Central neurocircuitry associated with emesis. Am. J. Med. 111 (Suppl. 8A), 106S?112S (2001).

    PubMed  Google Scholar 

  68. Eisenach, J. C., Carpenter, R. & Curry, R. Analgesia from a peripherally active kappa-opioid receptor agonist in patients with chronic pancreatitis. Pain 101, 89?95 (2003).

    CAS  PubMed  Google Scholar 

  69. DeHaven-Hudkins, D. L. & Dolle, R. E. Peripherally restricted opioid agonists as novel analgesic agents. Curr. Pharm. Des. 10, 743?757 (2004).

    CAS  PubMed  Google Scholar 

  70. Dortch-Carnes, J. & Potter, D. E. Bremazocine: a kappa-opioid agonist with potent analgesic and other pharmacologic properties. CNS Drug Rev. 11, 195?212 (2005).

    CAS  PubMed  Google Scholar 

  71. Flor, H. Remapping somatosensory cortex after injury. Adv. Neurol. 93, 195?204 (2003).

    PubMed  Google Scholar 

  72. Muller, U. et al. Plasma level-dependent effects of methylphenidate on task-related functional magnetic resonance imaging signal changes. Psychopharmacology (Berl) 180, 624?633 (2005).

    Google Scholar 

  73. Honey, G. D. et al. Dopaminergic drug effects on physiological connectivity in a human cortico-striato-thalamic system. Brain 126, 1767?81 (2003). fMRI demonstrates functional connectivity of the human caudate nucleus using the pharmacological agent sulpiride.

    CAS  PubMed  Google Scholar 

  74. Wise, R. G. et al. Combining fMRI with a pharmacokinetic model to determine which brain areas activated by painful stimulation are specifically modulated by remifentanil. Neuroimage 16, 999?1014 (2002).

    PubMed  Google Scholar 

  75. Meier, C. R., Wilcock, K. & Jick, S. S. The risk of severe depression, psychosis or panic attacks with prophylactic antimalarials. Drug Saf. 27, 203?213 (2004).

    CAS  PubMed  Google Scholar 

  76. Overbosch, D. et al. Atovaquone-proguanil versus mefloquine for malaria prophylaxis in nonimmune travelers: results from a randomized, double-blind study. Clin. Infect. Dis. 33, 1015?1021 (2001).

    CAS  PubMed  Google Scholar 

  77. Heckers, S. The hippocampus in schizophrenia. Am. J. Psychiatry 161, 2138?2139 (2004).

    PubMed  Google Scholar 

  78. Zubieta, J. K. et al. COMT val158met genotype affects mu-opioid neurotransmitter responses to a pain stressor. Science 299, 1240?1243 (2003). A paper that has defined what is yet to come: mapping phenotype (using brain imaging) with genotype/SNP mapping.

    CAS  PubMed  Google Scholar 

  79. Momose, Y. et al. Association studies of multiple candidate genes for Parkinson's disease using single nucleotide polymorphisms. Ann. Neurol. 51, 133?136 (2002).

    CAS  PubMed  Google Scholar 

  80. Diatchenko, L. et al. Genetic basis for individual variations in pain perception and the development of a chronic pain condition. Hum. Mol. Genet. 14, 135?143 (2005).

    CAS  PubMed  Google Scholar 

  81. Becerra, L., Morris, S., Chizh, B. & Borsook, D. fMRI Activation of the trigeminal sensory pathway in trigeminal neuropathy. Annu. Meeting Soc. Neurosci. Washington DC, A53.16 (2005).

  82. Logothetis, N. K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150?157 (2001).

    CAS  PubMed  Google Scholar 

  83. Prathikanti, S. & Weinberger, D. R. Psychiatric genetics- the new era: genetic research and some clinical implications. Br. Med. Bull. 73?74, 107?122 (2005).

  84. Winterer, G., Hariri, A. R., Goldman, D. & Weinberger, D. R. Neuroimaging and Human Genetics. Int Rev Neurobiol 67PB, 325?383 (2005).

    Google Scholar 

  85. Borsook, D., Burstein, R. & Becerra, L. Functional imaging of the human trigeminal system: opportunities for new insights into pain processing in health and disease. J. Neurobiol. 61, 107?125 (2004).

    PubMed  Google Scholar 

  86. Borsook, D., DaSilva, A. F., Ploghaus, A. & Becerra, L. Specific and somatotopic functional magnetic resonance imaging activation in the trigeminal ganglion by brush and noxious heat. J. Neurosci. 23, 7897?7903 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Burstein, R. Deconstructing migraine headache into peripheral and central sensitization. Pain 89, 107?110 (2001).

    CAS  PubMed  Google Scholar 

  88. Salmeron, B. J. & Stein, E. A. Pharmacological applications of magnetic resonance imaging. Psychopharmacol. Bull. 36, 102?129 (2002).

    PubMed  Google Scholar 

  89. De Luca, M., Beckmann, C. F., De Stefano, N., Matthews, P. M. & Smith, S. M. fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage 29, 1359?1367 (2005).

    PubMed  Google Scholar 

  90. Foss, J. M., Apkarian, A. V. & Chialvo, D. R. Dynamics of pain: fractal dimension of temporal variability of spontaneous pain differentiates between pain States. J. Neurophysiol. 95, 730?736 (2006).

    PubMed  Google Scholar 

  91. Salvador, R., Suckling, J., Schwarzbauer, C. & Bullmore, E. Undirected graphs of frequency-dependent functional connectivity in whole brain networks. Philos. Trans. R. Soc. B Biol. Sci. 360, 937?946 (2005).

    Google Scholar 

  92. deCharms, R. C. et al. Control over brain activation and pain learned by using real-time functional MRI. Proc. Natl Acad. Sci. USA 102, 18626?18631 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Smith, S. M. et al. Variability in fMRI: a re-examination of inter-session differences. Hum. Brain Mapp. 24, 248?257 (2005).

    PubMed  PubMed Central  Google Scholar 

  94. Casey, B. J. et al. Reproducibility of fMRI results across four institutions using a spatial working memory task. Neuroimage 8, 249?261 (1998).

    CAS  PubMed  Google Scholar 

  95. Marshall, I. et al. Repeatability of motor and working-memory tasks in healthy older volunteers: assessment at functional MR imaging. Radiology 233, 868?877 (2004).

    PubMed  Google Scholar 

  96. Wei, X. et al. Functional MRI of auditory verbal working memory: long-term reproducibility analysis. Neuroimage 21, 1000?1008 (2004).

    PubMed  Google Scholar 

  97. Yoo, S. S., Wei, X., Dickey, C. C., Guttmann, C. R. & Panych, L. P. Long-term reproducibility analysis of fMRI using hand motor task. Int J. Neurosci. 115, 55?77 (2005).

    PubMed  Google Scholar 

  98. Friston, K. J., Holmes, A. P., Price, C. J., Buchel, C. & Worsley, K. J. Multisubject fMRI studies and conjunction analyses. Neuroimage 10, 385?396 (1999).

    CAS  PubMed  Google Scholar 

  99. Brett, M., Johnsrude, I. S. & Owen, A. M. The problem of functional localization in the human brain. Nature Rev. Neurosci. 3, 243?249 (2002).

    CAS  Google Scholar 

  100. Foland, L. C., Thomason, M. E. & Glover, G. H. Calibrating functional MRI data across subjects and scan sites. Annu. Meeting Soc. Neurosci. San Diego, A693.9 (2004).

  101. Borsook, D. & Becerra, L. Functional imaging of pain and analgesia ? a valid diagnostic tool? Pain 117, 247?250 (2005).

    PubMed  Google Scholar 

  102. Davis, K. D., Wood, M. L., Crawley, A. P. & Mikulis, D. J. fMRI of human somatosensory and cingulate cortex during painful electrical nerve stimulation. Neuroreport 7, 321?325 (1995).

    CAS  PubMed  Google Scholar 

  103. Becerra, L. R. et al. Human brain activation under controlled thermal stimulation and habituation to noxious heat: an fMRI study. Magn. Reson. Med. 41, 1044?1057 (1999).

    CAS  PubMed  Google Scholar 

  104. Tuor, U. I., McKenzie, E. & Tomanek, B. Functional magnetic resonance imaging of tonic pain and vasopressor effects in rats. Magn. Reson. Imaging 20, 707?712 (2002).

    CAS  PubMed  Google Scholar 

  105. Malisza, K. L. & Docherty, J. C. Capsaicin as a source for painful stimulation in functional MRI. J. Magn. Reson. Imaging 14, 341?347 (2001).

    CAS  PubMed  Google Scholar 

  106. Chang, C. & Shyu, B. C. A fMRI study of brain activations during non-noxious and noxious electrical stimulation of the sciatic nerve of rats. Brain Res. 897, 71?81 (2001).

    CAS  PubMed  Google Scholar 

  107. Tuor, U. I. et al. Functional magnetic resonance imaging in rats subjected to intense electrical and noxious chemical stimulation of the forepaw. Pain 87, 315?324 (2000).

    CAS  PubMed  Google Scholar 

  108. Lebel, A. et al. fMRI of mechanical allodynia in children with complex regional (leg) pain syndrome (CRPS). Soc. Neurosci. Conf. Washington DC, A53.17 (2005). An important model that demonstrates the use of fMRI in assessing drug effects.

  109. Peyron, R. et al. An fMRI study of cortical representation of mechanical allodynia in patients with neuropathic pain. Neurology 63, 1838?1846 (2004).

    CAS  PubMed  Google Scholar 

  110. Maihofner, C. & Handwerker, H. O. Differential coding of hyperalgesia in the human brain: a functional MRI study. Neuroimage 28, 996?1006 (2005).

    PubMed  Google Scholar 

  111. Baron, R., Baron, Y., Disbrow, E. & Roberts, T. P. Brain processing of capsaicin-induced secondary hyperalgesia: a functional MRI study. Neurology 53, 548?557 (1999).

    CAS  PubMed  Google Scholar 

  112. Zambreanu, L., Wise, R. G., Brooks, J. C., Iannetti, G. D. & Tracey, I. A role for the brainstem in central sensitisation in humans. Evidence from functional magnetic resonance imaging. Pain 114, 397?407 (2005).

    CAS  PubMed  Google Scholar 

  113. Giesecke, T. et al. Evidence of augmented central pain processing in idiopathic chronic low back pain. Arthritis Rheum. 50, 613?623 (2004).

    PubMed  Google Scholar 

  114. Gracely, R. H. et al. Pain catastrophizing and neural responses to pain among persons with fibromyalgia. Brain 127, 835?843 (2004). This study provided novel insights into CNS processing in a disease about which we have had little understanding.

    CAS  PubMed  Google Scholar 

  115. Cook, D. B. et al. Functional imaging of pain in patients with primary fibromyalgia. J. Rheumatol. 31, 364?378 (2004).

    PubMed  Google Scholar 

  116. Alkire, M. T., White, N. S., Hsieh, R. & Haier, R. J. Dissociable brain activation responses to 5-Hz electrical pain stimulation: a high-field functional magnetic resonance imaging study. Anesthesiology 100, 939?946 (2004).

    PubMed  Google Scholar 

  117. DaSilva, A. F. et al. Somatotopic activation in the human trigeminal pain pathway. J. Neurosci. 22, 8183?8192 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Brooks, J. C., Zambreanu, L., Godinez, A., Craig, A. D. & Tracey, I. Somatotopic organisation of the human insula to painful heat studied with high resolution functional imaging. Neuroimage 27, 201?209 (2005).

    CAS  PubMed  Google Scholar 

  119. Moulton, E. A., Keaser, M. L., Gullapalli, R. P. & Greenspan, J. D. Regional intensive and temporal patterns of functional MRI activation distinguishing noxious and innocuous contact heat. J. Neurophysiol. 93, 2183?2193 (2005).

    CAS  PubMed  Google Scholar 

  120. Bornhovd, K. et al. Painful stimuli evoke different stimulus-response functions in the amygdala, prefrontal, insula and somatosensory cortex: a single-trial fMRI study. Brain 125, 1326?1336 (2002).

    CAS  PubMed  Google Scholar 

  121. Apkarian, A. V., Darbar, A., Krauss, B. R., Gelnar, P. A. & Szeverenyi, N. M. Differentiating cortical areas related to pain perception from stimulus identification: temporal analysis of fMRI activity. J. Neurophysiol. 81, 2956?2963 (1999).

    CAS  PubMed  Google Scholar 

  122. Davis, K. D., Kwan, C. L., Crawley, A. P. & Mikulis, D. J. Functional MRI study of thalamic and cortical activations evoked by cutaneous heat, cold, and tactile stimuli. J. Neurophysiol. 80, 1533?1546 (1998).

    CAS  PubMed  Google Scholar 

  123. Tracey, I. et al. Noxious hot and cold stimulation produce common patterns of brain activation in humans: a functional magnetic resonance imaging study. Neurosci. Lett. 288, 159?162 (2000).

    CAS  PubMed  Google Scholar 

  124. Strigo, I. A., Albanese, M. C., Bushnell, M. C. & Duncan, G. H. Visceral and cutaneous pain representation in parasylvian cortex. Neurosci. Lett. 384, 54?59 (2005).

    CAS  PubMed  Google Scholar 

  125. Dunckley, P. et al. Cortical processing of visceral and somatic stimulation: differentiating pain intensity from unpleasantness. Neuroscience 133, 533?542 (2005).

    CAS  PubMed  Google Scholar 

  126. Lu, C. L. et al. Neuronal correlates of gastric pain induced by fundus distension: a 3T-fMRI study. Neurogastroenterol. Motil. 16, 575?587 (2004).

    PubMed  Google Scholar 

  127. Yaguez, L. et al. Brain response to visceral aversive conditioning: a functional magnetic resonance imaging study. Gastroenterology 128, 1819?1829 (2005).

    PubMed  Google Scholar 

  128. Hobson, A. R. et al. Real-time imaging of human cortical activity evoked by painful esophageal stimulation. Gastroenterology 128, 610?619 (2005).

    PubMed  Google Scholar 

  129. Verne, G. N. et al. Central representation of visceral and cutaneous hypersensitivity in the irritable bowel syndrome. Pain 103, 99?110 (2003).

    PubMed  Google Scholar 

  130. Bonaz, B. et al. Central processing of rectal pain in patients with irritable bowel syndrome: an fMRI study. Am. J. Gastroenterol. 97, 654?661 (2002).

    CAS  PubMed  Google Scholar 

  131. Chen, Y. C. et al. Detection of dopaminergic neurotransmitter activity using pharmacologic MRI: correlation with PET, microdialysis, and behavioral data. Magn. Reson. Med. 38, 389?398 (1997).

    CAS  PubMed  Google Scholar 

  132. Chen, Y. C., Choi, J. K., Andersen, S. L., Rosen, B. R. & Jenkins, B. G. Mapping dopamine D2/D3 receptor function using pharmacological magnetic resonance imaging. Psychopharmacology (Berl) 180, 705?715 (2005).

    CAS  Google Scholar 

  133. Dixon, A. L. et al. Dopamine antagonist modulation of amphetamine response as detected using pharmacological MRI. Neuropharmacology 48, 236?245 (2005).

    CAS  PubMed  Google Scholar 

  134. Hagino, H. et al. Effects of D2 dopamine receptor agonist and antagonist on brain activity in the rat assessed by functional magnetic resonance imaging. Brain Res. 813, 367?373 (1998).

    CAS  PubMed  Google Scholar 

  135. Ireland, M. D. et al. Mapping the effects of the selective dopamine D2/D3 receptor agonist quinelorane using pharmacological magnetic resonance imaging. Neuroscience 133, 315?326 (2005).

    CAS  PubMed  Google Scholar 

  136. Febo, M. et al. The neural consequences of repeated cocaine exposure revealed by functional MRI in awake rats. Neuropsychopharmacology 30, 936?943 (2005).

    CAS  PubMed  Google Scholar 

  137. Schwarz, A. J. et al. Concurrent pharmacological MRI and in situ microdialysis of cocaine reveal a complex relationship between the central hemodynamic response and local dopamine concentration. Neuroimage 23, 296?304 (2004).

    CAS  PubMed  Google Scholar 

  138. Marota, J. J. et al. Cocaine activation discriminates dopaminergic projections by temporal response: an fMRI study in Rat. Neuroimage 11, 13?23 (2000).

    CAS  PubMed  Google Scholar 

  139. Reese, T. et al. Impaired functionality of reperfused brain tissue following short transient focal ischemia in rats. Magn. Reson. Imaging 20, 447?454 (2002).

    CAS  PubMed  Google Scholar 

  140. Jones, N., O'Neill, M. J., Tricklebank, M., Libri, V. & Williams, S. C. Examining the neural targets of the AMPA receptor potentiator LY404187 in the rat brain using pharmacological magnetic resonance imaging. Psychopharmacology (Berl) 180, 743?751 (2005).

    CAS  Google Scholar 

  141. Gozzi, A. et al. Functional magnetic resonance mapping of intracerebroventricular infusion of a neuroactive peptide in the anaesthetised rat. J. Neurosci. Methods 142, 115?124 (2005).

    CAS  PubMed  Google Scholar 

  142. Henderson, L. A. et al. Functional magnetic resonance signal changes in neural structures to baroreceptor reflex activation. J. Appl. Physiol. 96, 693?703 (2004).

    PubMed  Google Scholar 

  143. Rausch, M., Gentsch, C., Enz, A., Baumann, D. & Rudin, M. A study paradigm allowing comparison of multiple high-resolution rCBV-maps for the examination of drug effects. NMR Biomed 18, 260?268 (2005).

    CAS  PubMed  Google Scholar 

  144. Shoaib, M., Lowe, A. S. & Williams, S. C. Imaging localised dynamic changes in the nucleus accumbens following nicotine withdrawal in rats. Neuroimage 22, 847?854 (2004).

    PubMed  Google Scholar 

  145. Xu, H. et al. Heroin-induced neuronal activation in rat brain assessed by functional MRI. Neuroreport 11, 1085?1092 (2000).

    CAS  PubMed  Google Scholar 

  146. Lowe, A. S., Williams, S. C., Symms, M. R., Stolerman, I. P. & Shoaib, M. Functional magnetic resonance neuro-imaging of drug dependence: naloxone-precipitated morphine withdrawal. Neuroimage 17, 902?910 (2002).

    PubMed  Google Scholar 

  147. Shah, Y. B., Prior, M. J., Dixon, A. L., Morris, P. G. & Marsden, C. A. Detection of cannabinoid agonist evoked increase in BOLD contrast in rats using functional magnetic resonance imaging. Neuropharmacology 46, 379?387 (2004).

    CAS  PubMed  Google Scholar 

  148. Borras, M. C. et al. fMRI measurement of CNS responses to naloxone infusion and subsequent mild noxious thermal stimuli in healthy volunteers. J. Neurophysiol. 91, 2723?2733 (2004).

    CAS  PubMed  Google Scholar 

  149. Vollm, B. A. et al. Methamphetamine activates reward circuitry in drug naive human subjects. Neuropsychopharmacology 29, 1715?1722 (2004).

    PubMed  Google Scholar 

  150. Breiter, H. C. et al. Acute effects of cocaine on human brain activity and emotion. Neuron 19, 591?611 (1997). A pivotal study in drug addiction and reward.

    CAS  PubMed  Google Scholar 

  151. Stein, E. A. et al. Nicotine-induced limbic cortical activation in the human brain: a functional MRI study. Am. J. Psychiatry 155, 1009?1015 (1998).

    CAS  PubMed  Google Scholar 

  152. Logothetis, N. K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150?157 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank K. Moldoff (www.galeriekirk.com) for kind permission to reproduce some of his graphics for this review.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

D.B. and L.B. have received unrestricted grant support from Merck Research Laboratories and a grant from the National Institutes of Neurological Diseases and Stroke. R.H. is a full-time employee of Merck & Co. Inc.

Related links

Related links

DATABASES

OMIM

Parkinson's disease

FURTHER INFORMATION

Alzheimer's Disease Neuroimaging Initiative

Glossary

Functional magnetic resonance imaging

An MRI technique that uses metabolic-induced capillary blood flow changes caused by neuronal activity to produce images reflecting such activity. Activation can be correlated with brain structures as determined by these images.

Molecular imaging

An imaging technique in which cellular/molecular processes have been tagged in such a way that they can be non-invasively imaged.

Positron-emission tomography

(PET). A dual-photon nuclear imaging technique in which radioactive tracers are administered in non-pharmacologically active doses to subjects and images are created that reveal brain blood flow, glucose metabolism or fractional receptor binding by drugs.

Single-photon-emission computed tomography

(SPECT). A nuclear imaging technique in which radioactive tracers generating single photons of a specific energy are administered to subjects to produce images. SPECT can give information about blood flow to tissues, molecular targets, and chemical reactions (metabolism) in the body.

Neuroinformatics

A field that deals with data structure and software tools devoted to the analysis and integration of neuroscience.

Gyrencephalic species

Mammalian species that have developed cerebrums in which gyri and sulci can be defined.

Functional neuropathomics

Intended to define the underlying pathophysiology in neural conditions at a systems level.

Functional neuromics

Defining the functional components of normal neural function at a systems level.

Functional classifiers

Drugs can act on neural networks or systems in a particular fashion ? for example, produce sedation, euphoria or analgesia. Activation patterns that show specific regions of the brain known to be involved in a particular function allow for the segregation or functional classification of drug action.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borsook, D., Becerra, L. & Hargreaves, R. A role for fMRI in optimizing CNS drug development. Nat Rev Drug Discov 5, 411–425 (2006). https://doi.org/10.1038/nrd2027

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2027

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing