Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cancer treatment according to BRCA1 and BRCA2 mutations

Abstract

Identification of germline mutations associated with significant cancer susceptibility has the potential to change all aspects of an individual's care, from screening to cancer treatment. For example, women with germline mutations in BRCA1 and BRCA2 have markedly elevated risks of breast and ovarian cancer and the identification of these germline mutations has led to specific screening and prevention strategies. More recently, advances in the understanding of the biological function of BRCA1 and BRCA2 have led to clinical trials testing targeted therapies in this population, particularly poly(ADP-ribose) polymerase (PARP) inhibitors. Unfortunately, the development of PARP inhibitors has not been as rapid as anticipated and has been more challenging than expected. Somatic mutations identified in many cancer types have allowed the development of therapeutics that target these mutated genes, and many of these agents obtained rapid regulatory approval and are currently in widespread clinical practice. Diagnostic testing has a central role in targeted cancer therapeutics for both somatic and germline mutations. Although the era of molecular medicine and targeted therapies has led to significant changes in the practice of oncology, new challenges continue to arise.

Key Points

  • Subtypes of cancers can be defined by inherited (BRCA1 and BRCA2 in breast and ovarian cancer) and somatic mutations (ALK mutations in lung cancer)

  • Identification of a BRCA1 or BRCA2 mutation has significant clinical implications for screening and treatment

  • Understanding of the function of BRCA1 and BRCA2 has led to the investigation of targeted agents, namely PARP inhibitors, in this patient population

  • Diagnostic tests are necessary to identify BRCA1 or BRCA2 carriers who may benefit from targeted therapies; the regulatory issues regarding companion diagnostics are evolving

  • Development of drugs targeting molecularly defined subtypes is feasible and can lead to rapid regulatory approval; however, the example of PARP inhibitors in BRCA-mutated cancers illustrates potential challenges

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Davies, C. et al. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet 378, 771–784 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Burstein, H. J. et al. American Society of Clinical Oncology clinical practice guideline: update on adjuvant endocrine therapy for women with hormone receptor-positive breast cancer. J. Clin. Oncol. 28, 3784–3796 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  3. Murphy, C. G. & Fornier, M. HER2-positive breast cancer: beyond trastuzumab. Oncology (Williston Park) 24, 410–415 (2010).

    Google Scholar 

  4. Gudmundsdottir, K. & Ashworth, A. The roles of BRCA1 and BRCA2 and associated proteins in the maintenance of genomic stability. Oncogene 25, 5864–5874 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. O'Donovan, P. J. & Livingston, D. M. BRCA1 and BRCA2: breast/ovarian cancer susceptibility gene products and participants in DNA double-strand break repair. Carcinogenesis 31, 961–967 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Antoniou, A. et al. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: a combined analysis of 22 studies. Am. J. Hum. Genet. 72, 1117–1130 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. [No authors listed] Cancer risks in BRCA2 mutation carriers. The Breast Cancer Linkage Consortium. J. Natl Cancer Inst. 91, 1310–1316 (1999).

  8. Neuhausen, S. L. et al. BRCA1 and BRCA2 mutation carriers in the Breast Cancer Family Registry: an open resource for collaborative research. Breast Cancer Res. Treat. 116, 379–386 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Daly, M. B. et al. Genetic/familial high-risk assessment: breast and ovarian. J. Natl Compr. Canc. Netw. 8, 562–594 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Cook-Deegan, R. et al. Impact of gene patents and licensing practices on access to genetic testing for inherited susceptibility to cancer: comparing breast and ovarian cancers with colon cancers. Genet. Med. 12 (Suppl. 4), 15–38 (2010).

    Article  Google Scholar 

  11. Kriege, M. et al. Efficacy of MRI and mammography for breast-cancer screening in women with a familial or genetic predisposition. N. Engl. J. Med. 351, 427–437 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Kuhl, C. et al. Prospective multicenter cohort study to refine management recommendations for women at elevated familial risk of breast cancer: the EVA trial. J. Clin. Oncol. 28, 1450–1457 (2010).

    Article  PubMed  Google Scholar 

  13. Saslow, D. et al. American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography. CA Cancer J. Clin. 57, 75–89 (2007).

    Article  PubMed  Google Scholar 

  14. Balmaña, J., Díez, O., Rubio, I. T. & Cardoso, F. BRCA in breast cancer: ESMO Clinical Practice Guidelines. Ann. Oncol. 22 (Suppl. 6), 31–34 (2011).

    Article  Google Scholar 

  15. Hemel, D. & Domchek, S. M. Breast cancer predisposition syndromes. Hematol. Oncol. Clin. North Am. 24, 799–814 (2010).

    Article  PubMed  Google Scholar 

  16. Gronwald, J. et al. Tamoxifen and contralateral breast cancer in BRCA1 and BRCA2 carriers: an update. Int. J. Cancer 118, 2281–2284 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. King, M. C. et al. Tamoxifen and breast cancer incidence among women with inherited mutations in BRCA1 and BRCA2: National Surgical Adjuvant Breast and Bowel Project (NSABP-P1) Breast Cancer Prevention Trial. JAMA 286, 2251–2256 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Domchek, S. M. et al. Association of risk-reducing surgery in BRCA1 or BRCA2 mutation carriers with cancer risk and mortality. JAMA 304, 967–975 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Osorio, A. et al. Loss of heterozygosity analysis at the BRCA loci in tumor samples from patients with familial breast cancer. Int. J. Cancer 99, 305–309 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Bryant, H. E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913–917 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Venkitaraman, A. R. Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 108, 171–182 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Ström, C. E. et al. Poly (ADP-ribose) polymerase (PARP) is not involved in base excision repair but PARP inhibition traps a single-strand intermediate. Nucleic Acids Res. 39, 3166–3175 (2011).

    Article  PubMed  CAS  Google Scholar 

  24. Javle, M. & Curtin, N. J. The role of PARP in DNA repair and its therapeutic exploitation. Br. J. Cancer 105, 1114–1122 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Helleday, T. The underlying mechanism for the PARP and BRCA synthetic lethality: clearing up the misunderstandings. Mol. Oncol. 5, 387–393 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Fong, P. C. et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med. 361, 123–134 (2009).

    CAS  Google Scholar 

  27. Fong, P. C. et al. Poly(ADP)-ribose polymerase inhibition: frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free interval. J. Clin. Oncol. 28, 2512–2519 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Tutt, A. et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 376, 235–244 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Audeh, M. W. et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet 376, 245–251 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Kaye, S. B. et al. Phase II, open-label, randomized, multicenter study comparing the efficacy and safety of olaparib, a poly (ADP-ribose) polymerase inhibitor, and pegylated liposomal doxorubicin in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer. J. Clin. Oncol. 30, 372–379 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Gordon, A. N. et al. Recurrent epithelial ovarian carcinoma: a randomized phase III study of pegylated liposomal doxorubicin versus topotecan. J. Clin. Oncol. 19, 3312–3322 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Adams, S. F. et al. A high response rate to liposomal doxorubicin is seen among women with BRCA mutations treated for recurrent epithelial ovarian cancer. Gynecol. Oncol. 123, 486–491 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Yang, D. et al. Association of BRCA1 and BRCA2 mutations with survival, chemotherapy sensitivity, and gene mutator phenotype in patients with ovarian cancer. JAMA 306, 1557–1565 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Fogelman, D. R. et al. Evidence for the efficacy of iniparib, a PARP-1 inhibitor, in BRCA2-associated pancreatic cancer. Anticancer Res. 31, 1417–1420 (2011).

    PubMed  Google Scholar 

  35. Sandhu, S. et al. First-in-human trial of a poly(ADP-ribose) polymerase (PARP) inhibitor MK-4827 in advanced cancer patients (pts) with antitumor activity in BRCA-deficient and sporadic ovarian cancers [abstract]. J. Clin. Oncol. 28 (Suppl. 15), a3001 (2010).

    Article  Google Scholar 

  36. Kummar, S. et al. A phase I study of veliparib in combination with metronomic cyclophosphamide in adults with refractory solid tumors and lymphomas. Clin. Cancer Res. 18, 1726–1734 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Clinical Trials.gov [online] (2012).

  38. Hennessy, B. T. et al. Somatic mutations in BRCA1 and BRCA2 could expand the number of patients that benefit from poly (ADP ribose) polymerase inhibitors in ovarian cancer. J. Clin. Oncol. 28, 3570–3576 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  39. Gelmon, K. A. et al. Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: a phase 2, multicentre, open-label, non-randomised study. Lancet Oncol. 12, 852–861 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Penson, R. T. et al. A phase II trial of iniparib (BSI-201) in combination with gemcitabine/carboplatin (GC) in patients with platinum-sensitive recurrent ovarian cancer [abstract]. J. Clin. Oncol. 29 (Suppl.), a5004 (2011).

    Article  Google Scholar 

  41. Birrer, M. J. et al. A phase II trial of iniparib (BSI-201) in combination with gemcitabine/carboplatin (GC) in patients with platinum-resistant recurrent ovarian cancer [abstract]. J. Clin. Oncol. 29, a5005 (2011).

    Article  Google Scholar 

  42. Ledermann, J. et al. Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer. N. Engl. J. Med. 366, 1382–1392 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Konstantinopoulos, P. A. et al. Gene expression profile of BRCAness that correlates with responsiveness to chemotherapy and with outcome in patients with epithelial ovarian cancer. J. Clin. Oncol. 28, 3555–3561 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Foulkes, W. D., Smith, I. E. & Reis-Filho, J. S. Triple-negative breast cancer. N. Engl. J. Med. 363, 1938–1948 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Turner, N., Tutt, A. & Ashworth, A. Hallmarks of 'BRCAness' in sporadic cancers. Nat. Rev. Cancer 4, 814–819 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Turner, N. C. et al. BRCA1 dysfunction in sporadic basal-like breast cancer. Oncogene 26, 2126–2132 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Hastak, K., Alli, E. & Ford, J. M. Synergistic chemosensitivity of triple-negative breast cancer cell lines to poly(ADP-Ribose) polymerase inhibition, gemcitabine, and cisplatin. Cancer Res. 70, 7970–7980 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Natrajan, R. et al. An integrative genomic and transcriptomic analysis reveals molecular pathways and networks regulated by copy number aberrations in basal-like, HER2 and luminal cancers. Breast Cancer Res. Treat. 121, 575–589 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. O'Shaughnessy, J. et al. Iniparib plus chemotherapy in metastatic triple-negative breast cancer. N. Engl. J. Med. 364, 205–214 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. O'Shaughnessy, J. et al. A randomized phase III study of iniparib (BSI-201) in combination with gemcitabine/carboplatin (G/C) in metastatic triple-negative breast cancer (TNBC) [abstract]. J. Clin. Oncol. 29, a1007 (2011).

    Article  Google Scholar 

  51. Liu, X. et al. Iniparib nonselectively modifies cysteine-containing proteins in tumor cells and is not a bona fide PARP inhibitor. Clin. Cancer Res. 18, 510–523 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Patel, A. G., De Lorenzo, S. B., Flatten, K. S., Poirier, G. G. & Kaufmann, S. H. Failure of iniparib to inhibit poly(ADP-Ribose) polymerase in vitro. Clin. Cancer Res. 18, 1655–1662 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Carey, L. A. et al. The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin. Cancer Res. 13, 2329–2334 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Metzger-Filho, O. et al. Dissecting the heterogeneity of triple-negative breast cancer. J. Clin. Oncol. 30, 1879–1887 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Tutt, A. & Ashworth, A. Can genetic testing guide treatment in breast cancer? Eur. J. Cancer 44, 2774–2780 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Edwards, S. L. et al. Resistance to therapy caused by intragenic deletion in BRCA2. Nature 451, 1111–1115 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Swisher, E. M. et al. Secondary BRCA1 mutations in BRCA1-mutated ovarian carcinomas with platinum resistance. Cancer Res. 68, 2581–2586 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Sakai, W. et al. Functional restoration of BRCA2 protein by secondary BRCA2 mutations in BRCA2-mutated ovarian carcinoma. Cancer Res. 69, 6381–6386 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Norquist, B. et al. Secondary somatic mutations restoring BRCA1/2 predict chemotherapy resistance in hereditary ovarian carcinomas. J. Clin. Oncol. 29, 3008–3015 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Kummar, S. et al. Advances in using PARP inhibitors to treat cancer. BMC Med. 10, 25 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Ernst, T. & Hochhaus, A. Chronic myeloid leukemia: clinical impact of BCR-ABL1 mutations and other lesions associated with disease progression. Semin. Oncol. 39, 58–66 (2011).

    Article  CAS  Google Scholar 

  62. Domchek, S. M. et al. Challenges to the development of new agents for molecularly defined patient subsets: lessons from BRCA1/2-associated breast cancer. J. Clin. Oncol. 29, 4224–4226 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. John, E. M. et al. Prevalence of pathogenic BRCA1 mutation carriers in 5 US racial/ethnic groups. JAMA 298, 2869–2876 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Malone, K. E. et al. Prevalence and predictors of BRCA1 and BRCA2 mutations in a population-based study of breast cancer in white and black American women ages 35 to 64 years. Cancer Res. 66, 8297–8308 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Zhang, S. et al. Frequencies of BRCA1 and BRCA2 mutations among 1,342 unselected patients with invasive ovarian cancer. Gynecol. Oncol. 121, 353–357 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Papelard, H. et al. Prevalence of BRCA1 in a hospital-based population of Dutch breast cancer patients. Br. J. Cancer 83, 719–724 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Risch, H. A. et al. Prevalence and penetrance of germline BRCA1 and BRCA2 mutations in a population series of 649 women with ovarian cancer. Am. J. Hum. Genet. 68, 700–710 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Howlader, N. et al. (eds) SEER Cancer Statistics Review, 1975-2009 (Vintage 2009 Populations), National Cancer Institute. Bethesda, MD, http://seer.cancer.gov/csr/1975_2009_pops09/, based on November 2011 SEER data submission, posted to the SEER web site, April 2012.

  69. Arun, B. et al. Response to neoadjuvant systemic therapy for breast cancer in BRCA mutation carriers and noncarriers: a single-institution experience. J. Clin. Oncol. 29, 3739–3746 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Richards, M. L. Familial syndromes associated with thyroid cancer in the era of personalized medicine. Thyroid 20, 707–713 (2010).

    Article  PubMed  Google Scholar 

  71. Wells, S. A. Jr et al. Vandetanib for the treatment of patients with locally advanced or metastatic hereditary medullary thyroid cancer. J. Clin. Oncol. 28, 767–772 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Martins, R. G., Rajendran, J. G., Capell, P., Byrd, D. R. & Mankoff, D. A. Medullary thyroid cancer: options for systemic therapy of metastatic disease? J. Clin. Oncol. 24, 1653–1655 (2006).

    Article  PubMed  Google Scholar 

  73. Wells, S. A., Jr. et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J. Clin. Oncol. 30, 134–141 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Curtin, J. A. et al. Distinct sets of genetic alterations in melanoma. N. Engl. J. Med. 353, 2135–2147 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Flaherty, K. T. et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med. 363, 809–819 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Sosman, J. A. et al. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N. Engl. J. Med. 366, 707–714 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Chapman, P. B. et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364, 2507–2516 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Lynch, T. J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Paez, J. G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Maemondo, M. et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N. Engl. J. Med. 362, 2380–2388 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Mitsudomi, T. et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol. 11, 121–128 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Rosell, R. et al. Erlotinib versus chemotherapy (CT) in advanced non-small cell lung cancer (NSCLC) patients (p) with epidermal growth factor receptor (EGFR) mutations: Interim results of the European Erlotinib Versus Chemotherapy (EURTAC) phase III randomized trial [abstract]. J. Clin. Oncol. 29, a7503 (2011).

    Article  Google Scholar 

  84. Zhou, C. et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 12, 735–742 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Shepherd, F. A. et al. Erlotinib in previously treated non-small-cell lung cancer. N. Engl. J. Med. 353, 123–132 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Cohen, M. H., Johnson, J. R., Chen, Y. F., Sridhara, R. & Pazdur, R. FDA drug approval summary: erlotinib (Tarceva) tablets. Oncologist 10, 461–466 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Soda, M. et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448, 561–566 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Sasaki, T., Rodig, S. J., Chirieac, L. R. & Jänne, P. A. The biology and treatment of EML4-ALK non-small cell lung cancer. Eur. J. Cancer 46, 1773–1780 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Kwak, E. L. et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N. Engl. J. Med. 363, 1693–1703 (2011).

    Article  Google Scholar 

  90. Shaw, A. T. et al. Effect of crizotinib on overall survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement: a retrospective analysis. Lancet Oncol. 12, 1004–1012 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Wong, D. W. et al. The EML4-ALK fusion gene is involved in various histologic types of lung cancers from nonsmokers with wild-type EGFR and KRAS. Cancer 115, 1723–1733 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  93. Sridhar, S. S., Seymour, L. & Shepherd, F. A. Inhibitors of epidermal-growth-factor receptors: a review of clinical research with a focus on non-small-cell lung cancer. Lancet Oncol. 4, 397–406 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Keedy, V. L. et al. American Society of Clinical Oncology provisional clinical opinion: epidermal growth factor receptor (EGFR) mutation testing for patients with advanced non-small-cell lung cancer considering first-line EGFR tyrosine kinase inhibitor therapy. J. Clin. Oncol. 29, 2121–2127 (2011).

    Article  PubMed  Google Scholar 

  95. John, T., Liu, G. & Tsao, M. S. Overview of molecular testing in non-small-cell lung cancer: mutational analysis, gene copy number, protein expression and other biomarkers of EGFR for the prediction of response to tyrosine kinase inhibitors. Oncogene 28 (Suppl. 1), 14–23 (2009).

    Article  CAS  Google Scholar 

  96. Shaw, A. T., Solomon, B. & Kenudson, M. M. Crizotinib and testing for ALK. J. Natl Compr. Canc. Netw. 9, 1335–1341 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Halait, H. et al. Analytical performance of a real-time PCR-based assay for V600 mutations in the BRAF gene, used as the companion diagnostic test for the novel BRAF inhibitor vemurafenib in metastatic melanoma. Diagn. Mol. Pathol. 21, 1–8 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. US Food and Drug Administration. Draft Guidance for Industry and Food and Drug Administration Staff - In Vitro Companion Diagnostic Devices [online]. (2011).

  99. Southern District of New York, Association for Molecular Pathology v. U. S. Patent and Trademark Office, No. 09 cv 4515, http://www.cafc.uscourts.gov/images/stories/opinions-orders/2010-1406.8-16-10.1.pdf (2010).

  100. Devi, S. BRCA patent dispute may head to US Supreme Court. Lancet 379, 300 (2012).

    Article  PubMed  Google Scholar 

  101. Liptak, A. Justices Back Mayo Clinic Argument on Patents. The New York Times (New York) B3 (21 Mar 2012).

  102. Pollack, A. Justices Send Back Gene Case. The New York Times (New York) B1 (27 Mar 2012).

  103. Pérez-Soler, R. et al. Determinants of tumor response and survival with erlotinib in patients with non--small-cell lung cancer. J. Clin. Oncol. 22, 3238–3247 (2004).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Roger Cohen for helpful discussions and the MacDonald Family Foundation for funding for this effort.

Author information

Authors and Affiliations

Authors

Contributions

Both authors were involved in the research of data and the writing of the article, and provided substantial contributions to the discussion of content as well as editing the manuscript ahead of submission.

Corresponding author

Correspondence to Susan M. Domchek.

Ethics declarations

Competing interests

S. M. Domchek had received funding for clinical trials from Abbott Pharmaceuticals and AstraZeneca. K. N. Maxwell declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maxwell, K., Domchek, S. Cancer treatment according to BRCA1 and BRCA2 mutations. Nat Rev Clin Oncol 9, 520–528 (2012). https://doi.org/10.1038/nrclinonc.2012.123

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2012.123

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer