Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Twenty Questions
  • Published:

The state of GPCR research in 2004

Key Points

List of questions

  1. 1

    What new technologies are having the greatest impact on GPCR research, and why?

  2. 2

    What tools and technologies for GPCR research would you most like to be available in the future, and why?

  3. 3

    What are the main pitfalls and advantages of currently used cell-based assay systems for GPCRs?

  4. 4

    How will changing views of agonist and antagonist behaviour at GPCRs change the way we view these receptors as therapeutic targets?

  5. 5

    Many predictions for heptahelical receptors have been based on using the rhodopsin crystal structure as a template. How successful have these been?

  6. 6

    How close are we to having further GPCR structures, and what are the main barriers to obtaining these?

  7. 7

    What big questions remain for GPCRs at the structure/function interface?

  8. 8

    How widespread do you think GPCR heteromerization will turn out to be, and how great a functional significance will it have?

  9. 9

    Almost two-thirds of drugs on the market are thought to interact with GPCRs, by far the largest family of targets, and yet new drugs targeting GPCRs are few and far between. Why?

  10. 10

    What are the barriers to achieving specificity using GPCR ligands?

  11. 11

    How will our increasing knowledge of interacting protein partners for GPCRs change the way that we think about achieving selective GPCR modulation?

  12. 12

    Could there be an approach to GPCR pharmacology based around monoclonal antibodies or proteins, rather than small molecules?

  13. 13

    How close are we to being able to integrate understanding of how individual GPCRs function with their role in disease states?

  14. 14

    How successful are the animal models that seek to recapitulate diseases linked to the aberrant function of peptide-activated GPCRs?

  15. 15

    In your opinion, which diseases are most strongly associated with aberrant function of peptide-activated GPCRs?

  16. 16

    What are the main hurdles that will need to be overcome to create further successful therapeutic approaches based around targeting GPCRs?

  17. 17

    What would you describe as the major concerns surrounding the continued development of GPCR-targeted therapies?

  18. 18

    What effect is the deorphanizing of GPCRs likely to have on the field?

  19. 19

    What outstanding questions in GPCR research are likely to be clarified in the next few years?

  20. 20

    What areas are unlikely to be clarified by research over the next few years?

Abstract

G-protein-coupled receptors (GPCRs) comprise the largest single class of cell-surface receptors, and have a history of being excellent therapeutic targets for a number of diseases. Yet several fundamental questions remain regarding their underlying biology, and many GPCRs that could be promising targets for drug discovery are still uncharacterized at the level of identified ligand or biological function. In an attempt to find some answers, we posed 20 questions of fundamental importance to the future development of the field to 20 of the world's leading experts on GPCR research, and here we present their replies.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Use of RET to assess GPCR oligomerizaton.
Figure 2: High-throughput screening based on second-messenger production has enabled the discovery of several GPCR antagonists.
Figure 3: GPCR–Gα fusion proteins as a model system for the analysis of receptor–G-protein coupling.
Figure 4: The crystal structure of rhodopsin.
Figure 5: Proposed roles for GPCR heterodimerization.
Figure 6: Use of orphan receptors to discover novel transmitters.

Accession codes

Accessions

Protein Data Bank

References

  1. Decaillot, F. M. et al. Opioid receptor random mutagenesis reveals a mechanism for G protein-coupled receptor activation. Nature Struct. Biol. 10, 629–636 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Lembo, P. M. et al. Proenkephalin A gene products activate a new family of sensory neuron-specific GPCRs. Nature Neurosci. 5, 201–209 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Okada, T., Ernst, O. P., Palczewski, K. & Hofmann, K. P. Activation of rhodopsin: new insights from structural and biochemical studies. Trends Biochem. Sci. 26, 318–324 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Lu, Z. L., Saldanha, J. W. & Hulme, E. C. Seven-transmembrane receptors: crystals clarify. Trends Pharmacol. Sci. 23, 140–146 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Yamaguchi, T. Molecular constituents and phosphorylation-dependent regulation of the post-synaptic density. Mass Spec. Rev. 21, 266–286 (2002).

    Article  CAS  Google Scholar 

  6. Gross, C. et al. Serotonin1A receptor acts during development to establish normal anxiety-like behaviour in the adult. Nature 416, 396–400 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Marsicano, G. et al. CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science 302, 84–88 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Ghanouni, P. et al. Functionally different agonists induce distinct conformations in the G protein coupling domain of the β2 adrenergic receptor. J. Biol. Chem. 276, 24433–24436 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Janetopoulos, C., Jin, T. & Devreotes, P. Receptor-mediated activation of heterotrimeric G-proteins in living cells. Science 291, 2408–2411 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Vilardaga, J. P., Bunemann, M., Krasel, C., Castro, M. & Lohse, M. J. Measurement of the millisecond activation switch of G protein-coupled receptors in living cells. Nature Biotechnol. 21, 807–812 (2003).

    Article  CAS  Google Scholar 

  11. Yi, T. M., Kitano, H. & Simon, M. I. A quantitative characterization of the yeast heterotrimeric G protein cycle. Proc. Natl Acad. Sci. USA 100, 10764–10769 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Small, K. M., McGraw, D. W. & Liggett, S. B. Pharmacology and physiology of human adrenergic receptor polymorphisms. Annu. Rev. Pharmacol. Toxicol. 43, 381–411 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Tunaru, S. et al. PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect. Nature Med. 9, 352–355 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Matthes, H. W. et al. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the μ-opioid-receptor gene. Nature 383, 819–823 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Kieffer, B. L. Opioids: first lessons from knockout mice. Trends Pharmacol. Sci. 20, 19–26 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Roques, B. P., Daugé, V., Gacel, G. & Fournié-Zaluski, M. C. in Biological Psychiatry, Developments in Psychiatry. Vol. 7 (eds Shagass, C. et al.) 287–289 (Elsevier, New York, 1985).

    Google Scholar 

  17. Chang, K. J., Porreca, F. & Woods, J. H. The Delta Receptor (Marcel Dekker, New York, 2004).

    Google Scholar 

  18. Gether, U. Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr. Rev. 21, 90–113 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Bockaert, J. et al. The 'magic tail' of G protein-coupled receptors: an anchorage for functional protein networks. FEBS Lett. 546, 65–72 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Xiang, Y. & Kobilka, B. The PDZ-binding motif of the β2-adrenoceptor is essential for physiologic signaling and trafficking in cardiac myocytes. Proc. Natl Acad. Sci. USA 100, 10776–10781 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Muller, A. et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 410, 50–56 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Seifert, R., Wenzel-Seifert, K. & Kobilka, B. K. GPCR–Gα fusion proteins: molecular analysis of receptor–G-protein coupling. Trends Pharmacol. Sci. 20, 383–389 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Wenzel-Seifert, K., Hurt, C. M. & Seifert, R. High constitutive activity of the human formyl peptide receptor. J. Biol. Chem. 273, 24181–24189 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Seifert, R., Lee, T. W., Lam, T. L. & Kobilka, B. K. Reconstitution of β2-adrenoceptor–GTP-binding protein interaction in Sf9 cells. High coupling efficiency in a β2-adrenoceptor–Gsα fusion protein. Eur. J. Biochem. 255, 369–382 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Seifert, R. et al. Multiple differences in agonist and antagonist pharmacology between human and guinea pig histamine H1-receptor. J. Pharmacol. Exp. Ther. 305, 1104–1115 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Wenzel-Seifert, K., Arthur, J. M., Liu, H. Y. & Seifert, R. Quantitative analysis of formyl peptide receptor coupling to Giα1, Giα2, and Giα3 . J. Biol. Chem. 274, 33259–33266 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Houston, C., Wenzel-Seifert, K., Bürckstümmer, T. & Seifert, R. The human histamine H2-receptor couples more efficiently to Sf9 insect cell Gs-proteins than to insect cell Gq-proteins: limitations of Sf9 cells for the analysis of receptor/G-protein coupling. J. Neurochem. 80, 678–696 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Gille, A. & Seifert, R. 2′(3′)-O-(N-methylanthraniloyl)-substituted GTP analogs: a novel class of potent competitive adenylyl cyclase inhibitors. J. Biol. Chem. 278, 12672–12679 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Gille, A. & Seifert, R. Low-affinity interactions of BODIPY-FL-GTPγS and BODIPY-FL-GppNHp with Gi- and Gs-proteins. Naunyn-Schmiedeberg's Arch. Pharmacol. 368, 210–215 (2003).

    Article  CAS  Google Scholar 

  30. Gille, A. et al. Differential inhibition of adenylyl cyclase isoforms and soluble guanylyl cyclase by purine and pyrimidine nucleotides. J. Biol. Chem. 279, 19955–19969 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Seifert, R., Wenzel-Seifert, K., Gether, U. & Kobilka, B. K. Functional differences between full and partial agonists: evidence for ligand-specific receptor conformations. J. Pharmacol. Exp. Ther. 297, 1218–1226 (2001).

    CAS  PubMed  Google Scholar 

  32. Furukawa, H. et al. Conformation of ligands bound to the muscarinic acetylcholine receptor. Mol. Pharmacol. 62, 778–787 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Luca, S. et al. The conformation of neurotensin bound to its G protein-coupled receptor. Proc. Natl Acad. Sci. USA 100, 10706–10711 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Banères, J. -L. & Parello, J. Structure-based analysis of GPCR function: conformational adaptation of both agonist and receptor upon leukotriene B4 binding to recombinant BLT1. J. Mol. Biol. 329, 815–829 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Peleg, G., Ghanouni, P., Kobilka, B. K. & Zare, R. N. Single-molecule spectroscopy of the β2 adrenergic receptor: observation of conformational substates in a membrane protein. Proc. Natl Acad. Sci. USA, 98, 8469–9474 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Seifert, R. & Wenzel-Seifert, K. Constitutive activity of G-protein-coupled receptors: cause of disease and common property of wild-type receptors. Naunyn-Schmiedeberg's Arch. Pharmacol. 366, 381–416 (2002).

    Article  CAS  Google Scholar 

  37. Seifert, R., Gether, U., Wenzel-Seifert, K. & Kobilka, B. K. Effects of guanine, inosine and xanthine nucleotides on β2-adrenergic receptor/Gs interactions: evidence for multiple receptor conformations. Mol. Pharmacol. 56, 348–358 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Steinberg, S. F. & Brunton, L. L. Compartmentation of G-protein-coupled signaling pathways in cardiac myocytes. Annu. Rev. Pharmacol. Toxicol. 41, 751–773 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Luttrell, L. M. & Lefkowitz, R. J. The role of β-arrestins in the termination and transduction of G-protein-coupled receptor signals. J. Cell. Sci. 115, 455–465 (2002).

    CAS  PubMed  Google Scholar 

  40. George, S. R., O'Dowd, B. F. & Lee, S. P. G-protein-coupled receptor oligomerization and its potential for drug discovery. Nature Rev. Drug Discov. 1, 808–820 (2002).

    Article  CAS  Google Scholar 

  41. Angers, S., Salahpour, A. & Bouvier, M. Dimerization: an emerging concept for G protein-coupled receptor ontogeny and function. Annu. Rev. Pharmacol. Toxicol. 42, 409–435 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Bockaert, J. & Pin, J. P. Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J. 18, 1723–1729 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gbahou, F. et al. Protean agonism at histamine H3 receptors in vitro and in vivo. Proc. Natl Acad. Sci. USA 100, 11086–11091 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Leff, P., Scaramellini, C., Law, C. & McKechnie, K. A three-state receptor model of agonist action. Trends Pharmacol. Sci. 18, 355–362 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Kenakin, T. Ligand-selective receptor conformations revisited: the promise and the problem. Trends Pharmacol. Sci. 24, 346–354 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Adan, R. A. H. & Kas, M. J. H. Inverse agonism gains weight. Trends Pharmacol. Sci. 24, 315–321 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Smit, M. J. et al. Inverse agonism of histamine H2 antagonist accounts for upregulation of spontaneously active histamine H2 receptors. Proc. Natl Acad. Sci. USA 93, 6802–6807 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Kjelsberg, M. A., Cotecchia, S., Ostrowski, J., Caron, M. G. & Lefkowitz, R. J. Constitutive activation of the α1B adrenergic receptor by all amino acid substitutions at a single site. Evidence for a region which constrains receptor activation. J. Biol. Chem. 267, 1430–1433 (1992).

    CAS  PubMed  Google Scholar 

  49. Chen, G. et al. Use of constitutive G-protein-coupled receptor activity for drug discovery. Mol. Pharmacol. 57, 125–134 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Menon, S. T., Han, M. & Sakmar, T. P. Rhodopsin: structural basis of molecular physiology. Physiol. Rev. 81, 1659–1688 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Sakmar, T. P., Menon, S. T., Marin, E. P. & Awad, E. S. Rhodopsin: insights from recent structural and mutagenesis studies. Annu. Rev. Biophys. Biomol. Struct. 31, 443–484 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Swaminath, G. et al. Sequential binding of agonists to the β2 adrenoceptor. Kinetic evidence for intermediate conformational states. J. Biol. Chem. 279, 686–691 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Whistler, J. L., Chuang, H. H., Chu, P., Jan, L. Y. & von Zastrow, M. Functional dissociation of μ-opioid receptor signaling and endocytosis: implications for the biology of opiate tolerance and addiction. Neuron 23, 737–746 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Willins, D. L. et al. Serotonergic antagonist effects on trafficking of serotonin 5-HT2A receptors in vitro and in vivo. Ann. NY Acad. Sci. 861, 121–127 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Seifert, R. & Wenzel-Seifert, K. Constitutive activity of G-protein-coupled receptors: cause of disease and common property of wild-type receptors. Arch. Pharmacol. 366, 381–416 (2002).

    Article  CAS  Google Scholar 

  56. Azzi, M. et al. β-Arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G protein-coupled receptors. Proc. Natl Acad. Sci. USA 100, 11406–11411 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Morello, J. -P. et al. Pharmacological chaperones rescue cell-surface expression and function of misfolded V2 vasopressin receptor mutants. J. Clin. Invest. 105, 887–895 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kelley, M. et al. Distinct interaction of human and guinea pig histamine H2-receptor with guanidine-type agonists. Mol. Pharmacol. 60, 1210–1225 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Palczewski, K. et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289, 739–745 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Fotiadis, D. et al. Atomic-force microscopy: rhodopsin dimers in native disc membranes. Nature 421, 127–128 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Liang, X., Lu, Y., Wilkes, M., Neubert, T. A. & Resh, M. D. Organization of the G protein-coupled receptors rhodopsin and opsin in native membranes. J. Biol. Chem. 278, 21655–21662 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Neve, K. A. et al. Modeling and mutational analysis of a putative sodium-binding pocket on the dopamine D2 receptor. Mol. Pharmacol. 60, 373–381 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Ballesteros, J. A., Shi, L. & Javitch, J. A. Structural mimicry in G-protein-coupled receptors: implications of the high-resolution structure of rhodopsin for structure–function analysis of rhodopsin-like receptors. Mol. Pharmacol. 60, 1–19 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Filipek, S., Teller, D. C., Palczewski, K. & Stenkamp, R. The crystallographic model of rhodopsin and its use in studies of other G protein-coupled receptors. Annu. Rev. Biophys. Biomol. Struct. 32, 375–397 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Malherbe, P. et al. Mutational analysis and molecular modeling of the binding pocket of the metabotropic glutamate 5 receptor negative modulator 2-methyl-6-(phenylethynyl)-pyridine. Mol. Pharmacol. 64, 823–832 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Bissantz, C., Bernard, P., Hibert, M. & Rognan, D. Protein-based virtual screening of chemical databases. II. Are homology models of G-protein coupled receptors suitable targets? Proteins 50, 5–25 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Tsamis, F. et al. Analysis of the mechanism by which the small-molecule CCR5 antagonists SCH-351125 and SCH-350581 inhibit human immunodeficiency virus type 1 entry. J. Virol. 77, 5201–5208 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Archer, E., Maigret, B., Escrieut, C., Pradayrol, L. & Fourmy, D. Rhodopsin crystal: new template yielding realistic models of G-protein-coupled receptors? Trends Pharmacol. Sci. 24, 36–40 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Allen, S., Rigby-Singleton, S. M., Harris, H., Davies, M. C. & O'Shea, P. Measuring and visualizing single molecular interactions in biology. Biochem. Soc. Transactions 31, 1052–1057 (2003).

    Article  CAS  Google Scholar 

  70. MacKinnon, R. Potassium channels. FEBS Lett. 555, 62–65 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Dutzler, R., Campbell, E. B. & MacKinnon, R. Gating the selectivity filter in ClC chloride channels. Science 300, 108–112 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Bass, R. B. et al. The structures of BtuCD and MscS and their implications for transporter and channel function. FEBS Lett. 555, 111–115 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. White, J. F., Trinh, L. B., Shiloach, J. & Grisshammer, R. Automated large-scale purification of a G-protein-coupled receptor for neurotensin. FEBS Lett. 564, 289–293 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Lundstrom, K. Semliki Forest virus vectors for rapid and high-level expression of integral membrane proteins. Biochim. Biophys. Acta 1610, 90–96 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Kobilka, B. K. Amino and carboxyl terminal modifications to facilitate the production and purification of a G protein-coupled receptor. Anal. Biochem. 231, 269–271 (1995).

    Article  CAS  PubMed  Google Scholar 

  76. Banères, J. L. et al. Structure-based analysis of GPCR function: evidence for a novel pentameric assembly between the dimeric leukotriene B4 receptor BLT1 and the G-protein. J. Mol. Biol. 329, 801–814 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Bertin, B., Freissmuth, M., Jockers, R., Strosberg, A. D. & Marullo, S. Cellular signaling by an agonist-activated recepto/Gsα fusion protein. Proc. Natl Acad. Sci. USA 91, 8827–8831 (1994).

    Article  CAS  PubMed  Google Scholar 

  78. Martini, L. et al. NK1 receptor fused to β-arrestin displays a single-component, high-affinity molecular phenotype. Mol. Pharmacol. 62, 30–37 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Fernandez, C. & Wüthrich, K. NMR solution structure determination of membrane proteins reconstituted in detergent micelles. FEBS Lett. 555, 144–150 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Gether, U., Lin, S. & Kobilka, B. K. Fluorescent labeling of purified β2 adrenergic receptor. Evidence for ligand-specific conformational changes. J. Biol. Chem. 270, 28268–28275 (1995).

    Article  CAS  PubMed  Google Scholar 

  81. Abramson, J. et al. Structure and mechanism of the lactose permease of Escherichia coli. Science 301, 610–615 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Palanche, T. et al. The neurokinin A receptor activates calcium and cAMP responses through distinct conformational states. J. Biol.Chem. 276, 34853–34861 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Jordan, B. A. & Devi, L. A. G-protein-coupled receptor heterodimerization modulates receptor function. Nature 399, 697–700 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bowery, N. G. Mammalian γ-aminobutyric acid (B) receptors: structure and function. Pharmacol. Rev. 54, 247–264 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Wenzel-Seifert, K. & Seifert, R. Molecular analysis of β2-adrenoceptor coupling to Gs-, Gi-, and Gq-proteins. Mol. Pharmacol. 58, 954–966 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Gille, A., Liu, H. Y., Sprang, S. R. & Seifert, R. Distinct interactions of GTP, UTP, and CTP with Gs-proteins. J. Biol. Chem. 277, 34434–34442 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Noble, F. & Roques, B. P. in Understanding G-Protein-Coupled Receptors and their role in the CNS (eds Pangalos, M. & Davies, C.) 242–263 (Oxford Univ., Oxford, 2002).

    Google Scholar 

  88. Marshall, F. H., Jones, K. A., Kaupmann, K. & Bettler, B. GABAB receptors — the first 7TM heterodimers. Trends Pharmacol. Sci. 20, 396–399 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Nelson, G. et al. Mammalian sweet taste receptors. Cell 106, 381–390 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Sexton, P. M., Albiston, A., Morfis, M. & Tilakaratne, N. Receptor activity modifying proteins. Cell. Signal. 13, 73–83 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Ramsay, D., Kellett, E., McVey, M., Rees, S. & Milligan, G. Homo- and hetero-oligomeric interactions between G-protein-coupled receptors in living cells monitored by two variants of bioluminescence resonance energy transfer (BRET): hetero-oligomers between receptor subtypes form more efficiently than between less closely related sequences. Biochem. J. 365, 429–440 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mercier, J. F., Salahpour, A., Angers, S., Breit, A. & Bouvier, M. Quantitative assessment of β1- and β2-adrenergic receptor homo- and heterodimerization by bioluminescence resonance energy transfer. J. Biol. Chem. 277, 44925–44931 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Terrillon, S. et al. Oxytocin and vasopressin V1a and V2 receptors form constitutive homo- and heterodimers during biosynthesis. Mol. Endocrinol. 17, 677–691 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Hague, C., Uberti, M. A., Chen, Z., Hall, R. A. & Minneman, K. P. Cell surface expression of α1D-adrenergic receptors is controlled by heterodimerization with α1B-adrenergic receptors. J. Biol. Chem. 279, 15541–15549 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Jones, K. A. et al. GABAB receptors function as a heteromeric assembly of the subunits GABABR1 and GABABR2. Nature 396, 674–679 (1998).

    Article  CAS  PubMed  Google Scholar 

  96. White, J. H. et al. Heterodimerization is required for the formation of a functional GABAB receptor. Nature 396, 679–682 (1998).

    Article  CAS  PubMed  Google Scholar 

  97. Lee, S. P. et al. Dopamine D1 and D2 receptor coactivation generates a novel phospholipase C-mediated calcium signal. J. Biol. Chem. 24 May 2004 (doi: 10.1074/jbc.M401923200).

  98. Kaupmann, K. et al. GABAB-receptor subtypes assemble into functional heteromeric complexes. Nature 396, 683–687 (1998).

    Article  CAS  PubMed  Google Scholar 

  99. Wreggett, K. A. & De Lean, A. The ternary complex model. Its properties and application to ligand interactions with the D2-dopamine receptor of the anterior pituitary gland. Mol. Pharmacol. 26, 214–227 (1984).

    CAS  PubMed  Google Scholar 

  100. Park, P. S., Sum, C. S., Pawagi, A. B. & Wells, J. W. Cooperativity and oligomeric status of cardiac muscarinic cholinergic receptors. Biochemistry 41, 5588–5604 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Gripentrog, J. M. et al. Experimental evidence for lack of homodimerization of the G protein-coupled human N-formyl peptide receptor. J. Immunol. 171, 3187–3193 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Nelson, G. et al. An amino-acid taste receptor. Nature 416, 199–202 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. He, L., Fong, J., von Zastrow, M. & Whistler, J. L. Regulation of opioid receptor trafficking and morphine tolerance by receptor oligomerization. Cell 108, 271–282 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Kunishima, M. et al. Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature 407, 971–977 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Duthey, B. et al. A single subunit (GB2) is required for G-protein activation by the heterodimeric GABA(B) receptor. J. Biol. Chem. 277, 3236–3241 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Salahpour, A., Angers, S. & Bouvier, M. Functional significance of oligomerization of G-protein-coupled receptors. Trends Endocrinol. Metab. 11, 163–168 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. Marshall, F. H. Heterodimerization of G-protein-coupled receptors in the CNS. Curr. Opin. Pharmacol. 1, 40–44 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Wenzel-Seifert, K. & Seifert, R. Functional differences between human formyl peptide receptor isoforms 26, 98 and G6. Naunyn-Schmiedeberg's Arch. Pharmacol. 367, 509–515 (2003).

    Article  CAS  Google Scholar 

  109. Horrobin, D. F. Modern biomedical research: an internally self-consistent universe with little contact with medical reality? Nature Rev. Drug Discov. 2, 151–154 (2003).

    Article  CAS  Google Scholar 

  110. McGavin, J. K. & Keating, G. M. Bisoprolol: a review of its use in chronic heart failure. Drugs 62, 2677–2696 (2002).

    Article  CAS  PubMed  Google Scholar 

  111. Engelhardt, S., Grimmer, Y., Fan, G. -H. & Lose, M. J. Constitutive activity of the human β1-adrenergic receptor in β1-receptor transgenic mice. Mol. Pharmacol. 60, 712–717 (2001).

    CAS  PubMed  Google Scholar 

  112. Kvols, K. L. et al. Treatment of the malignant carcinoid syndrome. Evaluation of a long-acting somatostatin analogue. N. Engl. J. Med. 315, 663–666 (1986).

    Article  CAS  PubMed  Google Scholar 

  113. Katugampola, S. & Davenport, A. Emerging roles for orphan G-protein-coupled receptors in the cardiovascular system. Trends Pharmcol. Sci. 24, 30–35 (2003).

    Article  CAS  Google Scholar 

  114. Wise, A., Gearing, K. & Rees, S. Target validation of G-protein coupled receptors. Drug Discov. Today 7, 235–246 (2002).

    Article  CAS  PubMed  Google Scholar 

  115. Roques, B. P. Novel approaches to targeting neuropeptide systems. Trends Pharmacol. Sci. 21, 475–483 (2000).

    Article  CAS  PubMed  Google Scholar 

  116. Strange, P. G. Antipsychotic drugs: importance of dopamine receptors for mechanisms of therapeutic actions and side effects. Pharmacol. Rev. 53, 119–133 (2001).

    CAS  PubMed  Google Scholar 

  117. Gasparini, F., Kuhn, R. & Pin, J. P. Allosteric modulators of group I metabotropic glutamate receptors: novel subtype-selective ligands and therapeutic perspectives. Curr. Opin. Pharmacol. 2, 43–49 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. May, L. T. & Christopoulos, A. Allosteric modulators of G-protein-coupled receptors. Curr. Opin. Pharmacol. 3, 551–556 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Schaffhauser, H. et al. Pharmacological characterization and identification of amino acids involved in the positive modulation of metabotropic glutamate receptor subtype 2. Mol. Pharmacol. 64, 798–810 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Seifert, R. et al. Differential effects of Gsα splice variants on β2-adrenoceptor-mediated signaling. The β2-adrenoceptor coupled to the long splice variant of Gsα has properties of a constitutively active receptor. J. Biol. Chem. 273, 5109–5116 (1998).

    Article  CAS  PubMed  Google Scholar 

  121. Wenzel-Seifert, K., Kelley, M. T., Buschauer, A. & Seifert, A. Similar apparent constitutive activity of human histamine H2-receptor fused to long and short splice variants of Gsα. J. Pharmacol. Exp. Ther. 299, 1013–1020 (2001).

    CAS  PubMed  Google Scholar 

  122. Gille, A. & Seifert, R. Co-expression of the β2-adrenoceptor and dopamine D1-receptor with Gsα proteins in Sf9 cells: limitations in comparison with fusion proteins. Biochim. Biophys. Acta 1613, 101–114 (2003).

    Article  CAS  PubMed  Google Scholar 

  123. Fischer, J. A., Muff, R. & Born, W. Functional relevance of G-protein-coupled-receptor-associated proteins, exemplified by receptor-activity-modifying proteins (RAMPs). Biochem. Soc. Trans. 30, 455–460 (2002).

    Article  CAS  PubMed  Google Scholar 

  124. Fujino, H. & Regan, J. W. Prostanoid receptors and phosphatidylinositol 3-kinase: a pathway to cancer? Trends Pharmacol. Sci. 24, 335–340 (2003).

    Article  CAS  PubMed  Google Scholar 

  125. Brady, A. E. & Limbird, L. E. G protein-coupled receptor interacting proteins: emerging roles in localization and signal transduction. Cell. Signal. 4, 297–309 (2002).

    Article  Google Scholar 

  126. Mallee, J. J. et al. Receptor activity-modifying protein 1 determines the species selectivity of non-peptide CGRP receptor antagonists. J. Biol. Chem. 277, 14294–14298 (2002).

    Article  CAS  PubMed  Google Scholar 

  127. Morfis, M., Christopoulos, A. & Sexton, P. M. RAMPs: 5 years on, where to now? Trends Pharmacol. Sci. 24, 596–601 (2003).

    Article  CAS  PubMed  Google Scholar 

  128. Ango, F. et al. Dendritic and axonal targeting of type 5 metabotropic glutamate receptor is regulated by Homer1 proteins and neuronal excitation. J. Neurosci. 20, 8710–8716 (2000).

    Article  CAS  PubMed  Google Scholar 

  129. Tu, J. C. et al. Homer binds a novel proline-rich motif and links group 1 metabotropic glutamate receptors with IP3 receptors. Neuron 21, 717–726 (1998).

    Article  CAS  PubMed  Google Scholar 

  130. Ango, F. et al. Agonist-independent activation of metabotropic glutamate receptors by the intracellular protein Homer. Nature 411, 962–965 (2001).

    Article  CAS  PubMed  Google Scholar 

  131. Olson, W. C. et al. Differential inhibition of human immunodeficiency virus type 1 fusion, gp120 binding, and CC-chemokine activity by monoclonal antibodies to CCR5. J. Virol. 73, 4145–4155 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Peter, J. C., Eftekhari, P., Billiald, P., Wallukat, G. & Hoebeke, J. scFv Single chain antibody variable fragment as inverse agonist of the β2-adrenergic receptor. J. Biol. Chem. 278, 36740–36747 (2003).

    Article  CAS  PubMed  Google Scholar 

  133. Ogata, E. Parathyroid hormone-related protein as a potential target of therapy for cancer-associated morbidity. Cancer 88, 2909–2911 (2000).

    Article  CAS  PubMed  Google Scholar 

  134. Kakonen, S. M. & Mundy, G. R. Mechanisms of osteolytic bone metastases in breast carcinoma. Cancer 97 (Suppl. 3), 834–839 (2003).

    Article  PubMed  Google Scholar 

  135. Bowers, C. Y. Unnatural growth hormone-releasing peptide begets natural ghrelin. J. Clin. Endocrinol. Metab. 86, 1464–1469 (2001).

    Article  CAS  PubMed  Google Scholar 

  136. Mijares, A., Lebesgue, D., Wallukat, G. & Hoebeke, J. From agonist to antagonist: Fab fragments of an agonist-like monoclonal anti-β2-adrenoceptor antibody behave as antagonists. Mol. Pharmacol. 58, 373–379 (2000).

    Article  CAS  PubMed  Google Scholar 

  137. Shigemoto, R., Abe, T., Nomura, S., Nakanishi, S. & Hirano, T. Antibodies inactivating mGluR1 metabotropic glutamate receptor block long-term depression in cultured Purkinje cells. Neuron 12, 1245–1255 (1994).

    Article  CAS  PubMed  Google Scholar 

  138. Sillevis Smitt, P. et al. Paraneoplastic cerebellar ataxia due to autoantibodies against a glutamate receptor. New Engl. J. Med. 342, 21–27 (2000).

    Article  CAS  PubMed  Google Scholar 

  139. Orgiazzi, J., Madec, A. M. & Ducottet, X. The role of stimulating, function-blocking and growth-blocking anti-TSH receptor antibodies (TRAbs) in GD, Hashimoto's disease and in atrophic thyroiditis. Ann. Endocrinol. 64, 31–36 (2003).

    CAS  Google Scholar 

  140. Coffield, V. M., Jian, Q. & Su, L. A genetic approach to inactivating chemokine receptors using a modified viral protein. Nature Biotechnol. 21, 1321–1327 (2003).

    Article  CAS  Google Scholar 

  141. Dillon, S. B., Verghese, M. W. & Snyderman, R. Signal transduction in cells following binding of chemoattractants to membrane receptors. Virchows Arch. B Cell. Pathol. Incl. Mol. Pathol. 55, 65–80 (1988).

    CAS  PubMed  Google Scholar 

  142. Seifert, R. & Wenzel-Seifert, K. Defective Gi protein coupling in two formyl peptide receptor mutants associated with localized juvenile periodonttitis. J. Biol. Chem. 276, 42043–42049 (2001).

    Article  CAS  PubMed  Google Scholar 

  143. Seifert, R. & Wenzel-Seifert, K. The human formyl peptide receptor as model system for constitutively active receptors. Life Sci. 73, 2263–2280 (2003).

    Article  CAS  PubMed  Google Scholar 

  144. Rohrer, D. K. et al. Targeted disruption of the mouse β1-adrenergic receptor gene: developmental and cardiovascular effects. Proc. Natl Acad. Sci. USA 93, 7375–7380 (1996).

    Article  CAS  PubMed  Google Scholar 

  145. Roeske, W. R. & Wildenthal, K. Responsiveness to drugs and hormones in the murine model of cardiac ontogenesis. Pharmacol. Ther. 14, 55–66 (1981).

    Article  CAS  PubMed  Google Scholar 

  146. Murphy, P. M. Viral exploitation and subversion of the immune system through chemokine mimicry. Nature Immunol. 2, 116–122 (2001).

    Article  CAS  Google Scholar 

  147. Turnbull, A. V. et al. Selective antagonism of the NPY Y5 receptor does not have a major effect on feeding in rats. Diabetes 51, 2441–2449 (2002).

    Article  CAS  PubMed  Google Scholar 

  148. Spiegel, A. M. Defects in G protein-coupled signal transduction in human disease. Annu. Rev. Physiol. 58, 143–170 (1996).

    Article  CAS  PubMed  Google Scholar 

  149. Inui, A. Neuropeptide gene polymorphisms and human behavioural disorders. Nature Rev. Drug Discov. 2, 986–998 (2003).

    Article  CAS  Google Scholar 

  150. Brown, E. & MacLeod, R. J. Extracellular calcium sensing and extracellular calcium signalling. Physiol. Rev. 81, 239–297 (2001).

    Article  CAS  PubMed  Google Scholar 

  151. Rosenthal, W., Antaramian, A., Gilbert, S. & Birnbaumer, M. Nephrogenic diagetes insipidus. A V2 vasopressin receptor unable to stimulate adenylyl cyclase. J. Biol. Chem. 268, 13030–13033 (1993).

    CAS  PubMed  Google Scholar 

  152. Pollak, M. R. et al. Autosomal dominant hypocalcaemia caused by a Ca2+-sensing receptor gene mutation. Nature Genet. 8, 303–307 (1994).

    Article  CAS  PubMed  Google Scholar 

  153. Daub, H., Ulrich-Weiss, F., Wallasch, C. & Ullrich, A. Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature 379, 557–560 (1996).

    Article  CAS  PubMed  Google Scholar 

  154. Prenzel, N. et al. EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB–EGE. Nature 402, 884–888 (1999).

    Article  CAS  PubMed  Google Scholar 

  155. Gutkind, J. S. The pathways connecting G protein-coupled receptors to the nucleus through divergent mitrogen-activated protein kinase cascades. J. Biol. Chem. 273, 1839–1842 (1998).

    Article  CAS  PubMed  Google Scholar 

  156. Morello, J. P. & Bichet, D. G. Nephrogenic diabetes insipidus. Annu. Rev. Physiol. 63, 607–630 (2001).

    Article  CAS  PubMed  Google Scholar 

  157. Janovick, J. A., Maya-Nunez, G. & Conn, P. M. Rescue of hypogonadotropic hypogonadism-causing and manufactured GnRH receptor mutants by a specific protein-folding template: misrouted proteins as a novel disease etiology and therapeutic target. J. Clin. Endocrinol. Metab. 87, 3255–3262 (2002).

    Article  CAS  PubMed  Google Scholar 

  158. Illing, M. E., Rajan, R. S., Bence, N. F. & Kopito, R. R. A rhodopsin mutant linked to autosomal dominant retinitis pigmentosa is prone to aggregate and interacts with the ubiquitin proteasome system. J. Biol. Chem. 277, 34150–34160 (2002).

    Article  CAS  PubMed  Google Scholar 

  159. Corvilain, B., Van Sande, J., Dumont, J. E. & Vassart, G. Somatic and germline mutations of the TSH receptor and thyroid diseases. Clin. Endocrinol. 55, 143–158 (2001).

    CAS  Google Scholar 

  160. Sadée, W., Hoeg, E., Lucas, J. & Wang, D. Genetic variations in human G protein-coupled receptors: implications for drug therapy. AAPS PharmSci. 3, E22 (2001).

    Article  PubMed  Google Scholar 

  161. Chemelli, R. M. et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98, 437–451 (1999).

    Article  CAS  PubMed  Google Scholar 

  162. Lin, L. et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98, 365–376 (1999).

    Article  CAS  PubMed  Google Scholar 

  163. O'Rahilly, S. Leptin: defining its role in humans by the clinical study of genetic disorders. Nutr. Rev. 60, S30–S34 (2002).

    Article  PubMed  Google Scholar 

  164. Inui, A. Transgenic approach to the study of body weight regulation. Pharmacol. Rev. 52, 35–61 (2000).

    CAS  PubMed  Google Scholar 

  165. Willie, J. T., Chemelli, R. M., Sinton, C. M. & Yanagisawa, M. To eat or to sleep? Orexin in the regulation of feeding and wakefulness. Annu. Rev. Neurosci. 24, 429–458 (2001).

    Article  CAS  PubMed  Google Scholar 

  166. Hosoda, K. et al. Targeted and natural (piebald-lethal) mutations of endothelin-B receptor gene produce megacolon associated with spotted coat color mice. Cell 79, 1267–1276 (1994).

    Article  CAS  PubMed  Google Scholar 

  167. Gao, J. L., Lee, E. J. & Murphy, P. M. Impaired bacterial host defense in mice lacking the N-formylpeptide receptor. J. Exp. Med. 189, 657–662 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Redrobe, J. P., Dumont, Y., Herzog, H. & Quirion, R. Characterization of neuropeptide Y, Y2 receptor knockout mice in two animal models of learning and memory processing. J. Mol. Neurosci. 22, 159–166 (2004).

    Article  CAS  PubMed  Google Scholar 

  169. Arvanitakis, L., Geras-Raaka, E., Varma, A., Gershengorn, M. C. & Cesarman, E. Human herpesvirus KSHV encodes a constitutively active G-protein-coupled receptor linked to cell proliferation. Nature 385, 347–350 (1997).

    Article  CAS  PubMed  Google Scholar 

  170. Hunter, A. J., Nolan, P. M. & Brown, S. D. Towards new models of disease and physiology in the neurosciences: the role of induced and naturally occurring mutations. Hum. Mol. Genet. 9, 893–900 (2000).

    Article  CAS  PubMed  Google Scholar 

  171. Christopoulos, A. & Kenakin, T. G protein-coupled receptor allosterism and complexing. Pharmacol. Rev. 54, 323–374 (2002).

    Article  CAS  PubMed  Google Scholar 

  172. Yanovski, S. Z. & Yanovski, J. A. Obesity. N. Engl. J. Med. 346, 591–602 (2002).

    Article  CAS  PubMed  Google Scholar 

  173. O'Dowd, B. et al. A human gene that shows identity with the gene encoding the angiotensin receptor is located on chromosome 11. Gene 136, 355–360 (1993).

    Article  CAS  PubMed  Google Scholar 

  174. Lee, D. K. et al. Discovery of a receptor related to the galanin receptors. FEBS Lett. 446, 103–107 (1999).

    Article  CAS  PubMed  Google Scholar 

  175. Quirion, R. & Weiss, A. S. Peptide E and other proenkephalin-derived peptides are potent κ opiate receptor agonists. Peptides 4, 445–449 (1983).

    Article  CAS  PubMed  Google Scholar 

  176. Kniazeff, J., Galvez, T., Labesse, G. & Pin, J. P. No ligand binding in the GB2 subunit of the GABAB receptor is required for activation and allosteric interaction between the subunits. J. Neurosci. 22, 7352–7361 (2002).

    Article  CAS  PubMed  Google Scholar 

  177. Vassilatis, D. K. et al. The G protein-coupled receptor repertoires of human and mouse. Proc. Natl Acad. Sci. USA 100, 4903–4908 (2003).

    Article  CAS  PubMed  Google Scholar 

  178. Fujisawa, Y. et al. Orphan GPCR ligands related to obesity. Curr. Med. Chem. Central Nervous System Agents 3, 101–120 (2003).

    Article  CAS  Google Scholar 

  179. Wise, A., Jupe, S. C. & Rees, S. The identification of ligands at orphan G-protein coupled receptors. Annu. Rev. Pharmacol. Toxicol. 44, 43–66 (2004).

    Article  CAS  PubMed  Google Scholar 

  180. Kojima, M. et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402, 656–660 (1999).

    Article  CAS  PubMed  Google Scholar 

  181. Inui, A. Ghrelin: an orexigenic and somatotrophic signal from the stomach. Nature Rev. Neurosci. 2, 551–560 (2001).

    Article  CAS  Google Scholar 

  182. König, M. et al. Pain responses, anxiety and aggression in mice deficient in pre-proenkephalin. Nature 383, 535–538 (1996).

    Article  PubMed  Google Scholar 

  183. Liu, C., Wilson, S. J., Kuei, C. & Lovenberg, T. W. Comparison of human, mouse, rat and guinea pig histamine H4 receptors reveal substantial pharmacological species variation. J. Pharmacol. Exp. Ther. 299, 121–130 (2001).

    CAS  PubMed  Google Scholar 

  184. Mason, D. A., Moore, J. D., Green, S. A. & Liggett, S. B. A gain-of-function polymorphism in a G-protein coupling domain of the human β1-adrenergic receptor. J. Biol. Chem. 274, 12670–12674 (1999).

    Article  CAS  PubMed  Google Scholar 

  185. Wenzel-Seifert, K. & Seifert, R. Properties of Arg389–β1-adrenoceptor–Gsα fusion proteins: comparison with Gly389–β1-adrenoceptor–Gsα fusion proteins. Recept. Channels 9, 315–323 (2003).

    Article  CAS  PubMed  Google Scholar 

  186. Weinshilboum, R. Pharmacogenetics: the future is here! Mol. Interventions 3, 118–122 (2003).

    Article  Google Scholar 

  187. Taghzouti, K. et al. Cognition enhancing effects in young and old rats of pBC264, a selective CCK-B receptor agonist. Psychopharmacol. 143, 141–149 (1999).

    Article  CAS  Google Scholar 

  188. Neubig, R. R., Spedding, M., Kenakin, T. & Christopoulos, A. International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification. XXXVIII. Update on Terms and Symbols in Quantitative Pharmacology. Pharmacol. Rev. 55, 597–606 (2003).

    Article  CAS  PubMed  Google Scholar 

  189. Kenakin, T. Efficacy as a vector: the relative prevalence and paucity of inverse agonism. Mol. Pharmacol. 65, 2–11 (2004).

    Article  CAS  PubMed  Google Scholar 

  190. Milligan, G. & Bond, R. A. Inverse agonism and the regulation of receptor number. Trends Pharmacol. Sci. 18, 468–474 (1997).

    Article  CAS  PubMed  Google Scholar 

  191. Christopoulos, A. Allosteric binding sites on cell-surface receptors: novel targets for drug discovery. Nature Rev. Drug Discov. 1, 198–210 (2002).

    Article  CAS  Google Scholar 

  192. Kenakin, T. Efficacy at G-protein-coupled receptors. Nature Rev. Drug Discov. 1, 103–110 (2002).

    Article  CAS  Google Scholar 

  193. Samama, P., Cottecchia, S., Costa, T. & Lefkowitz, R. J. A mutation-induced activated state of the β2-adrenergic receptor. Extending the ternary complex model. J. Biol. Chem. 268, 4625–4636 (1993).

    CAS  PubMed  Google Scholar 

  194. Weiss, J. M., Morgan, P. H., Lutz, M. W. & Kenakin, T. P. The cubic ternary complex receptor-occupancy model. I. Model description. J. Theor. Biol. 178, 151–167 (1996).

    Article  CAS  Google Scholar 

  195. Weiss, J. M., Morgan, P. H., Lutz, M. W. & Kenakin, T. P. The cubic ternary complex receptor-occupancy model. II. Understanding apparent affinity. J. Theor. Biol. 178, 169–182 (1996).

    Article  CAS  Google Scholar 

  196. Weiss, J. M., Morgan, P. H., Lutz, M. W. & Kenakin, T. P. The cubic ternary complex receptor-occupancy model. III. Resurrecting efficacy. J. Theor. Biol. 178, 381–397 (1996).

    Article  Google Scholar 

  197. Offermanns, S. & Melvin, I. Simon. Gα15 and Gα16 couple a wide variety of receptors to phospholipase C. J. Biol. Chem. 270, 15175–15180 (1995).

    Article  CAS  PubMed  Google Scholar 

  198. Milligan, G. & Rees, S. Chimaeric Gα proteins: their potential use in drug discovery. Trends Pharmacol. Sci. 20, 118–124 (1999).

    Article  CAS  PubMed  Google Scholar 

  199. Milligan, G. The use of receptor–G-protein fusion proteins for the study of ligand activity. Receptors Channels 8, 309–317 (2002).

    Article  CAS  PubMed  Google Scholar 

  200. Molinari P. et al. Promiscuous coupling at receptor–Gα fusion proteins. The receptor of one covalent complex interacts with the α-subunit of another. J. Biol. Chem. 278, 15778–15788 (2003).

    Article  CAS  PubMed  Google Scholar 

  201. Kraulis, P. J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. App. Crystall. 24, 946–950 (1991).

    Article  Google Scholar 

  202. Merritt, E. A. & Bacon, D. J. Raster3D: Photorealistic molecular graphics. Methods. Enzymol. 277, 505–524 (1997).

    Article  CAS  PubMed  Google Scholar 

  203. Bouvier, M. Oligomerization of G-protein-coupled transmitter receptors. Nature Rev. Neurosci. 2, 274–286 (2001).

    Article  CAS  Google Scholar 

  204. Arshavsky, V. Y., Lamb, T. D. & Pugh, E. N. Jr. G proteins and phototransduction. Annu. Rev. Physiol. 64, 153–187 (2002).

    Article  CAS  PubMed  Google Scholar 

  205. Blumer, J. R. & Lanier, S. M. Accessory proteins for G protein-signaling systems: activators of G protein signaling and other nonreceptor proteins influencing the activation state of G proteins. Receptor Channels 9, 195–120 (2003).

    CAS  Google Scholar 

  206. Clapham, D. E. & Neer, E. J. G protein β-subunits. Annu. Rev. Pharmacol. Toxicol. 37, 167–203 (1997).

    Article  CAS  PubMed  Google Scholar 

  207. Dolphin, A. C. G protein modulation of voltage-gated calcium channels. Pharmacol. Rev. 55, 607–627 (2003).

    Article  CAS  PubMed  Google Scholar 

  208. Gilman, A. G. G proteins and regulation of adenylyl cyclase. Biosci. Reports 15, 65–97 (1995).

    Article  CAS  Google Scholar 

  209. Hofmann, F., Lacinova, L. & Klugbauer N. Voltage-dependent calcium channels: from structure to function. Rev. Physiol. Biochem. Pharmacol. 139, 33–87 (1999).

    Article  CAS  PubMed  Google Scholar 

  210. Hollinger, S. & Hepler, J. R. Cellular regulation of RGS proteins: modulators and integrators of G protein signaling. Pharmacol. Rev. 54, 527–559 (2002).

    Article  CAS  PubMed  Google Scholar 

  211. Malbon, C. C. Insulin signalling: putting the 'G-' in protein–protein interactions. Biochem. J. 380, 11–12 (2004).

    Article  Google Scholar 

  212. Nürnberg, B. & Ahnert-Hilger, G. Potential roles of heterotrimeric G proteins of the endomembrane system. FEBS Lett. 389, 61–65 (1996).

    Article  PubMed  Google Scholar 

  213. Nürnberg, B., Gudermann, T. & Schultz, G. Receptors and G proteins as primary components of transmembrane signal transduction. 2. G proteins: structure and function. J. Mol. Med. 73, 123–132 (1995).

    Article  PubMed  Google Scholar 

  214. Nürnberg, B. et al. Non-peptide G-protein activators as promising tools in cell biology and potential drug leads. Eur. J. Med. Chem. 34, 5–30 (1999).

    Article  Google Scholar 

  215. Nürnberg, B. in Handbook of Experimental Pharmacology (Vol. 145) Bacterial Protein Toxins (eds Aktories, K. & Just, I.) 187–206 (Springer Verlag, Berlin, 2000).

    Book  Google Scholar 

  216. Piekorz, R. & Nürnberg, B. Phospholipid kinases. X–Pharm [online] <http://www.xpharm.com/citation?Article_ID=56586> (2004).

  217. Pitcher, J. A., Freedman, N. J. & Lefkowitz, R. J. G protein-coupled receptor kinases. Annu. Rev. Biochem. 67, 653–692 (1998).

    Article  CAS  PubMed  Google Scholar 

  218. Preininger, A. M. & Hamm, H. E. G protein signalling: insights from new structures. Science STKE 3 Feb 2004 (doi: 10.1126/stke.2182004re3).

  219. Rebecchi, M. J. & Pentyala, S. N. Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol. Rev. 80, 1291–1335 (2000).

    Article  CAS  PubMed  Google Scholar 

  220. Ronnett, G. V. & Moon, C. G proteins and olfactory signal transduction. Annu. Rev. Physiol. 64, 189–222 (2002).

    Article  CAS  PubMed  Google Scholar 

  221. Schwindinger, W. F. & Robishaw, J. D. Heterotrimeric G-protein βγ-dimers in growth and differentiation. Oncogene 20, 1653–1660 (2001).

    Article  CAS  PubMed  Google Scholar 

  222. Sunahara, R. K. & Taussig, R. Isoforms of mammalian adenylyl cyclase: multiplicities of signaling. Mol. Interv. 2, 168–184 (2002).

    Article  CAS  PubMed  Google Scholar 

  223. Spiegel, A. M. & Weinstein, L. S. Inherited diseases involving G proteins and G protein-couple receptors. Annu. Rev. Med. 55, 27–39 (2004).

    Article  CAS  PubMed  Google Scholar 

  224. Wettschureck, N., Moers, A. & Offermanns, S. Mouse models to study G-protein-mediated signaling. Pharmacol. Ther. 101, 75–89 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Nature Reviews Drug Discovery would like to thank all the participants who contributed to the questionnaire. We also wish to acknowledge J. Bockaert, M. Bouvier, A. Christopoulos, S. R. George, B. Nürnberg, R. Seifert and R. E. Stenkamp for their invaluable help in preparing the figures.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Clare Ellis.

Ethics declarations

Competing interests

B.P.R. is Scientific Director of the start-up company PharmaLeads.

Additional information

 Tamas Bartfai Director and Professor of Neuropharmacology, Harold L. Dorris Neurological Research Center, The Scripps Research Institute, La Jolla, San Diego, USA http://dorriscenter.scripps.edu/bartfai.html Jeffrey L. Benovic Professor and Vice Chair of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA http://www.kcc.tju.edu/Staff/StaffDefault.asp/ Joël Bockaert Professor of Neuroscience, Laboratoire de Génomique Fonctionelle, Department of Neurobiology, Centre Nationale de la Recherche Scientifique — UPR2580, Montpellier, France http://www.montp.inserm.fr/ifr3/upr2580/ Richard A. Bond Associate Professor of Pharmacology, Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Texas, USA http://www.uh.edu/pps/ppsp/fapages/fpc/bond.htm Michel Bouvier Professor and Chairman, Department of Biochemistry, Université de Montréal, Quebec, Canada http://www.mapageweb.umontreal.ca/bouvier/ Arthur Christopoulos NHMRC Senior Research Fellow and Head, Molecular Pharmacology Laboratory, Department of Pharmacology, University of Melbourne, Parkville , Victoria , Australia http://www.pharmacology.unimelb.edu.au/research/molpharm.html Olivier Civelli Professor of Pharmacology, Department of Pharmacology, University of California , Irvine , California , USA http://www.ucihs.uci.edu/pharmaco/Faculty/Civelli.html Lakshmi A. Devi  Professor of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine , New York , New York , USA http://www.mssm.edu/labs/devi/ Susan R. George Professor of Medicine and Pharmacology, Canada Research Chair in Molecular Neuroscience, Department of Pharmacology, University of Toronto , Toronto , Canada http://www.utoronto.ca/grdpharm/george.htm Akio Inui Associate Professor of Clinical Molecular Medicine, Division of Diabetes, Digestive and Kidney Diseases, Department of Clinical Molecular Medicine, Kobe University Graduate School of Medicine , Chuo-ku Kobe , Japan http://www.med.kobe-u.ac.jp/WelcomeE.html Brian Kobilka Professor of Molecular and Cellular Physiology and Medicine, Stanford University School of Medicine , Stanford , California , USA http://www.med.stanford.edu/kobilkalab/index.html Rob Leurs  Professor of Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research, Vrije Universiteit, Faculty of Science, Medicinal Chemistry , Amsterdam , the Netherlands http://www.chem.vu.nl/far/Medchem/staff.html Rick Neubig Professor of Pharmacology and Associate Professor of Internal Medicine, Department of Pharmacology, University of Michigan Medical School , Ann Arbor , Michigan , USA http://sitemaker.umich.edu/neubig.lab Jean-Philippe Pin CNRS Research Director and Head of the Molecular Pharmacology Department, Departement de Pharmacologie Moleculaire, Laboratoire de Génomique Fonctionnelle, Centre Nationale de la Researche Scientifique , Montpellier , France http://www.montp.inserm.fr/ifr3/upr2580/jppin/Index.htm Rémi Quirion Professor of Psychiatry and Scientific Director, Institute of Neurosciences, Mental Health and Addiction, Canadian Institutes of Health Research, Montreal , Quebec , Canada http://www.douglas.mcgill.ca/quirionlab Bernard P. Roques Professor (emeritus), Université René Descartes , Paris , France http://www.pharmacie.univ-paris5.fr/chimie1.htm Thomas P. Sakmar Richard M. and Isabel P. Furlaud Professor, Laboratory of Molecular Biology and Biochemistry, The Rockefeller University , New York , New York , USA http://www.rockefeller.edu/labheads/sakmar/sakmar-lab.html Roland Seifert Associate Professor for Pharmacology and Toxicology, Department of Pharmacology and Toxicology, The University of Kansas , Lawrence , Kansas , USA http://people.ku.edu/~rseifert/Html/SEIFERTLABPAGE.html Ronald E. Stenkamp Professor, Departments of Biological Structure and Biochemistry, University of Washington , Seattle , Washington , USA http://faculty.washington.edu/stenkamp/  Philip G. Strange  Professor of Neuroscience, School of Animal and Microbial Sciences, University of Reading, Whiteknights , Reading , UK http://www.ams.rdg.ac.uk/DMCB/neurosci/

Related links

Related links

DATABASES

Entrez Gene

5-HT2A receptor

α1-adrenoceptor

α2-adrenoceptor

β1-adrenoceptor

β2-adrenoceptor

ACE

adenosine A1 receptor

AgRP

apelin

CALCR

cannabinoid CB1 receptor

CCK1 receptor

CCK2 receptor

CCR5

CRLR

CXCR4

dopamine D1 receptor

dopamine D2 receptor

FSHR

GABAA receptor

GABAB receptor

GAIP

GALR1

GALR2

ghrelin

glucagon-like peptide-1

hERG

histamine H1 receptor

histamine H2 receptor

histamine H3 receptor

HM74

JAK

KISS1

LHR

MAPK

MC4R

mGlu1 receptor

mGlu2 receptor

mGlu3 receptor

muscarinic M1 receptor

muscarinic M2 receptor

neuropeptide Y5 receptor

NK1 receptor

NMDA receptor

NSF

NTSR1

PTH

PTHR

RAMPs

RGS4

rhodopsin

thyrotropin receptor

vasopressin V1A receptor

vasopressin V2 receptor

Online Mendelian Inheritance in Man

Hirschsprung's disease

hypogonadotropic hypogonadism

irritable bowel syndrome

multiple sclerosis

rheumatoid arthritis

schizophrenia

FURTHER INFORMATION

GPCR database

Glossary

ANORECTIC

Suppressing or causing loss of appetite.

ATOMIC FORCE MICROSCOPE

(AFM.) A microscope that nondestructively measures the forces (at the atomic level) between a sharp probing tip (which is attached to a cantilever spring) and a sample surface. The microscope images structures at the resolution of individual atoms.

CHROMOPHORE

A light-absorbing molecule, such as pterin or retinal. Often physically associated with a protein partner to form a photoreceptor/phototransducer.

DESENSITIZATION

The mechanism by which a ligand becomes less effective on a receptor during a prolonged application.

DIPSOGENIC

Something that induces a strong need or desire to drink fluids; thirst-inducing.

FEAR CONDITIONING

A test to measure the ability of a rodent to learn and remember an association between an aversive experience and environmental cues. Learning and memory are assessed by scoring freezing behaviour in the presence of the cue or context.

FLUORESCENCE CORRELATION SPECTROSCOPY

(FCS.) A single-molecule technique that examines the diffusion of fluorescent molecules across a small confocal volume. It can be used to examine ligand binding based on the different diffusion speeds of a fluorescent molecule, when free and bound to a receptor.

FLUOROPHORE

A small molecule or a part of a larger molecule that can be excited by light to emit fluorescence.

FLUOROMETRIC IMAGING PLATE READER

A high-throughput screening device used to quantify real-time intracellular calcium fluctuations simultaneously in multi-well plates. In this cell-based assay, cells are loaded with a dye that can be excited once bound to calcium. Various GPCRs can be coupled to calcium pathways using G-protein chimeras or promiscuous coupling to Gα15/Gα16.

FLUORESCENCE LIFETIME IMAGING

An imaging technique that takes advantage of the change in the life-time of fluorescence of an energy donor when fluorescence resonance energy transfer occurs.

G PROTEIN

A heterotrimeric GTP-binding and -hydrolysing protein that interacts with cell-surface receptors, often stimulating or inhibiting the activity of a downstream enzyme. G proteins consist of three subunits: the α-subunit, which contains the guanine-nucleotide-binding site; and the β- and γ-subunits, which function as a heterodimer.

GREEN FLUORESCENT PROTEIN

An autofluorescent protein, originally isolated from the jellyfish Aequorea victoria, that can be genetically conjugated with proteins to make them fluorescent.

GTPγS

A hydrolysis-resistant analogue of GTP that binds to G proteins with high affinity. [35S]GTPγS is frequently used to monitor GPCR-mediated guanine nucleotide exchange at G proteins.

INOTROPIC

Affecting the contraction of muscle, especially heart muscle.

INTERNAL FLUORESCENCE REFLECTION

An imaging technique that allows the detection of single-molecule fluorescence signals.

IONOTROPIC RECEPTOR

A term that describes a receptor that exerts its effects through the modulation of ion-channel activity. This term is now commonly used for receptors with intrinsic ion channels.

OCCAM'S RAZOR

A principle of 'postulate parsimony', articulated by William of Occam in the thirteenth century, which suggests that all else being equal, simpler explanations should be preferred over more complex ones.

ONTOGENY

In this context, the production and formation (in terms of adoption of three-dimensional structure) of receptor proteins.

ORPHAN RECEPTOR

A receptor for which no endogenous ligand has been identified.

PALMITOYLATION

A post-translational modification in which palmitic acid, a fatty carbon chain, is attached to a cysteine residue by a thio-ester bond.

PDZ BINDING MOTIF

Protein–protein interaction domain that often occurs in scaffolding proteins and is named after the founding members of this protein family (PSD-95, DLG and ZO-1).

PHARMACOPHORE

The ensemble of steric and electronic features that is necessary to ensure optimal interactions with a specific biological target structure and to trigger (or to block) its biological response.

PHASIC

Physiological events that occur only transiently with intervening periods of inactivity.

POSITRON EMISSION TOMOGRAPHY

A radioisotope method for localizing chemicals, such as receptor-bound ligands, in vivo.

PROTEAN LIGAND

A ligand that acts as an agonist on one specific pathway, and as an inverse agonist on another pathway.

PROTOMERS

Identical subunits in an oligomeric protein complex.

QUANTUM DOTS

Nanometre-scale particles of semiconductor materials. Optically, quantum dots are similar to fluorophores in that they absorb light at one wavelength (colour) and emit light at another. They could potentially replace fluorophores in many bioassays, as their emission efficiency does not fade over time as occurs with regular fluorophores. Similar to fluorophores, they can also be conjugated to biomolecules.

QT INTERVAL

On an electrocardiogram, the QT interval represents the time between the electrical activation and inactivation of the ventricles, the lower chambers of the heart.

REVERSE PHARMACOLOGY

The process that leads from an orphan receptor to the identification of its endogenous ligand.

SECRETED ALKALINE PHOSPHATASE (SEAP) ASSAY

A gene-reporter assay in which transcription of a thermostable secreted alkaline phosphatase is induced by the accumulation of an intracellular second messenger. The SEAP is quantitatively secreted in the supernatant, which simplifies the detection step of this assay.

SINGLE-MOLECULE FORCE EXTENSION

A measurement of mechanical properties between single molecules using atomic force microscopy.

SMOOTHENED RECEPTORS

Receptors involved in development first identified using Drosophila genetics. These receptors are constitutively active in the absence of their associated protein Patch, the receptor for Hedgehog. Hedgehog is supposed to prevent Patch from inhibiting constitutive activity of Smoothened, leading to Smoothened activation.

TOLERANCE

Reduced drug responsiveness with repeated exposure to a constant drug dose.

TONIC

Physiological events that occur in a sustained manner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellis, C., The Nature Reviews Drug Discovery GPCR Questionnaire Participants.. The state of GPCR research in 2004 . Nat Rev Drug Discov 3, 577–626 (2004). https://doi.org/10.1038/nrd1458

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1458

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing