Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New tools and concepts for modern organic synthesis

Key Points

  • Supported reagents are reactive species that are associated with a support material. They transform a substrate (or substrates) into a new chemical product (or products), and the excess or spent reagent can then be easily removed by filtration. In a similar fashion, impurities can be removed from solution using a 'scavenger' immobilized on a support,

  • This concept of immobilizing reagents on a solid support has several advantages over conventional solution-phase and solid-phase preparative synthesis, and combines many of the best attributes of both approaches:

  • Excess reagents can be used to force the reaction to completion without causing problems with work-up.

  • Toxic, noxious or hazardous reagents and their by-products can also be immobilized and thereby removed from solution.

  • Standard analytical techniques can be easily applied to monitor reactions, allowing rapid optimization.

  • Convergent syntheses are possible.

  • Multiple reagents that would otherwise be incompatible can be used simultaneously.

  • The technique can be easily adapted for automation.

  • The value of the solid-supported-reagent approach has been shown in the synthesis of novel chemical arrays, and in the targeted synthesis of natural products and other complex molecules.

Abstract

The increasing need to efficiently assemble small molecules as potential modulators of therapeutic targets that are emerging from genomics and proteomics is driving the development of novel technologies for small-molecule synthesis. Here, we describe some of the general applications and approaches to synthesis using one such technology — solid-supported reagents — that has been shown to significantly improve productivity in the generation of combinatorial libraries and complex target molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Polymer supports in organic synthesis.
Figure 2: Some advantages of solid-supported reagents.
Figure 3: Opportunities for solid-supported reagents in clean synthesis.
Figure 4
Figure 5: Scavenging protocols.
Figure 6: Preparation and purification of small molecules using metal tagging — the phase-switch technique.
Figure 7: Construction of molecular diversity from simple monomers.
Figure 8: Polymer-supported total synthesis of alkaloid natural products and other targets.
Figure 9: Evolving synthetic techniques and concepts.

Similar content being viewed by others

References

  1. Ley, S. V. et al. Multi-step organic synthesis using solid-supported reagents and scavengers:a new paradigm in chemical library generation J. Chem. Soc. Perkin Trans. 1 3815–4195 (2000).This review constitutes the most comprehensive coverage of supported reagents in the literature, as well as a full list of all other reviews. It contains a historical account of the area followed by a full tabulated and cross-referenced section on the use of individual supported reagents.

  2. Thompson, L. A. Recent applications of polymer-supported reagents and scavengers in combinatorial, parallel, or multistep synthesis Curr. Opin. Chem. Biol. 4, 324–337 (2000).

    CAS  PubMed  Google Scholar 

  3. Kobayahi, S. Immobilized catalysts in combinatorial chemistry. Curr. Opin. Chem. Biol. 4, 338–345 (2000).

    Google Scholar 

  4. Kirschning, A., Monenschein, H. & Wittenberg, R. Functionalized polymers — emerging versatile tools for solution-phase chemistry and automated parallel synthesis. Angew. Chem. Int. Edn Engl. 40, 650–679 (2001).

    CAS  Google Scholar 

  5. Ley, S. V. & Baxendale, I. R. Supported Catalysts and their Applications 9 (Royal Society of Chemistry, Cambridge, UK, 2000).

    Google Scholar 

  6. Ley, S. V. & Baxendale, I. R. Organic synthesis in a changing world Acc. Chem. Res. (in the press).

  7. Ley, S. V. et al. Solid-supported reagents for multi-step organic synthesis: preparation and application. Il Farmaco 57, 231–330 (2002).

    Google Scholar 

  8. Hall, B. et al. Preparation of compounds using polymer supported reagents. WO Patent 9,958,475 (1999).

  9. Sherrington, D. C. Polymer-supported reagents, catalysts, and sorbents: evolution and exploitation — a personalised view. J. Poly. Sci. Poly. Chem. 39, 2364–2377 (2001).A very stimulating walk through the archives of polymer-supported reagent technology from the personal viewpoint of D. Sherrington — a major contributor to the area.

    CAS  Google Scholar 

  10. Parlow, J. J., Case, B. L. & South, M. S. High-throughput purification of solution-phase periodinane mediated oxidation reactions utilizing a novel thiosulfate resin. Tetrahedron 55, 6785–6796 (1999).

    CAS  Google Scholar 

  11. Drewry, D. H., Coe, D. M. & Poon, S. Solid-supported reagents in organic synthesis. Med. Res. Rev. 19, 97–148 (1999).An excellent review aimed at the medicinal chemist, slightly dated now, but containing some good descriptions of the concepts and ideas that have subsequently evolved in the area.

    CAS  PubMed  Google Scholar 

  12. Hinzen, B., Lenz, R. & Ley, S. V. Polymer supported perruthenate (PSP): clean oxidation of primary alcohols to carbonyl compounds using oxygen as cooxidant. Synthesis 977–979 (1998).

  13. Flynn, D. L. et al. Polymer-assisted solution phase (PASP) chemical library synthesis. Med. Chem. Res. 8, 219–243 (1998).

    CAS  Google Scholar 

  14. Patchnornik, A. & Kraus, M. A. Reactive species mutually isolated on insoluble polymeric carriers. 1. The direct monoacylation of esters. J. Am. Chem. Soc. 92, 7587–7589 (1970).

    Google Scholar 

  15. Rapoport, H. & Crowley, J. I. Cyclization via solid phase synthesis. Unidirectional Dieckmann products from solid phase and benzyl triethylcarbinyl pimelates. J. Am. Chem. Soc. 92, 6363–6365 (1970).One of the original supported reagent papers that describes the concept of selective monoprotection of symmetrical systems through the use of insoluble support systems.

    CAS  Google Scholar 

  16. Shuttleworth, S. J., Allin, S. M. & Sharma, P. K. Functionalised polymers: recent developments and new applications in synthetic organic chemistry. Synthesis 1217–1239 (1997).

  17. Hinzen, B. & Ley, S. V. Polymer supported perruthenate (PSP): a new oxidant for clean organic synthesis. J. Chem. Soc. Perkin Trans. 1 1907–1908 (1997).

  18. Akelah, A. & Sherrington, D. C. Heterogeneous organic synthesis using functionalized polymers. Synthesis 6, 413–438 (1981).

    Google Scholar 

  19. Akelah, A. & Sherrington, D. C. Recent developments in the application of functionalised polymers in organic synthesis. Polymer 24, 1369–1386 (1983).

    CAS  Google Scholar 

  20. Akelah, A. & Sherrington, D. C. Application of functionalized polymers in organic synthesis. Chem. Rev. 81, 555–589 (1981).

    Google Scholar 

  21. Booth, R. J. & Hodges, J. C. Polymer-supported quenching reagents for parallel purification. J. Am. Chem. Soc. 19, 4882–4886 (1997).

    Google Scholar 

  22. Hinzen, B. & Ley, S. V. Synthesis of isoxazolidines using polymer supported perruthenate (PSP) J. Chem. Soc. Perkin Trans. 1 1–2 (1998).

  23. Haunert, F., Bolli, M. H., Hinzen, B. & Ley, S. V. Clean three-step synthesis of 4,5-dihydro-1H-pyrazoles starting from alcohols using polymer-supported reagents J. Chem. Soc. Perkin Trans. 1 2235–2237 (1998).

  24. Ley, S. V., Bolli, M. H., Hinzen, B., Gervois, A.-G. & Hall, B. J. Use of polymer supported reagents for the clean multi-step organic synthesis: preparation of amines and amine derivatives from alcohols for use in compound library generation. J. Chem. Soc. Perkin Trans. 1 2239–2241 (1998).

  25. Bolli, M. H. & Ley, S. V. Development of a polymer bound Wittig reaction and use in multi-step organic synthesis for the overall conversion of alcohols to β-hydroxyamines. J. Chem. Soc. Perkin Trans. 1 2243–2246 (1998).

  26. Habermann, J., Ley, S. V. & Scott, J. S. Clean six-step synthesis of a piperidino-thiomorpholine library using polymer-supported reagents. J. Chem. Soc. Perkin Trans. 1 3127–3130 (1998).

  27. Sussman, S. Catalysis by acid-regenerated cation exchangers. Ind. Eng. Chem. 38, 1228–1230 (1946).A seminal paper describing one of the earliest applications of polymer-supported reagents used in a recyclable fashion.

    CAS  Google Scholar 

  28. Pittman, C. U. & Smith, L. R. Sequential multistep reactions catalysed by polymer-anchored homogeneous catalysts. J. Am. Chem. Soc. 97, 1749–1754 (1975).

    CAS  Google Scholar 

  29. Virgilio, A. A., Schuerer, S. C. & Ellman, J. A. Expedient solid-phase synthesis of putative β-turn mimetics incorporating the i+1, i+2, and i+3 sidechains. Tetrahedron Lett. 37, 6961–6964 (1996).

    CAS  Google Scholar 

  30. Laszlo, P. (ed.) Preparative Chemistry using Supported Reagents (Academic Press, New York, 1987).

    Google Scholar 

  31. Hodge, P., Hunt, B. J., Khoshdel, E. & Waterhouse, J. Polymer-supported organophosphorus chemistry. Nouveau J. de Chemie 12, 617–621 (1982).

    Google Scholar 

  32. Crosby, G. A., Weinshenker, N. M. & Uh, H.-S. Polymeric reagents. III. Synthesis of an insoluble polymeric thioanisole and its utilisation for the oxidation of alcohols. J. Am. Chem. Soc. 97, 2232–2235 (1975).References 32,33,35 are excellent examples of the ability to substitute polymer-supported reagents into standard chemical applications with the effect of reducing the exposure of the chemist to toxic or obnoxious systems.

    CAS  Google Scholar 

  33. Harris, J. M., Liu, Y., Chai, S., Andrews, M. D. & Vederas, J. C. Modification of the Swern oxidation: use of a soluble polymer-bound, recyclable, and odorless sulfoxide. J. Org. Chem. 63, 2409–2409 (1998).

    Google Scholar 

  34. Pedersen, B. S., Scheibye, S., Clausen, K. & Lawesson, S. O., Studies on organophosphorus compounds XXII. The dimer of p-methoxyphenylthionophosphine sulfide as thiation reagent. A new route to o-substituted thioesters and dithioesters. Bull. Soc. Chim. Belg. 87, 293–297 (1978).

    CAS  Google Scholar 

  35. Ley, S. V., Leach, A. G. & Storer, R. I. A polymer-supported thionating reagent. J. Chem. Soc. Perkin Trans. 1 358–361 (2001).

  36. Taylor, S. J. & Ley, S. V. A Polymer-supported [1,3,2]oxazaphospholidine for the conversion of isothiocyanates to isocyanides and their subsequent use in an Ugi reaction. Bioorg. Med. Chem. Lett. (in the press).

  37. Baxendale, I. R., Ley, S. V. & Piutti, C. Total synthesis of the amaryllidaceae alkaloid (+)-plicamine and its unnatural enantiomer by using solid-supported reagents and scavengers in a multistep sequence of reactions. Angew. Chem. Int. Edn Engl. 41, 2194–2197 (2002).This paper effectively demonstrates the use of supported reagents in target-orientated total synthesis.

    CAS  Google Scholar 

  38. Baxendale, I. R., Ley, S. V., Piutti, C. & Nessi, M. Total synthesis of the amaryllidaceae alkaloid (+)-plicamine using solid-supported reagents. Tetrahedron (in the press).

  39. Baxendale, I. R., Lee, A. L. & Ley, S. V. A concise synthesis of the natural product carpanone using solid-supported reagents and scavengers. Synlett 1482–1484 (2001).This paper describes the total synthesis of the natural product carpanone; it also contains references to the solution- and solid-phase synthesis of this molecule for comparison of the various synthetic methods.

  40. Baxendale, I. R., Lee, A. L. & Ley, S. V. A concise synthesis of the natural product carpanone using solid-supported reagents and scavengers. Synlett 2004 (2001).

  41. Jamieson, C., Congreve, M. S., Emiabata-Smith, D. F. & Ley, S. V. A rapid approach for the optimisation of polymer supported reagents in synthesis. Synlett 1603–1607 (2000).This paper describes techniques for the rapid optimization of polymer-supported reactions. The technology is also directly applicable to both solution- and solid-phase synthetic operations.

  42. Cohen, B. J., Kraus, M. A. & Patchornik, A. Organic synthesis involving multipolymer reactions. Polymeric trityllithium. J. Am. Chem. Soc. 99, 4165–4167 (1977).

    CAS  Google Scholar 

  43. Cohen, B. J., Kraus, M. A. & Patchornik, A. Wolf and Lamb reactions — equilibrium and kinetic effects in multi-polymer systems. J. Am. Chem. Soc. 103, 7620–7629 (1981).References 42 and 43 demonstrate the feasibility of using multiple supported reagents in a single pot to facilitate sequential synthetic transformations, and are the first examples of such work.

    CAS  Google Scholar 

  44. Cainelli, G., Contento, M., Manescalchi, F. & Regnoli, R. Polymer-supported phosphonates. Olefins from aldehydes, ketones, and dioxolanes by means of polymer-supported phosphonates. J. Chem. Soc. Perkin Trans. 1 2516–2519 (1980).

  45. Frechet, J. M. J., Darling P. & Farrall, M. J. Poly(vinylpyridinium dichromate): an inexpensive recyclable polymeric reagent. J. Org. Chem. 46, 1728–1730 (1985).

    Google Scholar 

  46. Bergbreiter, D. E. & Chandran, R. Concurrent catalytic reduction stoichiometric oxidation using oligomerically ligated catalysts and polymer-bound reagents. J. Am. Chem. Soc. 107, 4792–4793 (1985).

    CAS  Google Scholar 

  47. Hebert, N., Beck, A., Lennox, R. B. & Just, G. A new reagent for the removal of the 4-methoxybenzyl ether — application to the synthesis of unusual macrocyclic and bolaform phosphatidylcholines. J. Org. Chem. 57, 1777–1783 (1992).

    CAS  Google Scholar 

  48. Choi, J. & Yoon, N. M. Synthesis of thiols via palladium-catalyzed methanolysis of thioacetates with borohydride exchange resin. Synth. Commun. 25, 2655–2663 (1995).

    CAS  Google Scholar 

  49. Cardillo, G., Orena, M. & Sandri, S. Oxazolidin-2-ones from allylic amines by means of iodine and carbonate anion on polymeric support — a convenient synthesis of (+/−)-propranolol. J. Org. Chem. 51, 713–717 (1986).

    CAS  Google Scholar 

  50. Regen, S. L. & Kodomari, M. Polymer-supported chain homologation. J. Chem. Soc. Chem. Commun. 1428–1429 (1987).

  51. Parlow, J. J. Simultaneous multistep synthesis using polymeric reagents. Tetrahedron Lett. 36, 1395–1396 (1995).

    CAS  Google Scholar 

  52. Bessodes, M. & Antonakis, K. One pot solid-phase cleavage of α-diols to primary alcohols — an attractive route to trihydroxy-nucleosides, antiviral precursors. Tetrahedron Lett. 26, 1305–1306 (1985).

    CAS  Google Scholar 

  53. Solaro, R., D'antone, S. & Chiellini, E. Anion exchange-type resins in preparative organic chemistry: structure–activity relationship. Reac. Poly. 9, 155–179 (1988).

    CAS  Google Scholar 

  54. Hodge, P. Polymer-supported organic reactions: what takes place in the beads? Chem. Soc. Rev. 26, 417–424 (1997).

    CAS  Google Scholar 

  55. Chakrabarti, A. & Sharma, M. M. Cationic ion exchange resins as catalysts. React. Poly. 20, 1–45 (1993).

    CAS  Google Scholar 

  56. Akelah, A. Review: technological applications of functionalized polymers. J. Mat. Sci. 21, 2977–3001 (1986).

    CAS  Google Scholar 

  57. Kraus, M. A. & Patchornik, A. Polymeric reagents. Chemtech 119–128 (1979).

  58. Patchornik, A. & Kraus, M. A. Recent advances in the use of polymers as chemical reagents. Pure Appl. Chem. 46, 183–186 (1976).

    CAS  Google Scholar 

  59. Patchornik, A. Synthesis using polymeric reagents. Chemtech 58–63 (1987).

  60. Overberger, C. G. & Sannes, K. N. Polymers as reagents in organic synthesis. Angew. Chem. Int. Edn Engl. 13, 99–104 (1974).

    Google Scholar 

  61. Trost, B. M. & Warner, R. W. Macrolide formation via an isomerization reaction — an unusual dependence on nucleophile. J. Am. Chem. Soc. 105, 5940–5942 (1983).

    CAS  Google Scholar 

  62. Mathur, N. K. & Williams K. F. Organic synthesis using polymeric supports, polymeric reagents, and polymeric catalysts. J. Macromol. Sci. Rev. Macromol. Chem. C15(1), 117–142 (1976).

    Google Scholar 

  63. Leznoff, C. C. The use of insoluble polymer supports in organic chemical synthesis. Chem. Soc. Rev. 65–85 (1974).

  64. Kraus, M. A. & Patchnornik, A. The use of polymeric reagents in organic synthesis. Pure Appl. Chem. 503–526 (1976).

  65. Leznoff, C. C. The use of insoluable polymeric supports in general organic synthesis. Acc. Chem. Res. 11, 327–333 (1978).

    CAS  Google Scholar 

  66. Leznoff, C. C. & Dixit, D. M. The use of polymer supports in organic synthesis XI. The preparation of monoethers of symmetrical dihydroxy aromatic compounds. Can. J. Chem. 55, 3351–3355 (1977).

    CAS  Google Scholar 

  67. Flynn, D. L., Devraj, R. V. & Parlow, J. J. Recent advances in polymer assisted solution-phase chemical library synthesis and purification. Curr. Opin. Drug Discov. Dev. 1, 41–50 (1998).

    CAS  Google Scholar 

  68. Kaldor, S. W., Siegel, M. G., Fritz, J. E., Dressmann, B. A. & Hahn, P. J. Use of supported nucleophiles and electrophiles for the purification of non-peptide small molecule libraries. Tetrahedron Lett. 37, 7193–7196 (1996).

    CAS  Google Scholar 

  69. Kaldor, S. W., Fritz, J. E., Tang, J. & McKinney, E. R. Discovery of antirhinoviral leads by screening a combinatorial library of ureas prepared using covalent scavengers. Bioorg. Med. Chem. Lett. 6, 3041–3044 (1996).

    CAS  Google Scholar 

  70. Booth, R. J. & Hodges, J. C. Polymer-supported quenching reagents for parallel purification. J. Am. Chem. Soc. 119, 4882–4886 (1997).

    CAS  Google Scholar 

  71. Flynn, D. L. et al. Recent advances in polymer-assisted solution-phase chemical library synthesis and purification. J. Am. Chem. Soc. 119, 4874–4881 (1997).

    CAS  Google Scholar 

  72. Parlow, J. J., Mischke, D. A. & Woodard, S. S. Utility of complementary molecular reactivity and molecular recognition (CMR/R) technology and polymer-supported reagents in the solution-phase synthesis of heterocyclic carboxamides J. Org. Chem. 62, 5908–5919 (1997).

    CAS  Google Scholar 

  73. Siegel, M. G. et al. Rapid purification of small libraries by ion exchange chromatography. Tetrahedron Lett. 38, 3357–3360 (1997).

    CAS  Google Scholar 

  74. Booth, R. J. & Hodges, J. C. Solid-supported reagent strategies for rapid purification of combinatorial synthesis products. Acc. Chem. Res. 32, 18–26 (1999).A comprehensive paper that describes the applications of supported scavengers and quenching reagents to effect the purification of compound libraries. The paper also contains references to many of the other important contributors to this area. See also references 75 and 77.

    CAS  Google Scholar 

  75. Nikam, S. S., Kornberg, B. E., Ault-Justus, S. E. & Rafferty, M. F. Novel quenchers for solution phase parallel synthesis. Tetrahedron Lett. 39, 1121–1124 (1998).

    CAS  Google Scholar 

  76. Ault-Justus, S. E., Hodges, J. C. & Wilson, M. W. Generation of a library of 4-thiozolidinones utilizing polymer supported quench (PSQ) reagent methodology. Biotechnol. Bioeng. 1, 17–22 (1998).

    Google Scholar 

  77. Eames, J. & Watkinson, M. Polymeric scavenger reagents in organic synthesis. Eur. J. Org. Chem. 1213–1224 (2001).

  78. Parlow, J. J., Devraj, R. V. & South, M. S. Solution-phase chemical library synthesis using polymer-assisted purification techniques. Curr. Opin. Drug Discov. Dev. 3, 320–336 (1999).

    CAS  Google Scholar 

  79. Shuttleworth, S. J., Allin, S. M., Wison, R. D. & Nasturica, D. Functionalised polymers in organic chemistry; Part 2. Synthesis 1035–1074 (2000).

  80. Oliver, S. F. & Abell, C. Combinatorial synthetic design. Curr. Opin. Chem. Biol. 3, 299–306 (1999).

    CAS  PubMed  Google Scholar 

  81. Curran, D. P. Strategy-level separations in organic synthesis: from planning to practice. Angew. Chem. Int. Edn Engl. 37, 1175–1196 (1998).An excellent review on alternative purification strategies, including fluorous-phase reactions and work-up.

    CAS  Google Scholar 

  82. Ferritto, R. & Seneci, P. High throughput purification methods in combinatorial solution phase synthesis. Drugs Future 23, 643–654 (1998).

    CAS  Google Scholar 

  83. Melby, L. R. Polymers for selective chelation of transition metal ions. J. Am. Chem. Soc. 97, 4044–4051 (1975).

    CAS  Google Scholar 

  84. Palmer, V., Zhou, R. N. & Geckeler, K. E. Cetylpyridinium chloride-modified poly(ethyleneimine) for the removal and separation of inorganic-ions in aqueous-solution. Angew. Makromol. Chem. 215, 175–188 (1994).

    CAS  Google Scholar 

  85. Schuttenberg, H. & Schulz, R. C. Hertellung und Eigenschaften von Poly-(N-chlor-amiden). Makromol. Chem. 143, 153–161 (1971).

    CAS  Google Scholar 

  86. Hoshi, S. et al. Preparation of Amberlite Xad resins coated with dithiosemicarbazone compounds and preconcentration of some metal-ions. Talanta 41, 503–507 (1994).

    CAS  PubMed  Google Scholar 

  87. Phillips, R. J. & Fritz, J. S. Extraction of metal-ions by n-phenylhydroxamic, n-methylhydroxamic, and n-unsubstituted hydroxamic acid resins. Anal. Chim. Acta 139, 237–246 (1982).

    CAS  Google Scholar 

  88. Shumbhu, M. B., Theodorakis, M. C. & Digenis, J. Polstyrene resins with immobilised polyamines: preparation, characterization and ability to bind Cu(ii) Ions. J. Polym. Sci. Poly. Chem. Ed. 15, 525–531 (1977).

    Google Scholar 

  89. Parlow, J. J., Naing, W., South, M. S. & Flynn, D. L. In situ chemical tagging: tetrafluorophthalic anhydride as a 'sequestration enabling reagent' (SER) in the purification of solution-phase combinatorial libraries. Tetrahedron Lett. 38, 7959–7962 (1997).Describes the concept of sequestration of multiple species or inherently unreactive compounds from solution by initial chemical activation followed by a universal scavenging protocol — some very interesting ideas that have not been fully exploited or elaborated on.

    CAS  Google Scholar 

  90. Flynn, D. L. et al. Chemical library purification stratagies based on principles of complimentary molecular recognition. J. Am. Chem. Soc. 119, 4874–4881 (1997).

    CAS  Google Scholar 

  91. Parlow, J. J. & Flynn, D. L. Solution-phase parallel synthesis of a benzoxazinone library using complementary molecular reactivity and molecular recognition (CMR/R) purification technology. Tetrahedron 54, 4013–4031 (1998).

    CAS  Google Scholar 

  92. Starkey, G. W., Parlow, J. J. & Flynn, D. L. Chemically-tagged Mitsunobu reagents for use in solution-phase chemical library synthesis. Bioorg. Med. Chem. Lett. 8, 2385–2390 (1998).

    CAS  PubMed  Google Scholar 

  93. Studer, A. et al. Fluorous synthesis: a fluorous-phase strategy for improving separation efficiency in organic synthesis. Science 275, 823–826 (1997).

    CAS  PubMed  Google Scholar 

  94. Curran, D. P. Parallel synthesis with fluorous reagents and reactants. Med. Res. Rev. 19, 432–438 (1999).

    CAS  PubMed  Google Scholar 

  95. Brown, A. R., Irving, S. L., Ramage, R. & Raphy, G. (17-Tetrabenzo[A,C,G,I]fluorenyl)methylchlororformate (TBFMOCCl) a reagent for the rapid and efficient purification of synthetic peptides and proteins. Tetrahedron 51, 11815–11830 (1995).

    CAS  Google Scholar 

  96. Ley, S. V. et al. A new phase-switch method for application in organic synthesis programs employing immobilization through metal-chelated tagging. Angew. Chem. Int. Edn Engl. 40, 1053–1057 (2001).

    CAS  Google Scholar 

  97. Toy, P. H. & Janda, K. D. Soluble polymer-supported organic synthesis. Acc. Chem. Res. 33, 546–554 (2000)

    CAS  PubMed  Google Scholar 

  98. Han, H. S., Wolfe, M. M., Brenners, S. & Janda, K. D. Liquid-phase combinatorial synthesis. Proc. Natl Acad. Sci. USA 92, 6419–6423 (1995).

    CAS  PubMed  Google Scholar 

  99. Gravert, D. J. J., Datta, A., Wentworth, P. & Janda, K. D. Soluble supports tailored for organic synthesis: parallel polymer synthesis via sequential normal/living free radical processes. J. Am. Chem. Soc. 120, 9481–9495 (1998).

    CAS  Google Scholar 

  100. Ley, S. V. & Massi, A. Polymer supported reagents in synthesis: preparation of bicyclo[2. 2. 2]octane derivatives via tandem michael addition reactions and subsequent combinatorial decoration. J. Comb. Chem. 2, 104–107 (2000).

    CAS  PubMed  Google Scholar 

  101. Caldarelli, M., Baxendale, I. R. & Ley, S. V. Clean and efficient synthesis of azo dyes using polymer-supported reagents. J. Green Chem. 2, 43–45 (2000).

    CAS  Google Scholar 

  102. Ley, S. V., Lumeras, L., Nesi, M. & Baxendale, I. R. Synthesis of trifluoromethyl ketones using polymer-supported reagents. Comb. Chem. High Throughput Screening 5, 197–199 (2002).

    Google Scholar 

  103. Caldarelli, M., Habermann, J. & Ley, S. V. Clean five-step synthesis of an array of 1,2,3,4-tetra-substituted pyrroles using polymer-supported reagents. J. Chem. Soc. Perkin Trans. 1 107–110 (1999).

  104. Caldarelli, M., Habermann, J. & Ley, S. V. Synthesis of an array of potential matrix metalloproteinase inhibitors using a sequence of polymer-supported reagents. Biorg. Med. Chem. Lett. 9, 2049–2052 (1999).

    CAS  Google Scholar 

  105. Habermann, J., Ley, S. V. & Smits, R. Three-step synthesis of an array of substituted benzofurans using polymer-supported reagents. J. Chem. Soc. Perkin Trans. 1 2421–2423 (1999).

  106. Habermann, J. et al. Clean synthesis of alpha-bromo ketones and their utilisation in the synthesis of 2-alkoxy-2,3-dihydro-2-aryl-1,4-benzodioxanes, 2-amino-4-aryl-1,3-thiazoles and piperidino-2-amino-1,3-thiazoles using polymer-supported reagents. J. Chem. Soc. Perkin Trans. 1 2425–2427 (1999).

  107. Hinzen, B. & Ley, S. V. Synthesis of isoxazolidines using polymer-supported perruthenate (PSP). J. Chem. Soc. Perkin Trans. 1 1–2 (1998).

  108. Baxendale, I. R., Ley, S. V. & Sneddon, H. A clean conversion of aldehydes to nitriles using a solid-supported hydrazine. Synlett. 775–777 (2002).

  109. Ley, S. V., Takemoto, T. & Yasuda, K. The simultaneous use of immobilised reagents for the one-pot conversion of alcohols to carboxylic acids. Synlett 1555–1556 (2001).

  110. Baxendale, I. R., Ernst, M., Krahnert, W.-R. & Ley, S. V. Application of polymer-supported enzymes and reagents in the synthesis of GABA-analogues. J. Chem. Soc. Perkin Trans. 1 (in the press).

  111. Baxendale, I. R., Ley, S. V., Brusotti, G. & Matsuoka, M. Synthesis of nornicotine, nicotine and other functionalised derivatives using solid-supported reagents and scavengers. J. Chem. Soc. Perkin Trans. 1 143–154 (2002).

  112. Baxendale, I. R. & Ley, S. V. Polymer-supported reagents for multi-step organic synthesis: application to the synthesis of Sildenafil. Bioorg. Med. Chem. Lett. 10, 1983–1986 (2000).

    CAS  PubMed  Google Scholar 

  113. Baxendale, I. R., Lee, A.-L. & Ley, S. V. A concise synthesis of Carpanone using solid-supported reagents and scavengers. J. Chem. Soc. Perkin Trans. 1 (in the press).

  114. Ley, S. V., Schucht, O., Thomas, A. W. & Murray, P. J. Synthesis of the alkaloids (+/−)-oxomaritidine and (+/−)-epimaritidine using an orchestrated multi-step sequence of polymer supported reagents. J. Chem. Soc. Perkin Trans. 1 1251–1252 (1999).

  115. Habermann, J., Ley, S. V. & Scott, J. S. Synthesis of the potent analgesic compound (+/−)-epibatidine using an orchestrated multi-step sequence of polymer-supported reagents of J. Chem. Soc. Perkin Trans. 1 1253–1255 (1999).References 114 and 115 are the first two papers in a series from our group that show the use of supported reagents to facilitate all of the steps in an organized synthetic sequence targeted at the formation of natural products.

  116. Hird, N. W. Automated synthesis: new tools for the organic chemist. Drug Discov. Today 4, 265–274 (1999).

    CAS  PubMed  Google Scholar 

  117. Ripka, W. C., Barker, G. & Krakover, J. High-throughput purification of compound libraries. Drug Discov. Today 6, 471–477 (2001).

    CAS  PubMed  Google Scholar 

  118. Dolle, R. E. Comprehensive survey of combinatorial library synthesis: 2000. J. Comb. Chem. 2, 383–433 (2001).

    Google Scholar 

  119. Dolle, R. E. Comprehensive survey of combinatorial library synthesis: 1999. J. Comb. Chem. 3, 477–517 (2001).

    CAS  PubMed  Google Scholar 

  120. An, H. Y. & Cook, P. D. Methodologies for generating solution-phase combinatorial libraries. Chem. Rev. 100, 3311–3340 (2000).

    CAS  PubMed  Google Scholar 

  121. Powers, D. G. & Coffen, D. L. Convergent automated parallel synthesis. Drug Discov. Today 4, 377–383 (1999).

    CAS  PubMed  Google Scholar 

  122. Tripp, J. A., Svec, F. & Frechet, J. M.J. Solid-phase acylating reagents in new format: macrooporous polymer disks. J. Comb. Chem. 3, 604–611 (2001).

    CAS  PubMed  Google Scholar 

  123. Hafez, A. M., Taggi, A. E., Dudding, T. & Lectka, T. Asymmetric catalysis on sequentially-linked columns. J. Am. Chem. Soc. 123, 10853–10859 (2001).

    CAS  PubMed  Google Scholar 

  124. White, R. S. & Bradley, M. Synthesis of magnetic beads for solid phase synthesis and reaction scavenging. Tetrahedron Lett. 40, 8137–8140 (1999).

    Google Scholar 

  125. Kobylecki, R. Porous device. WO Patent 0,021,658 (2000).

  126. Kobylecki, R. & Gardner, J. M. F. Method of making a library of compounds using a functionalised polymer support resin affixed to a laminar material. US Patent 6,153,375 (2000).

  127. Kobylecki, R., Cowell, D., Bradley, M. & Kronfli, E. Solid support materials. WO Patent 9,932,705 (1999).

  128. Ramarao, C., Ley, S. V., Smith, S. C., Shirley I. M. & DeAlmeida, N. Encapsulation of palladium in microcapsules. J. Chem. Soc. Chem. Commun. 1132–1133 (2002).

  129. Ley, S. V. et al. Polyurea-encapsulated palladium(acetate): a robust and recyclable catalyst for use in conventional and supercritical media. J. Chem. Soc. Chem. Commun. 1134–1135 (2002).

  130. Haswell, S. J. et al. The application of micro reactors to synthetic chemistry. J. Chem. Soc. Chem. Commun. 391–398 (2001).

  131. Kirschning, A. et al. PASSflow syntheses using functionalized monolithic polymer/glass composites in flow-through microreactors. Angew. Chem. Int. Edn Engl. 40, 3995–3998 (2001).

    CAS  Google Scholar 

  132. Oxley, P., Brechtelsbauer, C., Richard, F., Lewis, N. & Ramshaw, C. Evaluation of spinning disk reactor technology for the manufacture of pharmaceuticals. Ind. Eng. Chem. Res. 39, 2175–2182 (2000).

    CAS  Google Scholar 

  133. Boodhoo, K. V. K. & Jachuck, R. J. Spinning disk technology. App. Therm. Eng. 20, 1127–1136 (2000).

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the contributions and commitment of all the members of the Polymer-Supported Reagents Group at the University of Cambridge and thank the Pfizer Postdoctoral Fellowship (to IRB), the BP endowment and the Novartis Research Fellowship (to SVL) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven V. Ley.

Related links

Related links

DATABASES

Analtech Technical Data Sheet — Rotors and Accessories

CombiChem.net

Glossary

COMBINATORIAL CHEMISTRY

The generation of large collections, or 'libraries', of compounds by synthesizing all possible combinations of a set of smaller chemical structures.

PARALLEL SYNTHESIS

Creation of a series of individual compounds through reactions performed simultaneously, rather than one at a time.

CONVERGENT SYNTHESIS

Yields of synthetic organic reactions are usually less than 100%. So, for example, a three-step reaction linking the components A, B, C and D to give the linear sequence A–B–C–D, with each step having a 90% yield, would have an overall yield of 73%. But if A was linked to B and C linked to D separately, each with 90% yield, and then A–B and C–D linked with a 90% yield — a convergent synthetic strategy — then the overall yield is improved to 81%.

WORK-UP

Work-up is the phase of synthesis directed at product isolation. On completion of the synthetic transformation, the reaction may be quenched, neutralized or diluted to prevent further reaction(s). This phase of synthesis also incorporates any washing, extraction, separation, drying and, ultimately, solvent-removal steps.

FUNCTIONALIZED DIVINYLBENZENE-CROSSLINKED POLYSTYRENE

2–4% cross-linking produces a swelling resin, referred to as a microporous resin. 30–50% cross-linking produces a non-swelling structure, referred to as a macroporous resin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ley, S., Baxendale, I. New tools and concepts for modern organic synthesis. Nat Rev Drug Discov 1, 573–586 (2002). https://doi.org/10.1038/nrd871

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd871

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing