Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Phenotypic screening in cancer drug discovery — past, present and future

Key Points

  • Drug discovery approaches for cancer, as for other therapeutic areas, have typically been divided into two classes: target-based drug discovery (TDD) and phenotypic drug discovery (PDD). Cancer drug discovery poses substantial challenges for both targeted and 'classical' phenotypic drug discovery owing to the number, diversity and plasticity of molecular mechanisms and phenotypes underlying tumour initiation and growth.

  • Discovery origins for all 48 small-molecule cancer drugs approved by the US Food and Drug Administration between 1999 and 2013, and for agents in Phase II and II clinical trials at the end of 2013, were analysed and classified.

  • Although a significant number of approved and investigational cancer drugs could be easily classified as targeted, the majority of which (21 out of 29) are kinase inhibitors, we concluded that very few drugs (four out of 48) were discovered entirely by 'classical' PDD. The remainder were discovered by, or developed from chemical lead matter discovered by a combination of phenotypic and target-based assays.

  • Drug discovery using cytoxicity assays and cancer cell lines, although yielding many of the current standard-of-care chemotherapies, is unlikely to result in further drugs with novel mechanisms of action.

  • Knowledge of the molecular pathways and targets required for specific disease-associated phenotypes, along with the ability to use more disease-relevant cell models, improves the probability of discovering drugs with novel mechanisms of action and clinical efficacy in molecularly defined patient populations.

  • We introduce the concept of 'mechanism-informed phenotypic drug discovery' (MIPDD) to include phenotypic assays for specific molecular pathways and targets. Determining the causal relationships between target inhibition and phenotypic effects may well open up new and unexpected avenues of cancer biology. Such an approach presents the best means of discovering drugs that have both an optimal molecular mechanism of action and a diagnostic hypothesis to enable patient selection leading to clinical responses.

Abstract

There has been a resurgence of interest in the use of phenotypic screens in drug discovery as an alternative to target-focused approaches. Given that oncology is currently the most active therapeutic area, and also one in which target-focused approaches have been particularly prominent in the past two decades, we investigated the contribution of phenotypic assays to oncology drug discovery by analysing the origins of all new small-molecule cancer drugs approved by the US Food and Drug Administration (FDA) over the past 15 years and those currently in clinical development. Although the majority of these drugs originated from target-based discovery, we identified a significant number whose discovery depended on phenotypic screening approaches. We postulate that the contribution of phenotypic screening to cancer drug discovery has been hampered by a reliance on 'classical' nonspecific drug effects such as cytotoxicity and mitotic arrest, exacerbated by a paucity of mechanistically defined cellular models for therapeutically translatable cancer phenotypes. However, technical and biological advances that enable such mechanistically informed phenotypic models have the potential to empower phenotypic drug discovery in oncology.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Origins of new small-molecule cancer drugs approved by the FDA between 1999 and 2013.
Figure 2: Origins of new chemical entities in clinical trials for cancer.
Figure 3: Origins of phenotypically discovered cancer drugs currently in Phase III and Phase II trials.
Figure 4: A comparison between target-based drug discovery and phenotypic drug discovery, showing the linkage with mechanism-informed phenotypic drug discovery.

Similar content being viewed by others

References

  1. Swinney, D. C. Phenotypic versus target-based drug discovery for first-in-class medicines. Clin. Pharmacol. Ther. 93, 299–301 (2013).

    CAS  PubMed  Google Scholar 

  2. Sams-Dodd, F. Is poor research the cause of the declining productivity of the pharmaceutical industry? An industry in need of a paradigm shift. Drug Discov. Today 18, 211–217 (2013).

    PubMed  Google Scholar 

  3. Sams-Dodd, F. Target-based drug discovery: is something wrong? Drug Discov. Today 10, 139–147 (2005).

    CAS  PubMed  Google Scholar 

  4. Hopkins, A. L. Network pharmacology: the next paradigm in drug discovery. Nature Chem. Biol. 4, 682–690 (2008).

    CAS  Google Scholar 

  5. Overington, J. P., Al-Lazikani, B. & Hopkins, A. L. How many drug targets are there? Nature Rev. Drug Discov. 5, 993–996 (2006).

    CAS  Google Scholar 

  6. Butcher, E. C. Can cell systems biology rescue drug discovery? Nature Rev. Drug Discov. 4, 461–467 (2005).

    CAS  Google Scholar 

  7. Paul, S. M. et al. How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nature Rev. Drug Discov. 9, 203–214 (2010).

    CAS  Google Scholar 

  8. Scannell, J. W., Blanckley, A., Boldon, H. & Warrington, B. Diagnosing the decline in pharmaceutical R&D efficiency. Nature Rev. Drug Discov. 11, 191–200 (2012).

    Article  CAS  Google Scholar 

  9. Bennani, Y. L. Drug discovery in the next decade: innovation needed ASAP. Drug Discov. Today 16, 779–792 (2011).

    PubMed  Google Scholar 

  10. Hoelder, S., Clarke, P. A. & Workman, P. Discovery of small molecule cancer drugs: successes, challenges and opportunities. Mol. Oncol. 6, 155–176 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee, J. A., Uhlik, M. T., Moxham, C. M., Tomandl, D. & Sall, D. J. Modern phenotypic drug discovery is a viable, neoclassic pharma strategy. J. Med. Chem. 55, 4527–4538 (2012).

    CAS  PubMed  Google Scholar 

  12. Swinney, D. C. & Anthony, J. How were new medicines discovered? Nature Rev. Drug Discov. 10, 507–519 (2011).

    Article  CAS  Google Scholar 

  13. Arrowsmith, J. A decade of change. Nature Rev. Drug Discov. 11, 17–18 (2012).

    CAS  Google Scholar 

  14. Zhang, J., Yang, P. L. & Gray, N. S. Targeting cancer with small molecule kinase inhibitors. Nature Rev. Cancer 9, 28–39 (2009).

    Google Scholar 

  15. Garraway, L. A. & Lander, E. S. Lessons from the cancer genome. Cell 153, 17–37 (2013).

    CAS  PubMed  Google Scholar 

  16. Capdeville, R., Buchdunger, E., Zimmermann, J. & Matter, A. Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nature Rev. Drug Discov. 1, 493–502 (2002).

    CAS  Google Scholar 

  17. Williams, R. Discontinued drugs in 2012: oncology drugs. Expert Opin. Investig. Drugs 22, 1627–1644 (2013).

    CAS  PubMed  Google Scholar 

  18. Ellis, L. M. & Fidler, I. J. Finding the tumor copycat. Therapy fails, patients don't. Nature Med. 16, 974–975 (2010).

    CAS  PubMed  Google Scholar 

  19. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    CAS  PubMed  Google Scholar 

  20. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  21. Carter, S. K. The search for therapeutic cell controls by the chemotherapy program of the National Cancer Institute. J. Invest. Dermatol. 59, 128–138 (1972).

    CAS  PubMed  Google Scholar 

  22. DeVita, V. T. & Chu, E. A history of cancer chemotherapy. Cancer Res. 68, 8643–8653 (2008).

    CAS  PubMed  Google Scholar 

  23. Kim, M.-J. et al. OPB-31121, a novel small molecular inhibitor, disrupts the JAK2/STAT3 pathway and exhibits an antitumor activity in gastric cancer cells. Cancer Lett. 335, 145–152 (2013).

    CAS  PubMed  Google Scholar 

  24. Chan, D. A. & Giaccia, A. J. Harnessing synthetic lethal interactions in anticancer drug discovery. Nature Rev. Drug Discov. 10, 351–364 (2011).

    CAS  Google Scholar 

  25. Dolma, S., Lessnick, S. L., Hahn, W. C. & Stockwell, B. R. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell 3, 285–296 (2003).

    CAS  PubMed  Google Scholar 

  26. Shaw, A. T. et al. Selective killing of K-ras mutant cancer cells by small molecule inducers of oxidative stress. Proc. Natl Acad. Sci. USA 108, 8773–8778 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Weïwer, M. et al. Development of small-molecule probes that selectively kill cells induced to express mutant RAS. Bioorg. Med. Chem. Lett. 22, 1822–1826 (2012).

    PubMed  Google Scholar 

  28. Yoshida, T. et al. Identification and characterization of a novel chemotype MEK inhibitor able to alter the phosphorylation state of MEK1/2. Oncotarget 3, 1533–1545 (2012).

    PubMed  PubMed Central  Google Scholar 

  29. Teicher, B. A., Ara, G., Herbst, R., Palombella, V. J. & Adams, J. The proteasome inhibitor PS-341 in cancer therapy. Clin. Cancer Res. 5, 2638–2645 (1999).

    CAS  PubMed  Google Scholar 

  30. O'Donnell, A. et al. Hormonal impact of the 17α-hydroxylase/C(17,20)-lyase inhibitor abiraterone acetate (CB7630) in patients with prostate cancer. Br. J. Cancer 90, 2317–2325 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Boehm, M. F. et al. Design and synthesis of potent retinoid X receptor selective ligands that induce apoptosis in leukemia cells. J. Med. Chem. 38, 3146–3155 (1995).

    CAS  PubMed  Google Scholar 

  32. Marks, P. A. & Breslow, R. Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nature Biotech. 25, 84–90 (2007).

    CAS  Google Scholar 

  33. Shortt, J., Hsu, A. K. & Johnstone, R. W. Thalidomide-analogue biology: immunological, molecular and epigenetic targets in cancer therapy. Oncogene 32, 4191–4202 (2013).

    CAS  PubMed  Google Scholar 

  34. Lopez-Girona, A. et al. Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. Leukemia 26, 2326–2335 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Licht, J. D., Shortt, J. & Johnstone, R. From anecdote to targeted therapy: the curious case of thalidomide in multiple myeloma. Cancer Cell 25, 9–11 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Friend, C., Scher, W., Holland, J. G. & Sato, T. Hemoglobin synthesis in murine virus-induced leukemic cells in vitro: stimulation of erythroid differentiation by dimethyl sulfoxide. Proc. Natl Acad. Sci. USA 68, 378–382 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ueda, H. et al. FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum No. 968. I. Taxonomy, fermentation, isolation, physico-chemical and biological properties, and antitumor activity. J. Antibiot. 47, 301–310 (1994).

    CAS  Google Scholar 

  38. Nakajima, H., Kim, Y. B., Terano, H., Yoshida, M. & Horinouchi, S. FR901228, a potent antitumor antibiotic, is a novel histone deacetylase inhibitor. Exp. Cell Res. 241, 126–133 (1998).

    CAS  PubMed  Google Scholar 

  39. Hartford, C. M. & Ratain, M. J. Rapamycin: something old, something new, sometimes borrowed and now renewed. Clin. Pharmacol. Ther. 82, 381–388 (2007).

    CAS  PubMed  Google Scholar 

  40. Kuhn, D. J. et al. Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against preclinical models of multiple myeloma. Blood 110, 3281–3290 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Huang, M. T. Harringtonine, an inhibitor of initiation of protein biosynthesis. Mol. Pharmacol. 11, 511–519 (1975).

    CAS  PubMed  Google Scholar 

  42. Jordan, M. A. et al. The primary antimitotic mechanism of action of the synthetic halichondrin E7389 is suppression of microtubule growth. Mol. Cancer Ther. 4, 1086–1095 (2005).

    CAS  PubMed  Google Scholar 

  43. Tran, C. et al. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science 324, 787–790 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wakeling, A. E. & Bowler, J. I.C. I. 182,780, a new antioestrogen with clinical potential. J. Steroid Biochem. Mol. Biol. 43, 173–177 (1992).

    CAS  PubMed  Google Scholar 

  45. Lee, F. Y. F. et al. Preclinical discovery of ixabepilone, a highly active antineoplastic agent. Cancer Chemother. Pharmacol. 63, 157–166 (2008).

    CAS  PubMed  Google Scholar 

  46. Galsky, M. D., Dritselis, A., Kirkpatrick, P. & Oh, W. K. Cabazitaxel. Nature Rev. Drug Discov. 9, 677–678 (2010).

    CAS  Google Scholar 

  47. Gandhi, V., Keating, M. J., Bate, G. & Kirkpatrick, P. Nelarabine. Nature Rev. Drug Discov. 5, 17–18 (2006).

    CAS  Google Scholar 

  48. Adjei, A. A. Pemetrexed: a multitargeted antifolate agent with promising activity in solid tumors. Ann. Oncol. 11, 1335–1341 (2000).

    CAS  PubMed  Google Scholar 

  49. Giuliani, F. C. & Kaplan, N. O. New doxorubicin analogs active against doxorubicin-resistant colon tumor xenografts in the nude mouse. Cancer Res. 40, 4682–4687 (1980).

    CAS  PubMed  Google Scholar 

  50. Gould, S. E. et al. Discovery and preclinical development of vismodegib. Expert Opin. Drug Discov. http://dx.doi.org/10.1517/17460441.2014.920816 (2014).

  51. O'Dwyer, K. & Maslak, P. Azacitidine and the beginnings of therapeutic epigenetic modulation. Expert Opin. Pharmacother. 9, 1981–1986 (2008).

    CAS  PubMed  Google Scholar 

  52. Iyer, R., Fetterly, G., Lugade, A. & Thanavala, Y. Sorafenib: a clinical and pharmacologic review. Expert Opin. Pharmacother. 11, 1943–1955 (2010).

    CAS  PubMed  Google Scholar 

  53. Isaacs, J. T. The long and winding road for the development of tasquinimod as an oral second-generation quinoline-3-carboxamide antiangiogenic drug for the treatment of prostate cancer. Expert Opin. Investig. Drugs 19, 1235–1243 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Isaacs, J. T. et al. Tasquinimod is an allosteric modulator of HDAC4 survival signaling within the compromised cancer microenvironment. Cancer Res. 73, 1386–1399 (2013).

    CAS  PubMed  Google Scholar 

  55. Yagoda, N. et al. RAS–RAF–MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature 447, 864–868 (2007).

    PubMed  PubMed Central  Google Scholar 

  56. Wong, H. et al. Antitumor activity of targeted and cytotoxic agents in murine subcutaneous tumor models correlates with clinical response. Clin. Cancer Res. 18, 3846–3855 (2012).

    CAS  PubMed  Google Scholar 

  57. Wong, H. et al. Bridging the gap between preclinical and clinical studies using pharmacokinetic-pharmacodynamic modeling: an analysis of GDC-0973, a MEK inhibitor. Clin. Cancer Res. 18, 3090–3099 (2012).

    CAS  PubMed  Google Scholar 

  58. Prinz, F., Schlange, T. & Asadullah, K. Believe it or not: how much can we rely on published data on potential drug targets? Nature Rev. Drug Discov. 10, 712–712 (2011).

    CAS  Google Scholar 

  59. Begley, C. G. & Ellis, L. M. Drug development: raise standards for preclinical cancer research. Nature 483, 531–533 (2012).

    CAS  PubMed  Google Scholar 

  60. Swinney, D. C. The contribution of mechanistic understanding to phenotypic screening for first-in-class medicines. J. Biomol. Screen. 18, 1186–1192 (2013).

    PubMed  Google Scholar 

  61. Mangana, J., Levesque, M. P., Karpova, M. B. & Dummer, R. Sorafenib in melanoma. Expert Opin. Investig. Drugs 21, 557–568 (2012).

    CAS  PubMed  Google Scholar 

  62. Munshi, N. et al. ARQ 197, a novel and selective inhibitor of the human c-Met receptor tyrosine kinase with antitumor activity. Mol. Cancer Ther. 9, 1544–1553 (2010).

    CAS  PubMed  Google Scholar 

  63. Michieli, P. & Di Nicolantonio, F. Targeted therapies: Tivantinib — a cytotoxic drug in MET inhibitor's clothes? Nature Rev. Clin. Oncol. 10, 372–374 (2013).

    CAS  Google Scholar 

  64. Basilico, C. et al. Tivantinib (ARQ197) displays cytotoxic activity that is independent of its ability to bind MET. Clin. Cancer Res. 19, 2381–2392 (2013).

    CAS  PubMed  Google Scholar 

  65. Katayama, R. et al. Cytotoxic activity of tivantinib (ARQ 197) is not due solely to c-MET inhibition. Cancer Res. 73, 3087–3096 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Reddy, M. V. R. et al. Discovery of a clinical stage multi-kinase inhibitor sodium (E)-2-{2-methoxy-5-[(2′,4“,6”-trimethoxystyrylsulfonyl)methyl]phenylamino}acetate (ON 01910. Na): synthesis, structure-activity relationship, and biological activity. J. Med. Chem. 54, 6254–6276 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Jimeno, A. et al. Phase I study of ON 01910. Na, a novel modulator of the Polo-like kinase 1 pathway, in adult patients with solid tumors. J. Clin. Oncol. 26, 5504–5510 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Roschewski, M., Farooqui, M., Aue, G., Wilhelm, F. & Wiestner, A. Phase I study of ON 01910. Na (Rigosertib), a multikinase PI3K inhibitor in relapsed/refractory B-cell malignancies. Leukemia 27, 1920–1923 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Prasad, A. et al. Styryl sulfonyl compounds inhibit translation of cyclin D1 in mantle cell lymphoma cells. Oncogene 28, 1518–1528 (2009).

    CAS  PubMed  Google Scholar 

  70. Chapman, C. M. et al. ON 01910. Na is selectively cytotoxic for chronic lymphocytic leukemia cells through a dual mechanism of action involving PI3K/AKT inhibition and induction of oxidative stress. Clin. Cancer Res. 18, 1979–1991 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Nakahara, T. et al. YM155, a novel small-molecule survivin suppressant, induces regression of established human hormone-refractory prostate tumor xenografts. Cancer Res. 67, 8014–8021 (2007).

    CAS  PubMed  Google Scholar 

  72. Glaros, T. G. et al. The 'survivin suppressants' NSC 80467 and YM155 induce a DNA damage response. Cancer Chemother. Pharmacol. 70, 207–212 (2012).

    CAS  PubMed  Google Scholar 

  73. Lewis, K. D. et al. A multi-center phase II evaluation of the small molecule survivin suppressor YM155 in patients with unresectable stage III or IV melanoma. Invest. New Drugs 29, 161–166 (2009).

    PubMed  Google Scholar 

  74. Kelly, R. J. et al. A phase I/II study of sepantronium bromide (YM155, survivin suppressor) with paclitaxel and carboplatin in patients with advanced non-small-cell lung cancer. Ann. Oncol. 24, 2601–2606 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Giaccone, G. et al. Multicenter Phase II trial of YM155, a small-molecule suppressor of survivin, in patients with advanced, refractory, non-small-cell lung cancer. J. Clin. Oncol. 27, 4481–4486 (2009).

    CAS  PubMed  Google Scholar 

  76. Coumar, M. S., Tsai, F.-Y., Kanwar, J. R., Sarvagalla, S. & Cheung, C. H. A. Treat cancers by targeting survivin: just a dream or future reality? Cancer Treat. Rev. 39, 802–811 (2013).

    CAS  PubMed  Google Scholar 

  77. Ledford, H. Drug candidates derailed in case of mistaken identity. Nature 483, 519 (2012).

    CAS  PubMed  Google Scholar 

  78. Hwang, S. G. et al. Anti-cancer activity of a novel small molecule compound that simultaneously activates p53 and inhibits NF-κB signaling. PLoS ONE 7, e44259 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Caie, P. D. et al. High-content phenotypic profiling of drug response signatures across distinct cancer cells. Mol. Cancer Ther. 9, 1913–1926 (2010).

    CAS  PubMed  Google Scholar 

  80. Low, J. et al. Phenotypic fingerprinting of small molecule cell cycle kinase inhibitors for drug discovery. Curr. Chem. Genom. 3, 13–21 (2009).

    CAS  Google Scholar 

  81. Chan, G. K. Y., Kleinheinz, T. L., Peterson, D. & Moffat, J. G. A simple high-content cell cycle assay reveals frequent discrepancies between cell number and ATP and MTS proliferation assays. PLoS ONE 8, e63583 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kimlin, L. C., Casagrande, G. & Virador, V. M. In vitro three-dimensional (3D) models in cancer research: an update. Mol. Carcinog. 52, 167–182 (2013).

    PubMed  Google Scholar 

  83. Harrison, R. G. The outgrowth of the nerve fiber as a mode of protoplasmic movement. J. Exp. Zool. 9, 787–846 (1910).

    Google Scholar 

  84. Drewitz, M. et al. Towards automated production and drug sensitivity testing using scaffold-free spherical tumor microtissues. Biotechnol. J. 6, 1488–1496 (2011).

    CAS  PubMed  Google Scholar 

  85. Hsiao, A. Y. et al. Micro-ring structures stabilize microdroplets to enable long term spheroid culture in 384 hanging drop array plates. Biomed. Microdevices 14, 313–323 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. LaBarbera, D. V., Reid, B. G. & Yoo, B. H. The multicellular tumor spheroid model for high-throughput cancer drug discovery. Expert Opin. Drug Discov. 7, 819–830 (2012).

    CAS  PubMed  Google Scholar 

  87. Li, Q. et al. 3D models of epithelial-mesenchymal transition in breast cancer metastasis: high-throughput screening assay development, validation, and pilot screen. J. Biomol. Screen. 16, 141–154 (2011).

    CAS  PubMed  Google Scholar 

  88. Korff, T. Integration of endothelial cells in multicellular spheroids prevents apoptosis and induces differentiation. J. Cell Biol. 143, 1341–1352 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Friedrich, J., Seidel, C., Ebner, R. & Kunz-Schughart, L. A spheroid-based drug screen: considerations and practical approach. Nature Protoc. 4, 309–324 (2009).

    CAS  Google Scholar 

  90. Misund, K. et al. A method for measurement of drug sensitivity of myeloma cells co-cultured with bone marrow stromal cells. J. Biomol. Screen 18, 637–646 (2013).

    PubMed  Google Scholar 

  91. Haglund, C. et al. In vitro evaluation of clinical activity and toxicity of anticancer drugs using tumor cells from patients and cells representing normal tissues. Cancer Chemother. Pharmacol. 69, 697–707 (2012).

    CAS  PubMed  Google Scholar 

  92. Carmody, L. C. et al. Phenotypic high-throughput screening elucidates target pathway in breast cancer stem cell-like cells. J. Biomol. Screen 17, 1204–1210 (2012).

    PubMed  Google Scholar 

  93. Valent, P. et al. Cancer stem cell definitions and terminology: the devil is in the details. Nature Rev. Cancer 12, 767–775 (2012).

    CAS  Google Scholar 

  94. Visvader, J. E. & Lindeman, G. J. Cancer stem cells: current status and evolving complexities. Cell Stem Cell 10, 717–728 (2012).

    CAS  PubMed  Google Scholar 

  95. Romaguera-Ros, M. et al. Cancer-initiating enriched cell lines from human glioblastoma: preparing for drug discovery assays. Stem Cell Rev. 8, 288–298 (2012).

    CAS  Google Scholar 

  96. Lee, T. K. W., Cheung, V. C. H. & Ng, I. O. L. Liver tumor-initiating cells as a therapeutic target for hepatocellular carcinoma. Cancer Lett. 338, 101–109 (2013).

    CAS  PubMed  Google Scholar 

  97. Izrailit, J. & Reedijk, M. Developmental pathways in breast cancer and breast tumor-initiating cells: therapeutic implications. Cancer Lett. 317, 115–126 (2012).

    CAS  PubMed  Google Scholar 

  98. Morrison, B. J., Morris, J. C. & Steel, J. C. Lung cancer-initiating cells: a novel target for cancer therapy. Target Oncol. 8, 159–172 (2013).

    PubMed  PubMed Central  Google Scholar 

  99. Sharma, S. V. et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141, 69–80 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Yan, H. et al. Drug-tolerant cancer cells show reduced tumor-initiating capacity: depletion of CD44 cells and evidence for epigenetic mechanisms. PLoS ONE 6, e24397 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Lee, G.-Y. et al. Stochastic acquisition of a stem cell-like state and drug tolerance in leukemia cells stressed by radiation. Int. J. Hematol. 93, 27–35 (2011).

    PubMed  Google Scholar 

  102. Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Cheng, Z. et al. Inhibition of BET bromodomain targets genetically diverse glioblastoma. Clin. Cancer Res. 19, 1748–1759 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Arrowsmith, C. H., Bountra, C., Fish, P. V., Lee, K. & Schapira, M. Epigenetic protein families: a new frontier for drug discovery. Nature Rev. Drug Discov. 11, 384–400 (2012).

    CAS  Google Scholar 

  105. Qian, J., Lu, L., Wu, J. & Ma, H. Development of multiple cell-based assays for the detection of histone H3 Lys27 trimethylation (H3K27me3). Assay Drug Dev. Technol. 11, 449–456 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Mulji, A. et al. Configuration of a high-content imaging platform for hit identification and pharmacological assessment of JMJD3 demethylase enzyme inhibitors. J. Biomol. Screen. 17, 108–120 (2012).

    CAS  PubMed  Google Scholar 

  107. Snuderl, M. et al. Mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma. Cancer Cell 20, 810–817 (2011).

    CAS  PubMed  Google Scholar 

  108. Sottoriva, A. et al. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc. Natl Acad. Sci. USA 110, 4009–4014 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Jiang, P. et al. Novel anti-glioblastoma agents and therapeutic combinations identified from a collection of FDA approved drugs. J. Transl. Med. 12, 13 (2014).

    PubMed  PubMed Central  Google Scholar 

  110. Joshi, A. D. et al. Evaluation of tyrosine kinase inhibitor combinations for glioblastoma therapy. PLoS ONE 7, e44372 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Engström, P. G. et al. Digital transcriptome profiling of normal and glioblastoma-derived neural stem cells identifies genes associated with patient survival. Genome Med. 4, 76 (2012).

    PubMed  PubMed Central  Google Scholar 

  112. Vitucci, M. et al. Cooperativity between MAPK and PI3K signaling activation is required for glioblastoma pathogenesis. Neuro-Oncol. 15, 1317–1329 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Kaur, G. et al. Growth inhibition with reversible cell cycle arrest of carcinoma cells by flavone L86-8275. J. Natl Cancer Inst. 84, 1736–1740 (1992).

    CAS  PubMed  Google Scholar 

  114. Bax, D. A. et al. Molecular and phenotypic characterisation of paediatric glioma cell lines as models for preclinical drug development. PLoS ONE 4, e5209 (2009).

    PubMed  PubMed Central  Google Scholar 

  115. Breuleux, M. et al. BAL27862: a unique microtubule destabilizer active against chemorefractory breast cancers. Cancer Res. 69 (Suppl. 24), 2093 (2010).

    Google Scholar 

  116. Joo, K. M. et al. Patient-specific orthotopic glioblastoma xenograft models recapitulate the histopathology and biology of human glioblastomas in situ. Cell Rep. 3, 260–273 (2013).

    CAS  PubMed  Google Scholar 

  117. Danovi, D., Folarin, A. A., Baranowski, B. & Pollard, S. M. High content screening of defined chemical libraries using normal and glioma-derived neural stem cell lines. Methods Enzymol. 506, 311–329 (2012).

    CAS  PubMed  Google Scholar 

  118. Mendelsohn, J. Personalizing oncology: perspectives and prospects. J. Clin. Oncol. 31, 1904–1911 (2013).

    CAS  PubMed  Google Scholar 

  119. Sha, S.-K. et al. Cell cycle phenotype-based optimization of G2-abrogating peptides yields CBP501 with a unique mechanism of action at the G2 checkpoint. Mol. Cancer Ther. 6, 147–153 (2007).

    CAS  PubMed  Google Scholar 

  120. Hangauer, D. G. Compositions for treating cell proliferation disorders. US Patent 7300931 (2007).

  121. Dvorakova, K. et al. Induction of oxidative stress and apoptosis in myeloma cells by the aziridine-containing agent imexon. Biochem. Pharmacol. 60, 749–758 (2000).

    CAS  PubMed  Google Scholar 

  122. Vidal, A. et al. Lurbinectedin (PM01183), a new DNA minor groove binder, inhibits growth of orthotopic primary graft of cisplatin-resistant epithelial ovarian cancer. Clin. Cancer Res. 18, 5399–5411 (2012).

    CAS  PubMed  Google Scholar 

  123. Hayakawa, F. et al. A novel STAT inhibitor, OPB-31121, has a significant antitumor effect on leukemia with STAT-addictive oncokinases. Blood Cancer J. 3, e166–e169 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Guirouilh-Barbat, J., Antony, S. & Pommier, Y. Zalypsis (PM00104) is a potent inducer of γ-H2AX foci and reveals the importance of the C ring of trabectedin for transcription-coupled repair inhibition. Mol. Cancer Ther. 8, 2007–2014 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Wiman, K. G. Pharmacological reactivation of mutant p53: from protein structure to the cancer patient. Oncogene 29, 4245–4252 (2010).

    CAS  PubMed  Google Scholar 

  126. Kirshner, J. R. et al. Elesclomol induces cancer cell apoptosis through oxidative stress. Mol. Cancer Ther. 7, 2319–2327 (2008).

    CAS  PubMed  Google Scholar 

  127. Sahasrabudhe, S. R. et al. Selective in vitro and in vivo anti-tumor activity of PRLX 93936 in biological models of melanoma and ovarian cancer. J. Clin. Oncol. 26, 14586 (2008).

    Google Scholar 

  128. Funahashi, Y. et al. Sulfonamide derivative, E7820, is a unique angiogenesis inhibitor suppressing an expression of integrin α2 subunit on endothelium. Cancer Res. 62, 6116–6123 (2002).

    CAS  PubMed  Google Scholar 

  129. Chau, C. H. & Figg, W. D. New tricks from an old drug: a role for quinacrine in anti-cancer therapy? Cell Cycle 8, 4024–4025 (2009).

    CAS  PubMed  Google Scholar 

  130. Gumireddy, K. et al. ON01910, a non-ATP-competitive small molecule inhibitor of Plk1, is a potent anticancer agent. Cancer Cell 7, 275–286 (2005).

    CAS  PubMed  Google Scholar 

  131. Hawtin, R. E. et al. Voreloxin is an anticancer quinolone derivative that intercalates DNA and poisons topoisomerase II. PLoS ONE 5, e10186 (2010).

    PubMed  PubMed Central  Google Scholar 

  132. Tozer, G. M. et al. Combretastatin A-4 phosphate as a tumor vascular-targeting agent: early effects in tumors and normal tissues. Cancer Res. 59, 1626–1634 (1999).

    CAS  PubMed  Google Scholar 

  133. Urdiales, J., Morata, P., De Castro, I. N. & Sánchez-Jiménez, F. Antiproliferative effect of dehydrodidemnin B (DDB), a depsipeptide isolated from Mediterranean tunicates. Cancer Lett. 102, 31–37 (1996).

    CAS  PubMed  Google Scholar 

  134. Takahashi-Yanaga, F. & Kahn, M. Targeting Wnt signaling: can we safely eradicate cancer stem cells? Clin. Cancer. Res. 16, 3153–3162 (2010).

    CAS  PubMed  Google Scholar 

  135. Robarge, K. D. et al. GDC-0449 — a potent inhibitor of the hedgehog pathway. Bioorg. Med. Chem. Lett. 19, 5576–5581 (2009).

    CAS  PubMed  Google Scholar 

  136. Chen, B. et al. Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nature Chem. Biol. 5, 100–107 (2009).

    CAS  Google Scholar 

  137. Yamaguchi, T. et al. Identification of JTP-70902, a p15(INK4b)-inductive compound, as a novel MEK1/2 inhibitor. Cancer Sci. 98, 1809–1816 (2007).

    CAS  PubMed  Google Scholar 

  138. Li, H. et al. Versatile pathway-centric approach based on high-throughput sequencing to anticancer drug discovery. Proc. Natl Acad. Sci. USA 109, 4609–4614 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Stoops, S. L. et al. Identification and optimization of small molecules that restore E-cadherin expression and reduce invasion in colorectal carcinoma cells. ACS Chem. Biol. 6, 452–465 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Lavelin, I. et al. Discovery of novel proteasome inhibitors using a high-content cell-based screening system. PLoS ONE 4, e8503 (2009).

    PubMed  PubMed Central  Google Scholar 

  141. Zhang, L. et al. Small molecule regulators of autophagy identified by an image-based high-throughput screen. Proc. Natl Acad. Sci. USA 104, 19023–19028 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Roller, D. G. et al. Synthetic lethal screening with small-molecule inhibitors provides a pathway to rational combination therapies for melanoma. Mol. Cancer Ther. 11, 2505–2515 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. McLaughlin, J. et al. Preclinical characterization of Aurora kinase inhibitor R763/AS703569 identified through an image-based phenotypic screen. J. Cancer Res. Clin. Oncol. 136, 99–113 (2010).

    CAS  PubMed  Google Scholar 

  144. Mayer, T. U. et al. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 286, 971–974 (1999).

    CAS  PubMed  Google Scholar 

  145. Guzi, T. J. et al. Targeting the replication checkpoint using SCH 900776, a potent and functionally selective CHK1 inhibitor identified via high content screening. Mol. Cancer Ther. 10, 591–602 (2011).

    CAS  PubMed  Google Scholar 

  146. Quintavalle, M., Elia, L., Price, J. H., Heynen-Genel, S. & Courtneidge, S. A. A cell-based high-content screening assay reveals activators and inhibitors of cancer cell invasion. Sci. Signal. 4, ra49 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Lee, J. et al. A small molecule inhibitor of α4 integrin-dependent cell migration. Bioorg. Med. Chem. 17, 977–980 (2009).

    CAS  PubMed  Google Scholar 

  148. Yarrow, J. C., Totsukawa, G., Charras, G. T. & Mitchison, T. J. Screening for cell migration inhibitors via automated microscopy reveals a Rho-kinase inhibitor. Chem. Biol. 12, 385–395 (2005).

    CAS  PubMed  Google Scholar 

  149. Stevens, M. F. & Newlands, E. S. From triazines and triazenes to temozolomide. Eur. J. Cancer 29A, 1045–1047 (1993).

    CAS  PubMed  Google Scholar 

  150. Gottardis, M. M. et al. Chemoprevention of mammary carcinoma by LGD1069 (Targretin): an RXR-selective ligand. Cancer Res. 56, 5566–5570 (1996).

    CAS  PubMed  Google Scholar 

  151. Buchdunger, E. et al. Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res. 56, 100–104 (1996).

    CAS  PubMed  Google Scholar 

  152. Arteaga, C. L. & Johnson, D. H. Tyrosine kinase inhibitors-ZD1839 (Iressa). Curr. Opin. Oncol. 13, 491–498 (2001).

    CAS  PubMed  Google Scholar 

  153. Carson, D. A. et al. Oral antilymphocyte activity and induction of apoptosis by 2-chloro-2′-arabino-fluoro-2′-deoxyadenosine. Proc. Natl Acad. Sci. USA 89, 2970–2974 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Taylor, E. C. et al. A dideazatetrahydrofolate analogue lacking a chiral center at C-6, N-[4-[2-(2-amino-3,4-dihydro-4-oxo-7H-pyrrolo[2,3-d]pyrimidin-5- yl)ethyl]benzoyl]-l-glutamic acid, is an inhibitor of thymidylate synthase. J. Med. Chem. 35, 4450–4454 (1992).

    CAS  PubMed  Google Scholar 

  155. Moyer, J. D. et al. Induction of apoptosis and cell cycle arrest by CP-358,774, an inhibitor of epidermal growth factor receptor tyrosine kinase. Cancer Res. 57, 4838–4848 (1997).

    CAS  PubMed  Google Scholar 

  156. Giudici, D. et al. 6-methylenandrosta-1,4-diene-3, 17-dione (FCE 24304): a new irreversible aromatase inhibitor. J. Steroid Biochem. 30, 391–394 (1988).

    CAS  PubMed  Google Scholar 

  157. Kotla, V. et al. Mechanism of action of lenalidomide in hematological malignancies. J. Hematol. Oncol. 2, 36 (2009).

    PubMed  PubMed Central  Google Scholar 

  158. Gandhi, V. et al. Compound GW506U78 in refractory hematologic malignancies: relationship between cellular pharmacokinetics and clinical response. J. Clin. Oncol. 16, 3607–3615 (1998).

    CAS  PubMed  Google Scholar 

  159. Lombardo, L. J. et al. Discovery of N-(2-chloro-6-methyl- phenyl)-2-(6-(4-(2-hydroxyethyl)- piperazin-1-yl)-2-methylpyrimidin-4-ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J. Med. Chem. 47, 6658–6661 (2004).

    CAS  PubMed  Google Scholar 

  160. Sun, L. et al. Discovery of 5-[5-fluoro-2-oxo-1,2- dihydroindol-(3Z)-ylidenemethyl]-2,4-dimethyl- 1H-pyrrole-3-carboxylic acid (2-diethylaminoethyl)amide, a novel tyrosine kinase inhibitor targeting vascular endothelial and platelet-derived growth factor receptor tyrosine kinase. J. Med. Chem. 46, 1116–1119 (2003).

    CAS  PubMed  Google Scholar 

  161. Weisberg, E. et al. Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell 7, 129–141 (2005).

    CAS  PubMed  Google Scholar 

  162. Wilhelm, S. & Chien, D.-S. BAY 43-9006: preclinical data. Curr. Pharm. Des. 8, 2255–2257 (2002).

    CAS  PubMed  Google Scholar 

  163. Leoni, L. M. et al. Bendamustine (Treanda) displays a distinct pattern of cytotoxicity and unique mechanistic features compared with other alkylating agents. Clin. Cancer Res. 14, 309–317 (2008).

    CAS  PubMed  Google Scholar 

  164. Podar, K. et al. The small-molecule VEGF receptor inhibitor pazopanib (GW786034B) targets both tumor and endothelial cells in multiple myeloma. Proc. Natl Acad. Sci. USA 103, 19478–19483 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Xia, W. et al. Anti-tumor activity of GW572016: a dual tyrosine kinase inhibitor blocks EGF activation of EGFR/erbB2 and downstream Erk1/2 and AKT pathways. Oncogene 21, 6255–6263 (2002).

    CAS  PubMed  Google Scholar 

  166. Potter, G. A., Barrie, S. E., Jarman, M. & Rowlands, M. G. Novel steroidal inhibitors of human cytochrome P45017 alpha (17 alpha-hydroxylase-C17,20-lyase): potential agents for the treatment of prostatic cancer. J. Med. Chem. 38, 2463–2471 (1995).

    CAS  PubMed  Google Scholar 

  167. Cui, J. J. et al. Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J. Med. Chem. 54, 6342–6363 (2011).

    CAS  PubMed  Google Scholar 

  168. Quintás-Cardama, A. et al. Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms. Blood 115, 3109–3117 (2010).

    PubMed  PubMed Central  Google Scholar 

  169. Hennequin, L. F. et al. Novel 4-anilinoquinazolines with C-7 basic side chains: design and structure activity relationship of a series of potent, orally active, VEGF receptor tyrosine kinase inhibitors. J. Med. Chem. 45, 1300–1312 (2002).

    CAS  PubMed  Google Scholar 

  170. Bollag, G. et al. Vemurafenib: the first drug approved for BRAF-mutant cancer. Nature Rev. Drug Discov. 11, 873–886 (2012).

    CAS  Google Scholar 

  171. Inai, T. et al. Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am. J. Pathol. 165, 35–52 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Puttini, M. et al. In vitro and in vivo activity of SKI-606, a novel Src-Abl inhibitor, against imatinib-resistant Bcr-Abl+ neoplastic cells. Cancer Res. 66, 11314–11322 (2006).

    CAS  PubMed  Google Scholar 

  173. Zhang, Y., Guessous, F., Kofman, A., Schiff, D. & Abounader, R. XL-184, a MET, VEGFR-2 and RET kinase inhibitor for the treatment of thyroid cancer, glioblastoma multiforme and NSCLC. IDrugs 13, 112–121 (2010).

    PubMed  PubMed Central  Google Scholar 

  174. Demo, S. D. et al. Antitumor activity of PR-171, a novel irreversible inhibitor of the proteasome. Cancer Res. 67, 6383–6391 (2007).

    CAS  PubMed  Google Scholar 

  175. Huang, W.-S. et al. Discovery of 3-[2-(imidazo[1,2-b]pyridazin-3-yl)ethynyl]-4-methyl-N-{4-[(4-methylpiperazin-1-yl)methyl]-3-(trifluoromethyl)phenyl}benzamide (AP24534), a potent, orally active pan-inhibitor of breakpoint cluster region-abelson (BCR-ABL) kinase including the T315I gatekeeper mutant. J. Med. Chem. 53, 4701–4719 (2010).

    CAS  PubMed  Google Scholar 

  176. Li, D. et al. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene 27, 4702–4711 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Medina, T., Amaria, M. N. & Jimeno, A. Dabrafenib in the treatment of advanced melanoma. Drugs Today 49, 377–385 (2013).

    CAS  Google Scholar 

  178. Honigberg, L. A. et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc. Natl Acad. Sci. USA 107, 13075–13080 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank R. Blake, J. Lee, S. Malek, M. Prunotti and D. Swinney for stimulating discussions, and D. Lowe, B. Roth and the anonymous internal and external reviewers for their extremely constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John G. Moffat.

Ethics declarations

Competing interests

J.G.M. and J.R. own stock in Hoffman-La Roche.

Related links

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moffat, J., Rudolph, J. & Bailey, D. Phenotypic screening in cancer drug discovery — past, present and future. Nat Rev Drug Discov 13, 588–602 (2014). https://doi.org/10.1038/nrd4366

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd4366

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer