Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Vascular endothelial growth factor in heart failure

This article has been updated

Abstract

Heart failure is a devastating condition, the progression of which culminates in a mismatch of oxygen supply and demand, with limited options for treatment. Heart failure has several underlying causes including, but not limited to, ischaemic heart disease, valvular dysfunction, and hypertensive heart disease. Dysfunctional blood vessel formation is a major problem in advanced heart failure, regardless of the aetiology. Vascular endothelial growth factor (VEGF) is the cornerstone cytokine involved in the formation of new vessels. A multitude of investigations, at both the preclinical and clinical levels, have garnered valuable information on the potential utility of targeting VEGF as a treatment option for heart failure. However, clinical trials of VEGF gene therapy in patients with coronary artery disease or peripheral artery disease have not, to date, demonstrated clinical benefit. In this Review, we outline the biological characterization of VEGF, and examine the evidence for its potential therapeutic application, including the novel concept of VEGF as adjuvant therapy to stem cell transplantation, in patients with heart failure.

Key Points

  • Heart failure is a devastating clinical entity that places a substantial burden on health-care systems, practitioners, and patients

  • Evidence indicates that dysfunctional blood vessel regulation is a key component in the pathophysiology of heart failure

  • The vascular endothelial growth factor (VEGF) family of proteins is involved in new vessel formation, endothelial cell migration and activation, stem cell recruitment, and tissue regeneration

  • The level of VEGF-A is depleted with the progression of myocardial remodelling from compensated hypertrophy to decompensated failure, reducing the capacity to generate new vessels in response to hypertrophy

  • Clinical trials of VEGF gene therapy have not, to date, demonstrated clinical benefit in patients with coronary artery disease or peripheral artery disease

  • VEGF as adjuvant therapy to stem cell transplantation is a novel concept for the treatment of heart failure

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The natural progression of heart failure.
Figure 2: Interactions between mammalian VEGF molecules and various receptors, and the physiological results of these interactions.
Figure 3: VEGF-A transduction pathway demonstrating the complex interplay between receptor activation and molecular mediators resulting in physiological consequence.

Similar content being viewed by others

Change history

  • 23 July 2013

    In Figure 1 of this article originally published online, the arrow on the left should have been pointing from the normal heart to the atrophied heart. This error has been corrected in the HTML and PDF versions of the article. The following additional sentence has also been added to the end of the legend of Figure 1: "Conversely, unloading haemodynamic stress would, theoretically, lead to atrophy."

References

  1. Saba, M. M., Ventura, H. O., Saleh, M. & Mehra, M. R. Ancient Egyptian medicine and the concept of heart failure. J. Card. Fail. 12, 416–421 (2006).

    Article  PubMed  Google Scholar 

  2. Aoyagi, T. et al. Transition from compensated hypertrophy to intrinsic myocardial dysfunction during development of left ventricular pressure-overload hypertrophy in conscious sheep. Systolic dysfunction precedes diastolic dysfunction. Circulation 88, 2415–2425 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Oka, T. & Komuro, I. Molecular mechanisms underlying the transition of cardiac hypertrophy to heart failure. Circ. J. 72 (Suppl. A), A13–A16 (2008).

    Article  PubMed  Google Scholar 

  4. Nadal-Ginard, B., Kajstura, J., Leri, A. & Anversa, P. Myocyte death, growth, and regeneration in cardiac hypertrophy and failure. Circ. Res. 92, 139–150 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Danial, N. N. & Korsmeyer, S. J. Cell death: critical control points. Cell 116, 205–219 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Tomanek, R. J., Lund, D. D. & Yue, X. Hypoxic induction of myocardial vascularization during development. Adv. Exp. Med. Biol. 543, 139–149 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Hudlicka, O., Brown, M. & Egginton, S. Angiogenesis in skeletal and cardiac muscle. Physiol. Rev. 72, 369–417 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Shiojima, I. et al. Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J. Clin. Invest. 115, 2108–2118 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Folkman, J. & Shing, Y. Angiogenesis. J. Biol. Chem. 267, 10931–10934 (1992).

    CAS  PubMed  Google Scholar 

  10. Schaper, W. et al. Molecular biologic concepts of coronary anastomoses. J. Am. Coll. Cardiol. 15, 513–518 (1990).

    Article  CAS  PubMed  Google Scholar 

  11. Carmeliet, P. Angiogenesis in health and disease. Nat. Med. 9, 653–660 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Asahara, T. et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275, 964–967 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Hendrix, M. J., Seftor, E. A., Hess, A. R. & Seftor, R. E. Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat. Rev. Cancer 3, 411–421 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Cross, M. J. & Claesson-Welsh, L. FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol. Sci. 22, 201–207 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Peirce, S. M. & Skalak, T. C. Microvascular remodelling: a complex continuum spanning angiogenesis to arteriogenesis. Microcirculation 10, 99–111 (2003).

    Article  PubMed  Google Scholar 

  16. Carmeliet, P. Mechanisms of angiogenesis and arteriogenesis. Nat. Med. 6, 389–395 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Ogawa, S. et al. A novel type of vascular endothelial growth factor, VEGF-E (NZ-7 VEGF), preferentially utilizes KDR/Flk-1 receptor and carries a potent mitotic activity without heparin-binding domain. J. Biol. Chem. 273, 31273–31282 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Muller, Y. A. et al. Vascular endothelial growth factor: crystal structure and functional mapping of the kinase domain receptor binding site. Proc. Natl Acad. Sci. USA 94, 7192–7197 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Poltorak, Z., Cohen, T. & Neufeld, G. The VEGF splice variants: properties, receptors, and usage for the treatment of ischaemic diseases. Herz. 25, 126–129 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Houck, K. A. et al. The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol. Endocrinol. 5, 1806–1814 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Houck, K. A., Leung, D. W., Rowland, A. M., Winer, J. & Ferrara, N. Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J. Biol. Chem. 267, 26031–26037 (1992).

    CAS  PubMed  Google Scholar 

  22. Park, J. E., Keller, G. A. & Ferrara, N. The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol. Biol. Cell 4, 1317–1326 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ylä-Herttuala, S., Rissanen, T. T., Vajanto, I. & Hartikainen, J. Vascular endothelial growth factors: biology and current status of clinical applications in cardiovascular medicine. J. Am. Coll. Cardiol. 49, 1015–1026 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Ferrara, N. & Davis-Smyth, T. The biology of vascular endothelial growth factor. Endocr. Rev. 18, 4–25 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Waltenberger, J., Claesson-Welsh, L., Siegbahn, A., Shibuya, M. & Heldin, C. H. Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J. Biol. Chem. 269, 26988–26995 (1994).

    CAS  PubMed  Google Scholar 

  26. Meyer, R. D., Mohammadi, M. & Rahimi, N. A single amino acid substitution in the activation loop defines the decoy characteristic of VEGFR-1/FLT-1. J. Biol. Chem. 281, 867–875 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Fong, G. H., Rossant, J., Gertsenstein, M. & Breitman, M. L. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376, 66–70 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Huang, K., Andersson, C., Roomans, G. M., Ito, N. & Claesson-Welsh, L. Signalling properties of VEGF receptor-1 and -2 homo- and heterodimers. Int. J. Biochem. Cell. Biol. 33, 315–324 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Shibuya, M. Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis. J. Biochem. Mol. Biol. 39, 469–478 (2006).

    CAS  PubMed  Google Scholar 

  30. Maynard, S. E., Venkatesha, S., Thadhani, R. & Karumanchi, S. A. Soluble Fms-like tyrosine kinase 1 and endothelial dysfunction in the pathogenesis of preeclampsia. Paediatr. Res. 57, 1R–7R (2005).

    Article  Google Scholar 

  31. Kendall, R. L., Wang, G. & Thomas, K. A. Identification of a natural soluble form of the vascular endothelial growth factor receptor, FLT-1, and its heterodimerization with KDR. Biochem. Biophys. Res. Commun. 226, 324–328 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Watson, C. J., Webb, N. J., Bottomley, M. J. & Brenchley, P. E. Identification of polymorphisms within the vascular endothelial growth factor (VEGF) gene: correlation with variation in VEGF protein production. Cytokine 12, 1232–1235 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. van der Meer, P. et al. The VEGF +405 CC promoter polymorphism is associated with an impaired prognosis in patients with chronic heart failure: a MERIT-HF substudy. J. Card. Fail. 11, 279–284 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Pearlman, J. D. et al. Magnetic resonance mapping demonstrates benefits of VEGF-induced myocardial angiogenesis. Nat. Med. 1, 1085–1089 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Shyu, K. G., Liou, J. Y., Wang, B. W., Fang, W. J. & Chang, H. Carvedilol prevents cardiac hypertrophy and overexpression of hypoxia-inducible factor-1alpha and vascular endothelial growth factor in pressure-overloaded rat heart. J. Biomed. Sci. 12, 409–420 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Hilfiker-Kleiner, D. et al. Lack of JunD promotes pressure overload-induced apoptosis, hypertrophic growth, and angiogenesis in the heart. Circulation 112, 1470–1477 (2005).

    Article  PubMed  Google Scholar 

  37. Kim, C. H., Cho, Y. S., Chun, Y. S., Park, J. W. & Kim, M. S. Early expression of myocardial HIF-1alpha in response to mechanical stresses: regulation by stretch-activated channels and the phosphatidylinositol 3-kinase signalling pathway. Circ. Res. 90, E25–E33 (2002).

    CAS  PubMed  Google Scholar 

  38. Friehs, I. et al. Vascular endothelial growth factor prevents apoptosis and preserves contractile function in hypertrophied infant heart. Circulation 114, I290–295 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Namiki, A. et al. Hypoxia induces vascular endothelial growth factor in cultured human endothelial cells. J. Biol. Chem. 270, 31189–31195 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Shweiki, D., Itin, A., Soffer, D. & Keshet, E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843–845 (1992).

    Article  CAS  PubMed  Google Scholar 

  41. Banai, S. et al. Upregulation of vascular endothelial growth factor expression induced by myocardial ischaemia: implications for coronary angiogenesis. Cardiovasc. Res. 28, 1176–1179 (1994).

    CAS  PubMed  Google Scholar 

  42. Forsythe, J. A. et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol. Cell. Biol. 16, 4604–4613 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Carmeliet, P. et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435–439 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Murohara, T. et al. Vascular endothelial growth factor/vascular permeability factor enhances vascular permeability via nitric oxide and prostacyclin. Circulation 97, 99–107 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Borgers, M., Voipio-Pulkki, L. & Izumo, S. Apoptosis. Cardiovasc. Res. 45, 525–527 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Tao, Z. et al. Coexpression of VEGF and angiopoietin-1 promotes angiogenesis and cardiomyocyte proliferation reduces apoptosis in porcine myocardial infarction (MI) heart. Proc. Natl Acad. Sci. USA 108, 2064–2069 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dougher, M. & Terman, B. I. Autophosphorylation of KDR in the kinase domain is required for maximal VEGF-stimulated kinase activity and receptor internalization. Oncogene 18, 1619–1627 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Xia, P. et al. Characterization of vascular endothelial growth factor's effect on the activation of protein kinase C, its isoforms, and endothelial cell growth. J. Clin. Invest. 98, 2018–2026 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Takahashi, T., Yamaguchi, S., Chida, K. & Shibuya, M. A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-gamma and DNA synthesis in vascular endothelial cells. EMBO J. 20, 2768–2778 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Matsumoto, T. et al. VEGF receptor-2 Y951 signalling and a role for the adaptor molecule TSAd in tumour angiogenesis. EMBO J. 24, 2342–2353 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Soker, S., Takashima, S., Miao, H. Q., Neufeld, G. & Klagsbrun, M. Neuropilin-1 is expressed by endothelial and tumour cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92, 735–745 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Neufeld, G. et al. The neuropilins: multifunctional semaphorin and VEGF receptors that modulate axon guidance and angiogenesis. Trends Cardiovasc. Med. 12, 13–19 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Shen, L., Gao, Y., Qian, J., Sun, A. & Ge, J. A novel mechanism for endothelial progenitor cells homing: The SDF-1/CXCR4-Rac pathway may regulate endothelial progenitor cells homing through cellular polarization. Med. Hypotheses 76, 256–258 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Orlic, D. et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc. Natl Acad. Sci. USA 98, 10344–10349 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Urbich, C. et al. Cathepsin L is required for endothelial progenitor cell-induced neovascularization. Nat. Med. 11, 206–213 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Kawamoto, A. et al. CD34-positive cells exhibit increased potency and safety for therapeutic neovascularization after myocardial infarction compared with total mononuclear cells. Circulation 114, 2163–2169 (2006).

    Article  PubMed  Google Scholar 

  57. Urbanek, K. et al. Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long-term survival. Circ. Res. 97, 663–673 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Hierlihy, A. M., Seale, P., Lobe, C. G., Rudnicki, M. A. & Megeney, L. A. The post-natal heart contains a myocardial stem cell population. FEBS Lett. 530, 239–243 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Holmqvist, K. et al. The adaptor protein shb binds to tyrosine 1175 in vascular endothelial growth factor (VEGF) receptor-2 and regulates VEGF-dependent cellular migration. J. Biol. Chem. 279, 22267–22275 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Gnecchi, M., Zhang, Z., Ni, A. & Dzau, V. J. Paracrine mechanisms in adult stem cell signalling and therapy. Circ. Res. 103, 1204–1219 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Giordano, F. J. et al. A cardiac myocyte vascular endothelial growth factor paracrine pathway is required to maintain cardiac function. Proc. Natl Acad. Sci. USA 98, 5780–5785 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Heissig, B. et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109, 625–637 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tang, J. et al. Vascular endothelial growth factor promotes cardiac stem cell migration via the PI3K/Akt pathway. Exp. Cell Res. 315, 3521–3531 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Tang, J. M. et al. VEGF/SDF-1 promotes cardiac stem cell mobilization and myocardial repair in the infarcted heart. Cardiovasc. Res. 91, 402–411 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Abbott, J. D. et al. Stromal cell-derived factor-1alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation 110, 3300–3305 (2004).

    Article  PubMed  Google Scholar 

  66. Askari, A. T. et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 362, 697–703 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Hu, X. et al. Stromal cell derived factor-1 alpha confers protection against myocardial ischemia/reperfusion injury: role of the cardiac stromal cell derived factor-1 alpha CXCR4 axis. Circulation 116, 654–663 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Raftopoulou, M. & Hall, A. Cell migration: Rho GTPases lead the way. Dev. Biol. 265, 23–32 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Cancelas, J. A., Jansen, M. & Williams, D. A. The role of chemokine activation of Rac GTPases in haematopoietic stem cell marrow homing, retention, and peripheral mobilization. Exp. Haematol. 34, 976–985 (2006).

    Article  CAS  Google Scholar 

  70. Liang, J. et al. Suicide gene reveals the myocardial neovascularization role of mesenchymal stem cells overexpressing CXCR4 (MSC(CXCR4). PLoS ONE 7, e46158 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gerber, H. P., Dixit, V. & Ferrara, N. Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. J. Biol. Chem. 273, 13313–13316 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Xu, X. H. et al. VEGF attenuates development from cardiac hypertrophy to heart failure after aortic stenosis through mitochondrial mediated apoptosis and cardiomyocyte proliferation. J. Cardiothorac. Surg. 6, 54 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Gerber, H. P. et al. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J. Biol. Chem. 273, 30336–30343 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Chimenti, I. et al. Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice. Circ. Res. 106, 971–980 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ruixing, Y. et al. Intramyocardial injection of vascular endothelial growth factor gene improves cardiac performance and inhibits cardiomyocyte apoptosis. Eur. J. Heart Fail. 9, 343–351 (2007).

    Article  PubMed  CAS  Google Scholar 

  76. Fulton, D. et al. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399, 597–601 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fukumura, D. et al. Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc. Natl Acad. Sci. USA 98, 2604–2609 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. van der Zee, R. et al. Vascular endothelial growth factor/vascular permeability factor augments nitric oxide release from quiescent rabbit and human vascular endothelium. Circulation 95, 1030–1037 (1997).

    Article  CAS  PubMed  Google Scholar 

  79. Murohara, T. et al. Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J. Clin. Invest. 101, 2567–2578 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ku, D. D., Zaleski, J. K., Liu, S. & Brock, T. A. Vascular endothelial growth factor induces EDRF-dependent relaxation in coronary arteries. Am. J. Physiol. 265, H586–H592 (1993).

    CAS  PubMed  Google Scholar 

  81. Gavard, J. & Gutkind, J. S. VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin. Nat. Cell Biol. 8, 1223–1234 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Guo, D. Q. et al. Tumour necrosis factor employs a protein-tyrosine phosphatase to inhibit activation of KDR and vascular endothelial cell growth factor-induced endothelial cell proliferation. J. Biol. Chem. 275, 11216–11221 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Laham, R. J. et al. Spatial heterogeneity in VEGF-induced vasodilation: VEGF dilates microvessels but not epicardial and systemic arteries and veins. Ann. Vasc. Surg. 17, 245–252 (2003).

    Article  PubMed  Google Scholar 

  84. van Bruggen, N. et al. VEGF antagonism reduces oedema formation and tissue damage after ischemia/reperfusion injury in the mouse brain. J. Clin. Invest. 104, 1613–1620 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Weis, S. et al. Src blockade stabilizes a Flk/cadherin complex, reducing oedema and tissue injury following myocardial infarction. J. Clin. Invest. 113, 885–894 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nako, H. et al. Novel mechanism of angiotensin II-induced cardiac injury in hypertensive rats: the critical role of ASK1 and VEGF. Hypertens. Res. 35, 194–200 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Knowlton, K. U. et al. The alpha 1A-adrenergic receptor subtype mediates biochemical, molecular, and morphologic features of cultured myocardial cell hypertrophy. J. Biol. Chem. 268, 15374–15380 (1993).

    CAS  PubMed  Google Scholar 

  88. Rohrer, D. K. Physiological consequences of beta-adrenergic receptor disruption. J. Mol. Med. (Berl.) 76, 764–772 (1998).

    Article  CAS  Google Scholar 

  89. Amann, K. et al. Sympathetic blockade prevents the decrease in cardiac VEGF expression and capillary supply in experimental renal failure. Am. J. Physiol. Renal Physiol. 300, F105–F112 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Bogaard, H. J. et al. Adrenergic receptor blockade reverses right heart remodelling and dysfunction in pulmonary hypertensive rats. Am. J. Respir. Crit. Care Med. 182, 652–660 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Zhao, M. et al. Cardiac pressure overload hypertrophy is differentially regulated by beta-adrenergic receptor subtypes. Am. J. Physiol. Heart Circ. Physiol. 301, H1461–H1470 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Park, S. Y. et al. Noredrenaline induces VEGF expression and angiogenesis by a hypoxia-inducible factor-1alpha protein-dependent mechanism. Int. J. Cancer 128, 2306–2316 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Olofsson, B. et al. Vascular endothelial growth factor B, a novel growth factor for endothelial cells. Proc. Natl Acad. Sci. USA 93, 2576–2581 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Aase, K. et al. Localization of VEGF-B in the mouse embryo suggests a paracrine role of the growth factor in the developing vasculature. Dev. Dyn. 215, 12–25 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Olofsson, B. et al. Vascular endothelial growth factor B (VEGF-B) binds to VEGF receptor-1 and regulates plasminogen activator activity in endothelial cells. Proc. Natl Acad. Sci. USA 95, 11709–11714 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bellomo, D. et al. Mice lacking the vascular endothelial growth factor-B gene (Vegfb) have smaller hearts, dysfunctional coronary vasculature, and impaired recovery from cardiac ischemia. Circ. Res. 86, E29–E35 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Carmeliet, P. et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat. Med. 7, 575–583 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Fischer, C., Mazzone, M., Jonckx, B. & Carmeliet, P. FLT1 and its ligands VEGFB and PlGF: drug targets for anti-angiogenic therapy? Nat. Rev. Cancer 8, 942–956 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Li, X. et al. Reevaluation of the role of VEGF-B suggests a restricted role in the revascularization of the ischaemic myocardium. Arterioscler. Thromb. Vasc. Biol. 28, 1614–1620 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Li, Y. et al. VEGF-B inhibits apoptosis via VEGFR-1-mediated suppression of the expression of BH3-only protein genes in mice and rats. J. Clin. Invest. 118, 913–923 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Pepe, M. et al. Intramyocardial VEGF-B167 gene delivery delays the progression towards congestive failure in dogs with pacing-induced dilated cardiomyopathy. Circ. Res. 106, 1893–1903 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhang, F. et al. VEGF-B is dispensable for blood vessel growth but critical for their survival, and VEGF-B targeting inhibits pathological angiogenesis. Proc. Natl Acad. Sci. USA 106, 6152–6157 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Serpi, R. et al. Vascular endothelial growth factor-B gene transfer prevents angiotensin II-induced diastolic dysfunction via proliferation and capillary dilatation in rats. Cardiovasc. Res. 89, 204–213 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Zentilin, L. et al. Cardiomyocyte VEGFR-1 activation by VEGF-B induces compensatory hypertrophy and preserves cardiac function after myocardial infarction. FASEB J. 24, 1467–1478 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Karpanen, T. et al. Overexpression of vascular endothelial growth factor-B in mouse heart alters cardiac lipid metabolism and induces myocardial hypertrophy. Circ. Res. 103, 1018–1026 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Achen, M. G. et al. Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc. Natl Acad. Sci. USA 95, 548–553 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Joukov, V. et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J. 15, 1751 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Rissanen, T. T. et al. VEGF-D is the strongest angiogenic and lymphangiogenic effector among VEGFs delivered into skeletal muscle via adenoviruses. Circ. Res. 92, 1098–1106 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Huusko, J. et al. AAV9-mediated VEGF-B gene transfer improves systolic function in progressive left ventricular hypertrophy. Mol. Ther. 20, 2212–2221 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Abraham, D. et al. Selective downregulation of VEGF-A(165), VEGF-R(1), and decreased capillary density in patients with dilative but not ischaemic cardiomyopathy. Circ. Res. 87, 644–647 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. Park, J. H. et al. Endothelial progenitor cell transplantation decreases lymphangiogenesis and adverse myocardial remodelling in a mouse model of acute myocardial infarction. Exp. Mol. Med. 43, 479–485 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Autiero, M., Luttun, A., Tjwa, M. & Carmeliet, P. Placental growth factor and its receptor, vascular endothelial growth factor receptor-1: novel targets for stimulation of ischaemic tissue revascularization and inhibition of angiogenic and inflammatory disorders. J. Thromb. Haemost. 1, 1356–1370 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Binsalamah, Z. M., Paul, A., Khan, A. A., Prakash, S. & Shum-Tim, D. Intramyocardial sustained delivery of placental growth factor using nanoparticles as a vehicle for delivery in the rat infarct model. Int. J. Nanomedicine 6, 2667–2678 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Kolakowski, S. Jr et al. Placental growth factor provides a novel local angiogenic therapy for ischaemic cardiomyopathy. J. Card. Surg. 21, 559–564 (2006).

    Article  PubMed  Google Scholar 

  115. Roncal, C. et al. Beneficial effects of prolonged systemic administration of PlGF on late outcome of post-ischaemic myocardial performance. J. Pathol. 216, 236–244 (2008).

    Article  CAS  PubMed  Google Scholar 

  116. Carnevale, D. et al. Placental growth factor regulates cardiac inflammation through the tissue inhibitor of metalloproteinases-3/tumour necrosis factor-alpha-converting enzyme axis: crucial role for adaptive cardiac remodelling during cardiac pressure overload. Circulation 124, 1337–1350 (2011).

    Article  CAS  PubMed  Google Scholar 

  117. Iwama, H. et al. Cardiac expression of placental growth factor predicts the improvement of chronic phase left ventricular function in patients with acute myocardial infarction. J. Am. Coll. Cardiol. 47, 1559–1567 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Nakamura, T. et al. Elevation of plasma placental growth factor in the patients with ischaemic cardiomyopathy. Int. J. Cardiol. 131, 186–191 (2009).

    Article  PubMed  Google Scholar 

  119. Force, T., Krause, D. S. & Van Etten, R. A. Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nat. Rev. Cancer 7, 332–344 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Hariawala, M. D. et al. VEGF improves myocardial blood flow but produces EDRF-mediated hypotension in porcine hearts. J. Surg. Res. 63, 77–82 (1996).

    Article  CAS  PubMed  Google Scholar 

  121. Lopez, J. J. et al. VEGF administration in chronic myocardial ischemia in pigs. Cardiovasc. Res. 40, 272–281 (1998).

    Article  CAS  PubMed  Google Scholar 

  122. Radke, P. W. et al. Effects of intramyocardial pVEGF165 delivery on regional myocardial blood flow: evidence for a spatial 'delivery-efficacy' mismatch. Gene Ther. 11, 1249–1255 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Henry, T. D. et al. The VIVA trial: Vascular endothelial growth factor in Ischemia for Vascular Angiogenesis. Circulation 107, 1359–1365 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Giacca, M. & Zacchigna, S. VEGF gene therapy: therapeutic angiogenesis in the clinic and beyond. Gene Ther. 19, 622–629 (2012).

    Article  CAS  PubMed  Google Scholar 

  125. Melly, L. F. et al. Controlled angiogenesis in the heart by cell-based expression of specific vascular endothelial growth factor levels. Hum. Gene Ther. Methods 23, 346–356 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Tio, R. A. et al. Intramyocardial gene therapy with naked DNA encoding vascular endothelial growth factor improves collateral flow to ischaemic myocardium. Hum. Gene Ther. 10, 2953–2960 (1999).

    Article  CAS  PubMed  Google Scholar 

  127. Vale, P. R. et al. Catheter-based myocardial gene transfer utilizing nonfluoroscopic electromechanical left ventricular mapping. J. Am. Coll. Cardiol. 34, 246–254 (1999).

    Article  CAS  PubMed  Google Scholar 

  128. Lee, L. Y. et al. Focal angiogen therapy using intramyocardial delivery of an adenovirus vector coding for vascular endothelial growth factor 121. Ann. Thorac. Surg. 69, 14–23 (2000).

    Article  CAS  PubMed  Google Scholar 

  129. Losordo, D. W. et al. Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation 98, 2800–2804 (1998).

    Article  CAS  PubMed  Google Scholar 

  130. Symes, J. F. et al. Gene therapy with vascular endothelial growth factor for inoperable coronary artery disease. Ann. Thorac. Surg. 68, 830–836 (1999).

    Article  CAS  PubMed  Google Scholar 

  131. Fortuin, F. D. et al. One-year follow-up of direct myocardial gene transfer of vascular endothelial growth factor-2 using naked plasmid deoxyribonucleic acid by way of thoracotomy in no-option patients. Am. J. Cardiol. 92, 436–439 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Gyöngyösi, M. et al. NOGA-guided analysis of regional myocardial perfusion abnormalities treated with intramyocardial injections of plasmid encoding vascular endothelial growth factor A-165 in patients with chronic myocardial ischemia: subanalysis of the EUROINJECT-ONE multicentre double-blind randomized study. Circulation 112 (9 Suppl.), I157–I165 (2005).

    PubMed  Google Scholar 

  133. Stewart, D. J. et al. VEGF gene therapy fails to improve perfusion of ischaemic myocardium in patients with advanced coronary disease: results of the NORTHERN trial. Mol. Ther. 17, 1109–1115 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lee, R. J. et al. VEGF gene delivery to myocardium: deleterious effects of unregulated expression. Circulation 102, 898–901 (2000).

    Article  CAS  PubMed  Google Scholar 

  135. Leri, A., Kajstura, J. & Anversa, P. Role of cardiac stem cells in cardiac pathophysiology: a paradigm shift in human myocardial biology. Circ. Res. 109, 941–961 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Shang, F., He, Z. X., Wang, H. W., Cui, D. B. & Yang, Y. Transplantation of marrow mesenchymal stem cells transfected with vascular endothelial growth factor gene for the treatment of pulmonary hypertension in rats [Chinese]. Zhonghua Yi Xue Za Zhi 91, 1847–1851 (2011).

    CAS  PubMed  Google Scholar 

  137. Madeddu, P. et al. Transplantation of low dose CD34+KDR+ cells promotes vascular and muscular regeneration in ischaemic limbs. FASEB J. 18, 1737–1739 (2004).

    Article  CAS  PubMed  Google Scholar 

  138. Makkar, R. R. et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 379, 895–904 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Bolli, R. et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378, 1847–1857 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Wollert, K. C. & Drexler, H. Cell therapy for the treatment of coronary heart disease: a critical appraisal. Nat. Rev. Cardiol. 7, 204–215 (2010).

    Article  PubMed  Google Scholar 

  141. Anversa, P., Kajstura, J. &, Leri, A. If I can stop one heart from breaking. Circulation 115, 829–832 (2007).

    Article  PubMed  Google Scholar 

  142. Jackson, K. A. et al. Regeneration of ischaemic cardiac muscle and vascular endothelium by adult stem cells. J. Clin. Invest. 107, 1395–1402 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Abdel-Latif, A. et al. Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch. Intern. Med. 167, 989–997 (2007).

    Article  PubMed  Google Scholar 

  144. Balsam, L. B. et al. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428, 668–673 (2004).

    Article  CAS  PubMed  Google Scholar 

  145. Sussman, M. A. & Murry, C. E. Bones of contention: marrow-derived cells in myocardial regeneration. J. Mol. Cell Cardiol. 44, 950–953 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Nesselmann, C. et al. Mesenchymal stem cells and cardiac repair. J. Cell. Mol. Med. 12, 1795–1810 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kinnaird, T. et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 109, 1543–1549 (2004).

    Article  CAS  PubMed  Google Scholar 

  148. Behfar, A. & Terzic, A. Optimizing adult mesenchymal stem cells for heart repair. J. Mol. Cell. Cardiol. 42, 283–284 (2007).

    Article  CAS  PubMed  Google Scholar 

  149. Behfar, A. et al. Guided cardiopoiesis enhances therapeutic benefit of bone marrow human mesenchymal stem cells in chronic myocardial infarction. J. Am. Coll. Cardiol. 56, 721–734 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kawamoto, A. et al. Synergistic effect of bone marrow mobilization and vascular endothelial growth factor-2 gene therapy in myocardial ischemia. Circulation 110, 1398–1405 (2004).

    Article  CAS  PubMed  Google Scholar 

  151. Fan, L. et al. Transplantation with survivin-engineered mesenchymal stem cells results in better prognosis in a rat model of myocardial infarction. Eur. J. Heart Fail. 11, 1023–1030 (2009).

    Article  CAS  PubMed  Google Scholar 

  152. Wang, X. et al. Hsp20-engineered mesenchymal stem cells are resistant to oxidative stress via enhanced activation of Akt and increased secretion of growth factors. Stem Cells 27, 3021–3031 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Kearns-Jonker, M. et al. Genetically engineered mesenchymal stem cells influence gene expression in donor cardiomyocytes and the recipient heart. J. Stem Cell Res. Ther. S1, 005 (2012).

    PubMed  Google Scholar 

  154. Lu, F. et al. MSCs transfected with hepatocyte growth factor or vascular endothelial growth factor improve cardiac function in the infarcted porcine heart by increasing angiogenesis and reducing fibrosis. Int. J. Cardiol. http://dx.doi.org/10.1016/j.ijcard.2012.06.052.

  155. Yao, J. et al. Tissue inhibitor of matrix metalloproteinase-3 or vascular endothelial growth factor transfection of aged human mesenchymal stem cells enhances cell therapy after myocardial infarction. Rejuvenation Res. 15, 495–506 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Kim, S. H. et al. Hypoxia-inducible vascular endothelial growth factor-engineered mesenchymal stem cells prevent myocardial ischaemic injury. Mol. Ther. 19, 741–750 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Yang, Y. et al. VEGF enhances functional improvement of postinfarcted hearts by transplantation of ESC-differentiated cells. J. Appl. Physiol. 93, 1140–1151 (2002).

    Article  CAS  PubMed  Google Scholar 

  158. Matsumoto, R. et al. Vascular endothelial growth factor-expressing mesenchymal stem cell transplantation for the treatment of acute myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 25, 1168–1173 (2005).

    Article  CAS  PubMed  Google Scholar 

  159. Konoplyannikov, M. et al. Activation of diverse signalling pathways by ex-vivo delivery of multiple cytokines for myocardial repair. Stem Cells Dev. 22, 204–215 (2013).

    Article  CAS  PubMed  Google Scholar 

  160. Qayyum, A. A. et al. Adipose-derived mesenchymal stromal cells for chronic myocardial ischemia (MyStromalCell Trial): study design. Regen. Med. 7, 421–428 (2012).

    Article  CAS  PubMed  Google Scholar 

  161. Isner, J. M. et al. Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb. Lancet 348, 370–374 (1996).

    Article  CAS  PubMed  Google Scholar 

  162. Visconti, R. P., Richardson, C. D. & Sato, T. N. Orchestration of angiogenesis and arteriovenous contribution by angiopoietins and vascular endothelial growth factor (VEGF). Proc. Natl Acad. Sci. USA 99, 8219–8224 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Reilly, J. P. et al. Long-term (2-year) clinical events following transthoracic intramyocardial gene transfer of VEGF-2 in nooption patients. J. Interv. Cardiol. 18, 27–31 (2005).

    Article  PubMed  Google Scholar 

  164. Vale, P. R. et al. Left ventricular electromechanical mapping to assess efficacy of phVEGF (165) gene transfer for therapeutic angiogenesis in chronic myocardial ischemia. Circulation 102, 965–974 (2000).

    Article  CAS  PubMed  Google Scholar 

  165. Sarkar, N. et al. Effects of intramyocardial injection of phVEGF-A165 as sole therapy in patients with refractory coronary artery disease—12-month follow-up: angiogenic gene therapy. J. Intern. Med. 250, 373–381 (2001).

    Article  CAS  PubMed  Google Scholar 

  166. Losordo, D. W. et al. Phase 1/2 placebo-controlled, double-blind, dose-escalating trial of myocardial vascular endothelial growth factor 2 gene transfer by catheter delivery in patients with chronic myocardial ischemia. Circulation 105, 2012–2018 (2002).

    Article  CAS  PubMed  Google Scholar 

  167. Kastrup J. et al. Direct intramyocardial plasmid vascular endothelial growth factor-A165 gene therapy in patients with stable severe angina pectoris. A randomized double-blind placebo-controlled study: the Euroinject One trial. J. Am. Coll. Cardiol. 45, 982–988 (2005).

    Article  CAS  PubMed  Google Scholar 

  168. Mendiz, O. et al. High-dose plasmid VEGF gene transfer in patients with severe coronary artery disease: final results of the first Latin American trial of gene therapy in myocardial ischemia [abstract 15235]. Circulation 124 (Suppl.), A15235 (2011).

    Google Scholar 

  169. Kukula, K. et al. Intramyocardial plasmid-encoding human vascular endothelial growth factor A165/basic fibroblast growth factor therapy using percutaneous transcatheter approach in patients with refractory coronary artery disease (VIF-CAD). Am. Heart J. 161, 581–589 (2011).

    Article  CAS  PubMed  Google Scholar 

  170. Hedman, M. et al. Safety and feasibility of catheter-based local intracoronary vascular endothelial growth factor gene transfer in the prevention of postangioplasty and in-stent restenosis and in the treatment of chronic myocardial ischemia: phase II results of the Kuopio Angiogenesis Trial (KAT). Circulation 107, 2677–2683 (2003).

    Article  CAS  PubMed  Google Scholar 

  171. Rosengart, T. K. et al. Angiogenesis gene therapy: phase I assessment of direct intramyocardial administration of an adenovirus vector expressing VEGF121 cDNA to individuals with clinically significant severe coronary artery disease. Circulation 100, 468–474 (1999).

    Article  CAS  PubMed  Google Scholar 

  172. Stewart, D. J. et al. Angiogenic gene therapy in patients with nonrevascularizable ischemic heart disease: a phase 2 randomized, controlled trial of AdVEGF (121) (AdVEGF121) versus maximum medical treatment. Gene Therapy 13, 1503–1511 (2006).

    Article  CAS  PubMed  Google Scholar 

  173. Kastrup, J. et al. A randomised, double-blind, placebo-controlled, multicentre study of the safety and efficacy of BIOBYPASS (AdGVVEGF121.10NH) gene therapy in patients with refractory advanced coronary artery disease: the NOVA trial. EuroIntervention 6, 813–818 (2011).

    Article  PubMed  Google Scholar 

  174. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  175. Baumgartner, I. et al. Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia. Circulation 97, 1114–1123 (1998).

    Article  CAS  PubMed  Google Scholar 

  176. Kusumanto, Y. H. et al. Treatment with intramuscular vascular endothelial growth factor gene compared with placebo for patients with diabetes mellitus and critical limb ischemia: a doubleblind randomized trial. Hum. Gene Ther. 17, 683–691 (2006).

    Article  CAS  PubMed  Google Scholar 

  177. Makinen, K. et al. Increased vascularity detected by digital subtraction angiography after VEGF gene transfer to human lower limb artery: a randomized, placebo-controlled, double-blinded phase II study. Mol. Ther. 6, 127–133 (2002).

    Article  CAS  PubMed  Google Scholar 

  178. Rajagopalan, S. et al. Regional angiogenesis with vascular endothelial growth factor (VEGF) in peripheral arterial disease: design of the RAVE trial. Am. Heart J. 145, 1114–1118 (2003).

    Article  CAS  PubMed  Google Scholar 

  179. US National Library of Medicine. ClinicalTrials.gov [online], (2011).

Download references

Author information

Authors and Affiliations

Authors

Contributions

Z. Taimeh and J. Loughran researched data for the article. All the authors contributed to the discussion of content, wrote the article, and revised/edited the manuscript before submission. Z. Taimeh and J. Loughran contributed equally and are joint first authors.

Corresponding author

Correspondence to John Loughran.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taimeh, Z., Loughran, J., Birks, E. et al. Vascular endothelial growth factor in heart failure. Nat Rev Cardiol 10, 519–530 (2013). https://doi.org/10.1038/nrcardio.2013.94

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2013.94

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research