Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

High-throughput insertional mutagenesis screens in mice to identify oncogenic networks

A Corrigendum to this article was published on 01 August 2009

Key Points

  • The integration of slow transforming retroviruses into the genome of host cells can lead to deregulation of nearby genes. Cells can be infected repeatedly, acquiring multiple mutations that can lead to the development of a tumour.

  • Genes implicated in tumour formation are found through the identification of proviral or transposon insertions in independent tumours at frequencies higher than would be expected by chance. Genes in loci that recurrently contain proviral or transposon insertions in independent tumours show a significant overlap with known human oncogenes and tumour suppressor genes.

  • The arrival of next-generation sequencing technologies allows identification of most if not all insertions in a tumour. This will enable a more comprehensive identification of cancer genes and cooperating pairs of cancer genes and facilitate the establishment of the functional role of these cancer genes in tumour development.

  • Examining the genes that collaborate with common mutations in the Myc, p53, Rb and Ras pathways may identify genes that are essential for activating or abrogating the tumorigenic effects of these mutations. Using retrovirus- or transposon-mediated insertional mutagenesis to identify genes that collaborate with genes of the Myc, p53, Rb and Ras pathways may expand the range of targets for developing novel cancer therapeutics.

  • Retrovirus- or transposon-mediated insertional mutagenesis screens can be used to identify genes that confer resistance to drugs both in vitro and in vivo and may thus provide pivotal information to improve existing therapeutic strategies.

  • Although most proviral insertions are activating rather than inactivating, a substantial fraction of the insertions are found to abrogate gene function, thus enabling the identification of tumour suppressor genes.

  • Cross-comparison of insertional mutagenesis data from mice with mutation data from human tumour panels may help identify the 'driver' mutations in human cancer. With the development of insertional mutagenesis strategies for solid tissues these cross-comparisons will become even more powerful, as they will allow direct comparison of human tumour data with insertions derived from their cognate mouse tumours.

  • Scrutinizing concurrent and mutually exclusive insertions in clonal cell populations of tumours or in single cells of a tumour in combination with high-quality expression profiling and proteomics analysis may teach us about underlying mechanisms of tumour heterogeneity and their role in tumour initiation and maintenance.

Abstract

Retroviral insertional mutagenesis screens have been used for many years as a tool for cancer gene discovery. In recent years, completion of the mouse genome sequence as well as improved technologies for cloning and sequencing of retroviral insertions have greatly facilitated the retrieval of more complete data sets from these screens. The concomitant increase of the size of the screens allows researchers to address new questions about the genes and signalling networks involved in tumour development. In addition, the development of new insertional mutagenesis tools such as DNA transposons enables screens for cancer genes in tissues that previously could not be analysed by retroviral insertional mutagenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Retroviral insertional mutagenesis.
Figure 2: The common insertion site (CIS) interaction network.
Figure 3: Validation of insertional mutagenesis data.
Figure 4: Strategies to address the polyclonal nature of tumours.

Similar content being viewed by others

References

  1. Uren, A. G., Kool, J., Berns, A. & van Lohuizen, M. Retroviral insertional mutagenesis: past, present and future. Oncogene 24, 7656–7672 (2005). This review provides an historical overview of retroviral insertional mutagenesis screens and the different mechanisms in which genes can be mutated by retroviral integrations.

    Article  CAS  Google Scholar 

  2. Jonkers, J. & Berns, A. Retroviral insertional mutagenesis as a strategy to identify cancer genes. Biochim. Biophys. Acta 1287, 29–57 (1996).

    PubMed  Google Scholar 

  3. Uren, A. G. et al. Large-scale mutagenesis in p19ARF- and p53-deficient mice identifies cancer genes and their collaborative networks. Cell 133, 727–741 (2008).

    Article  CAS  Google Scholar 

  4. Jonkers, J., Korswagen, H. C., Acton, D., Breuer, M. & Berns, A. Activation of a novel proto-oncogene, Frat1, contributes to progression of mouse T-cell lymphomas. EMBO J. 16, 441–450 (1997).

    Article  CAS  Google Scholar 

  5. Nihrane, A., Fujita, K., Willey, R., Lyu, M. S. & Silver, J. Murine leukemia virus envelope protein in transgenic-mouse serum blocks infection in vitro. J. Virol. 70, 1882–1889 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ikeda, H. & Sugimura, H. Fv-4 resistance gene: a truncated endogenous murine leukemia virus with ecotropic interference properties. J. Virol. 63, 5405–5412 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ott, D. & Rein, A. Basis for receptor specificity of nonecotropic murine leukemia virus surface glycoprotein gp70SU. J. Virol. 66, 4632–4638 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Heidmann, T., Heidmann, O. & Nicolas, J. F. An indicator gene to demonstrate intracellular transposition of defective retroviruses. Proc. Natl Acad. Sci. USA 85, 2219–2223 (1988).

    Article  CAS  Google Scholar 

  9. Tchenio, T. & Heidmann, T. Defective retroviruses can disperse in the human genome by intracellular transposition. J. Virol. 65, 2113–2118 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Dzuris, J. L., Zhu, W., Kapkov, D., Golovkina, T. V. & Ross, S. R. Expression of mouse mammary tumour virus envelope protein does not prevent superinfection in vivo or in vitro. Virology 263, 418–426 (1999).

    Article  CAS  Google Scholar 

  11. Suzuki, T., Minehata, K., Akagi, K., Jenkins, N. A. & Copeland, N. G. Tumour suppressor gene identification using retroviral insertional mutagenesis in Blm-deficient mice. EMBO J. 25, 3422–3431 (2006).

    Article  CAS  Google Scholar 

  12. Suzuki, T. et al. New genes involved in cancer identified by retroviral tagging. Nature Genet. 32, 166–174 (2002). An elegant study in which a hypomorphic Blm allele is used to induce LOH of retrovirally inactivated tumour suppressor genes.

    Article  CAS  Google Scholar 

  13. Stewart, M. et al. Insertional mutagenesis reveals progression genes and checkpoints in MYC/Runx2 lymphomas. Cancer Res. 67, 5126–5133 (2007).

    Article  CAS  Google Scholar 

  14. Mikkers, H. et al. High-throughput retroviral tagging to identify components of specific signaling pathways in cancer. Nature Genet. 32, 153–159 (2002).

    Article  CAS  Google Scholar 

  15. Erkeland, S. J. et al. Large-scale identification of disease genes involved in acute myeloid leukemia. J. Virol. 78, 1971–1980 (2004).

    Article  CAS  Google Scholar 

  16. Lund, A. H. et al. Genome-wide retroviral insertional tagging of genes involved in cancer in Cdkn2a-deficient mice. Nature Genet. 32, 160–165 (2002).

    Article  CAS  Google Scholar 

  17. Theodorou, V. et al. MMTV insertional mutagenesis identifies genes, gene families and pathways involved in mammary cancer. Nature Genet. 39, 759–769 (2007). The first large-scale MMTV insertional mutagenesis screen to identify new cancer genes in mammary tumours.

    Article  CAS  Google Scholar 

  18. Kim, R. et al. Genome-based identification of cancer genes by proviral tagging in mouse retrovirus-induced T-cell lymphomas. J. Virol. 77, 2056–2062 (2003).

    Article  CAS  Google Scholar 

  19. Hasemann, M. S. et al. Mutation of C/EBPα predisposes to the development of myeloid leukemia in a retroviral insertional mutagenesis screen. Blood 111, 4309–4321 (2008).

    Article  CAS  Google Scholar 

  20. Shendure, J. & Ji, H. Next-generation DNA sequencing. Nature Biotechnol. 26, 1135–1145 (2008). An introduction to, and overview of, next-generation massive parallel sequencing technologies.

    Article  CAS  Google Scholar 

  21. Dupuy, A. J., Akagi, K., Largaespada, D. A., Copeland, N. G. & Jenkins, N. A. Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system. Nature 436, 221–226 (2005).

    Article  CAS  Google Scholar 

  22. Collier, L. S., Carlson, C. M., Ravimohan, S., Dupuy, A. J. & Largaespada, D. A. Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse. Nature 436, 272–276 (2005). The first two papers, which were published back-to-back, to report transposon mutagenesis systems that efficiently induce tumours in mice.

    Article  CAS  Google Scholar 

  23. Carlson, C. M. & Largaespada, D. A. Insertional mutagenesis in mice: new perspectives and tools. Nature Rev. Genet. 6, 568–580 (2005).

    Article  CAS  Google Scholar 

  24. Keng, V. W. et al. A conditional transposon-based insertional mutagenesis screen for genes associated with mouse hepatocellular carcinoma. Nature Biotechnol. 27, 264–274 (2009).

    Article  CAS  Google Scholar 

  25. Starr, T. K. et al. A transposon-based genetic screen in mice identifies genes altered in colorectal cancer. Science 323, 1747–1750 (2009).

    Article  CAS  Google Scholar 

  26. Beverly, L. J., Felsher, D. W. & Capobianco, A. J. Suppression of p53 by Notch in lymphomagenesis: implications for initiation and regression. Cancer Res. 65, 7159–7168 (2005).

    Article  CAS  Google Scholar 

  27. Beverly, L. J. & Capobianco, A. J. Perturbation of Ikaros isoform selection by MLV integration is a cooperative event in NotchIC-induced T cell leukemogenesis. Cancer Cell 3, 551–564 (2003).

    Article  CAS  Google Scholar 

  28. Iwasaki, M. et al. Identification of cooperative genes for NUP98–HOXA9 in myeloid leukemogenesis using a mouse model. Blood 105, 784–793 (2005).

    Article  CAS  Google Scholar 

  29. Castilla, L. H. et al. Identification of genes that synergize with Cbfb–MYH11 in the pathogenesis of acute myeloid leukemia. Proc. Natl Acad. Sci. USA 101, 4924–4929 (2004).

    Article  CAS  Google Scholar 

  30. Feldman, B. J., Reid, T. R. & Cleary, M. L. Pim1 cooperates with E2a–Pbx1 to facilitate the progression of thymic lymphomas in transgenic mice. Oncogene 15, 2735–2742 (1997).

    Article  CAS  Google Scholar 

  31. Slape, C. et al. Retroviral insertional mutagenesis identifies genes that collaborate with NUP98HOXD13 during leukemic transformation. Cancer Res. 67, 5148–5155 (2007).

    Article  CAS  Google Scholar 

  32. Li, J. et al. Leukaemia disease genes: large-scale cloning and pathway predictions. Nature Genet. 23, 348–353 (1999).

    Article  CAS  Google Scholar 

  33. Erkeland, S. J. et al. Significance of murine retroviral mutagenesis for identification of disease genes in human acute myeloid leukemia. Cancer Res. 66, 622–626 (2006).

    Article  CAS  Google Scholar 

  34. Adams, J. M. et al. The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 318, 533–538 (1985).

    Article  CAS  Google Scholar 

  35. Ellwood-Yen, K. et al. Myc-driven murine prostate cancer shares molecular features with human prostate tumours. Cancer Cell 4, 223–238 (2003).

    Article  CAS  Google Scholar 

  36. Jacobs, J. J. et al. Bmi-1 collaborates with c-Myc in tumourigenesis by inhibiting c-Myc- induced apoptosis via INK4a/ARF. Genes Dev. 13, 2678–2690 (1999).

    Article  CAS  Google Scholar 

  37. van der Lugt, N. M. et al. Proviral tagging in E mu-myc transgenic mice lacking the Pim-1 proto-oncogene leads to compensatory activation of Pim-2. EMBO J. 14, 2536–2544 (1995).

    Article  CAS  Google Scholar 

  38. Soucek, L. et al. Modelling Myc inhibition as a cancer therapy. Nature 455, 679–683 (2008).

    Article  CAS  Google Scholar 

  39. Lazo, P. A., Lee, J. S. & Tsichlis, P. N. Long-distance activation of the Myc protooncogene by provirus insertion in Mlvi-1 or Mlvi-4 in rat T-cell lymphomas. Proc. Natl Acad. Sci. USA 87, 170–173 (1990).

    Article  CAS  Google Scholar 

  40. Hickson, I. D. RecQ helicases: caretakers of the genome. Nature Rev. Cancer 3, 169–178 (2003).

    Article  CAS  Google Scholar 

  41. Luo, G. et al. Cancer predisposition caused by elevated mitotic recombination in Bloom mice. Nature Genet. 26, 424–429 (2000).

    Article  CAS  Google Scholar 

  42. Garrett-Engele, C. M. et al. A mechanism misregulating p27 in tumours discovered in a functional genomic screen. PLoS Genet. 3, e219 (2007).

    Article  Google Scholar 

  43. Tsihlias, J., Kapusta, L. & Slingerland, J. The prognostic significance of altered cyclin-dependent kinase inhibitors in human cancer. Annu. Rev. Med. 50, 401–423 (1999).

    Article  CAS  Google Scholar 

  44. Park, M. S. et al. p27 and Rb are on overlapping pathways suppressing tumourigenesis in mice. Proc. Natl Acad. Sci. USA 96, 6382–6387 (1999).

    Article  CAS  Google Scholar 

  45. Pinkel, D. & Albertson, D. G. Array comparative genomic hybridization and its applications in cancer. Nature Genet. 37, S11–S17 (2005).

    Article  CAS  Google Scholar 

  46. Carrasco, D. R. et al. High-resolution genomic profiles define distinct clinico-pathogenetic subgroups of multiple myeloma patients. Cancer Cell 9, 313–325 (2006).

    Article  CAS  Google Scholar 

  47. Wood, L. D. et al. The genomic landscapes of human breast and colorectal cancers. Science 318, 1108–1113 (2007). A paper describing mutations that were identified by sequencing a panel of human breast cancers. Multiple genes that are mutated in humans were also found to be CISs in MMTV-induced tumours in mice.

    Article  CAS  Google Scholar 

  48. Sjoblom, T. et al. The consensus coding sequences of human breast and colorectal cancers. Science 314, 268–274 (2006).

    Article  Google Scholar 

  49. Parsons, D. W. et al. An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807–1812 (2008).

    Article  CAS  Google Scholar 

  50. Jones, S. et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321, 1801–1806 (2008).

    Article  CAS  Google Scholar 

  51. Fujino, Y., Ohno, K. & Tsujimoto, H. Molecular pathogenesis of feline leukemia virus-induced malignancies: insertional mutagenesis. Vet. Immunol. Immunopathol. 123, 138–143 (2008).

    Article  CAS  Google Scholar 

  52. Kanter, M. R., Smith, R. E. & Hayward, W. S. Rapid induction of B-cell lymphomas: insertional activation of c-myb by avian leukosis virus. J. Virol. 62, 1423–1432 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. van Agthoven, T. et al. Functional identification of genes causing estrogen independence of human breast cancer cells. Breast Cancer Res. Treat. 114, 23–30 (2009).

    Article  Google Scholar 

  54. Dorssers, L. C., van, A. T., Dekker, A., van Agthoven, T. L. & Kok, E. M. Induction of antiestrogen resistance in human breast cancer cells by random insertional mutagenesis using defective retroviruses: identification of bcar-1, a common integration site. Mol. Endocrinol. 7, 870–878 (1993). These authors demonstrate that insertional mutagenesis can be used to screen for genes that confer resistance to therapeutic agents in vivo.

    CAS  PubMed  Google Scholar 

  55. van der, F. S. et al. Bcar1/p130Cas protein and primary breast cancer: prognosis and response to tamoxifen treatment. J. Natl Cancer Inst. 92, 120–127 (2000).

    Article  Google Scholar 

  56. Miething, C. et al. Retroviral insertional mutagenesis identifies RUNX genes involved in chronic myeloid leukemia disease persistence under imatinib treatment. Proc. Natl Acad. Sci. USA 104, 4594–4599 (2007).

    Article  CAS  Google Scholar 

  57. Johansson, F. K., Goransson, H. & Westermark, B. Expression analysis of genes involved in brain tumour progression driven by retroviral insertional mutagenesis in mice. Oncogene 24, 3896–3905 (2005).

    Article  CAS  Google Scholar 

  58. Hanai, S. et al. Integration of human T-cell leukemia virus type 1 in genes of leukemia cells of patients with adult T-cell leukemia. Cancer Sci. 95, 306–310 (2004).

    Article  CAS  Google Scholar 

  59. Killebrew, D. & Shiramizu, B. Pathogenesis of HIV-associated non-Hodgkin lymphoma. Curr. HIV Res. 2, 215–221 (2004).

    Article  CAS  Google Scholar 

  60. Thrasher, A. J. et al. Gene therapy: X-SCID transgene leukaemogenicity. Nature 443, E5–E6; discussion E6–E7 (2006).

    Article  Google Scholar 

  61. de Ridder, J., Uren, A., Kool, J., Reinders, M. & Wessels, L. Detecting statistically significant common insertion sites in retroviral insertional mutagenesis screens. PLoS Comput. Biol. 2, e166 (2006).

    Article  Google Scholar 

  62. Wu, X., Li, Y., Crise, B. & Burgess, S. M. Transcription start regions in the human genome are favored targets for MLV integration. Science 300, 1749–1751 (2003).

    Article  CAS  Google Scholar 

  63. Berry, C., Hannenhalli, S., Leipzig, J. & Bushman, F. D. Selection of target sites for mobile DNA integration in the human genome. PLoS Comput. Biol. 2, e157 (2006).

    Article  Google Scholar 

  64. Lewinski, M. K. et al. Retroviral DNA integration: viral and cellular determinants of target-site selection. PLoS Pathog. 2, e60 (2006).

    Article  Google Scholar 

  65. Mitchell, R. S. et al. Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol. 2, e234 (2004).

    Article  Google Scholar 

  66. Felice, B. et al. Transcription factor binding sites are genetic determinants of retroviral integration in the human genome. PLoS ONE 4, e4571 (2009).

    Article  Google Scholar 

  67. Sauvageau, M. et al. Quantitative expression profiling guided by common retroviral insertion sites reveals novel and cell type specific cancer genes in leukemia. Blood 111, 790–799 (2008).

    Article  CAS  Google Scholar 

  68. Su, Q. et al. A DNA transposon-based approach to validate oncogenic mutations in the mouse. Proc. Natl Acad. Sci. USA 105, 19904–19909 (2008).

    Article  CAS  Google Scholar 

  69. Wilson, M. H., Coates, C. J. & George, A. L. Jr. PiggyBac transposon-mediated gene transfer in human cells. Mol. Ther. 15, 139–145 (2007).

    Article  CAS  Google Scholar 

  70. Carlson, C. M. et al. Transposon mutagenesis of the mouse germline. Genetics 165, 243–256 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. van Lohuizen, M., Breuer, M. & Berns, A. N-myc is frequently activated by proviral insertion in MuLV-induced T cell lymphomas. EMBO J. 8, 133–136 (1989).

    Article  CAS  Google Scholar 

  72. Girard, L. & Jolicoeur, P. A full-length Notch1 allele is dispensable for transformation associated with a provirally activated truncated Notch1 allele in Moloney MuLV-infected MMTVD/myc transgenic mice. Oncogene 16, 517–522 (1998).

    Article  CAS  Google Scholar 

  73. Weng, A. P. et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306, 269–271 (2004).

    Article  CAS  Google Scholar 

  74. Yang, L. T. et al. Fringe glycosyltransferases differentially modulate Notch1 proteolysis induced by Delta1 and Jagged1. Mol. Biol. Cell 16, 927–942 (2005).

    Article  CAS  Google Scholar 

  75. Haines, N. & Irvine, K. D. Glycosylation regulates Notch signalling. Nature Rev. Mol. Cell Biol. 4, 786–797 (2003).

    Article  CAS  Google Scholar 

  76. Moloney, D. J. et al. Fringe is a glycosyltransferase that modifies Notch. Nature 406, 369–375 (2000).

    Article  CAS  Google Scholar 

  77. Largaespada, D. A., Shaughnessy, J. D. Jr, Jenkins, N. A. & Copeland, N. G. Retroviral integration at the Evi-2 locus in BXH-2 myeloid leukemia cell lines disrupts Nf1 expression without changes in steady-state Ras-GTP levels. J. Virol. 69, 5095–5102 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Cho, B. C. et al. Frequent disruption of the Nf1 gene by a novel murine AIDS virus-related provirus in BXH-2 murine myeloid lymphomas. J. Virol. 69, 7138–7146 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Uren, A. Sparmann, J. Jonkers and M. van Lohuizen for discussions and critically reading the manuscript. J.K. was supported by the De Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) Genomics Programme and the Cancer Genomics Centre, which is supported by the Netherlands Genomics Initiative (NGI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Berns.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

National Cancer Institute Drug Dictionary

imatinib

FURTHER INFORMATION

Mutapedia

Retrovirus Tagged Cancer Gene Database

Glossary

Viraemia

The continuous presence of infectious viruses in an organism.

Viraemic phase

The stage of viral infection of an organism in which infectious viruses are present in the body.

Retrotranspose

The integration of a retrovirus or transposon in the genomic DNA of a host cell through an RNA intermediate.

Massive parallel sequencing

Next-generation sequencing technologies that are able to sequence millions of DNA fragments in parallel.

DNA transposon system

DNA transposons are genetic elements that can be excised from a genome or episomal element and integrate (transpose) into another DNA site. The transposase protein is required for this process.

Gene trap

A vector element consisting of a splice acceptor site and polyadenylation signal that is intended to create a fusion of the cellular transcript and vector sequences, resulting in termination of transcription of the cellular gene.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kool, J., Berns, A. High-throughput insertional mutagenesis screens in mice to identify oncogenic networks. Nat Rev Cancer 9, 389–399 (2009). https://doi.org/10.1038/nrc2647

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2647

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing