Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Calcium and cancer: targeting Ca2+ transport

Key Points

  • Ca2+ homeostasis controls various cellular processes, including those relevant to tumorigenesis, such as proliferation, apoptosis, gene transcription and angiogenesis.

  • Ca2+ channels, pumps and exchangers control the complex and tight regulation of Ca2+ homeostasis. Specific isoforms of these proteins are responsible for increasing or reducing cytosolic free Ca2+. These channels, pumps and exchangers differ in their cellular distribution and their mechanism of transport.

  • Some cancers are associated with the up- or downregulation of specific Ca2+ channels or pumps. For example, TRPM8 is upregulated in prostate cancer and SERCA3 is downregulated in colon cancer.

  • Many Ca2+ channels, pumps and exchangers are modulated by pharmacological agents and are regarded as druggable. The role of Ca2+ in both proliferation and apoptosis means that both inhibitors and activators of these proteins are potential therapeutic agents in cancer chemotherapy.

  • Questions remain as to which approach, and what channels and pumps, are likely to lead to the most effective cancer therapeutics.

Abstract

Ca2+ is a ubiquitous cellular signal. Altered expression of specific Ca2+ channels and pumps are characterizing features of some cancers. The ability of Ca2+ to regulate both cell death and proliferation, combined with the potential for pharmacological modulation, offers the opportunity for a set of new drug targets in cancer. However, the ubiquity of the Ca2+ signal is often mistakenly presumed to thwart the specific therapeutic targeting of proteins that transport Ca2+. This Review presents evidence to the contrary and addresses the question: which Ca2+ channels and pumps should be targeted?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ca2+ channels, pumps and exchangers and important regulatory domains.
Figure 2: Specificity of targeting an aberrantly expressed Ca2+ pump.
Figure 3: Duality of the Ca2+ signal and cancer cell death.

Similar content being viewed by others

References

  1. Berridge, M. J., Bootman, M. D. & Roderick, H. L. Calcium signalling: dynamics, homeostasis and remodelling. Nature Rev. Mol. Cell Biol. 4, 517–529 (2003). A concise and elegant review of how Ca2+ signalling leads to biological effects.

    Article  CAS  Google Scholar 

  2. Carafoli, E. Intracellular calcium homeostasis. Annu. Rev. Biochem. 56, 395–433 (1987).

    Article  CAS  PubMed  Google Scholar 

  3. Golovina, V. A. & Blaustein, M. P. Spatially and functionally distinct Ca2+ stores in sarcoplasmic and endoplasmic reticulum. Science 275, 1643–1648 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Palmer, A. E., Jin, C., Reed, J. C. & Tsien, R. Y. Bcl-2-mediated alterations in endoplasmic reticulum Ca2+ analyzed with an improved genetically encoded fluorescent sensor. Proc. Natl Acad. Sci. USA 101, 17404–17409 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brini, M., Bano, D., Manni, S., Rizzuto, R. & Carafoli, E. Effects of PMCA and SERCA pump overexpression on the kinetics of cell Ca(2+) signalling. EMBO J. 19, 4926–4935 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rizzuto, R. & Pozzan, T. Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol. Rev. 86, 369–408 (2006). The most recent review to provide a comprehensive overview of the complexity of Ca2+ signalling, and paying much needed attention to 'functional consequences'. Valuable to anyone wanting to appreciate the complexity of Ca2+ homeostasis and the significance of this complexity.

    Article  CAS  PubMed  Google Scholar 

  7. Rizzuto, R. et al. Calcium and apoptosis: facts and hypotheses. Oncogene. 22, 8619–8627 (2003). Reviews the role of Ca2+ in apoptosis with a great depth and a much needed critical examination of the area, highlighting some key issues.

    Article  CAS  PubMed  Google Scholar 

  8. Carafoli, E. Calcium signaling: a tale for all seasons. Proc. Natl Acad. Sci. USA 99, 1115–1122 (2002). A great overview of the Ca2+ signalling mechanism, with valuable perspectives, including some historical context of the area.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Smyth, J. T. et al. Emerging perspectives in store-operated Ca2+ entry: roles of Orai, Stim and TRP. Biochim. Biophys. Acta 1763, 1147–1160 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Berridge, M. J. The AM and FM of calcium signalling. Nature 386, 759–760 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Santella, L., Ercolano, E. & Nusco, G. A. The cell cycle: a new entry in the field of Ca2+ signaling. Cell. Mol. Life Sci. 62, 2405–2413 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Lipskaia, L. & Lompre, A. M. Alteration in temporal kinetics of Ca2+ signaling and control of growth and proliferation. Biol. Cell 96, 55–68 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Blaustein, M. P. & Lederer, W. J. Sodium/calcium exchange: its physiological implications. Physiol. Rev. 79, 763–854 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Ramsey, I. S., Delling, M. & Clapham, D. E. An introduction to TRP channels. Annu. Rev. Physiol. 68, 619–647 (2006). A comprehensive overview of TRPs from a leading research group in the area. The supplementary tables and information on the pharmacology of TRPs are very valuable.

    Article  CAS  PubMed  Google Scholar 

  15. Strehler, E. E. & Zacharias, D. A. Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps. Physiol. Rev. 81, 21–50 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Monteith, G. R. & Roufogalis, B. D. The plasma membrane calcium pump — a physiological perspective on its regulation. Cell Calcium 18, 459–470 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Li, X., Zhou, L., Feng, Y. H., Abdul-Karim, F. W. & Gorodeski, G. I. The P2X7 receptor: a novel biomarker of uterine epithelial cancers. Cancer Epidemiol. Biomarkers Prev. 15, 1906–1913 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Panner, A. et al. Variation of T-type calcium channel protein expression affects cell division of cultured tumor cells. Cell Calcium 37, 105–119 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Schwab, B. L. et al. Cleavage of plasma membrane calcium pumps by caspases: a link between apoptosis and necrosis. Cell Death Differ. 9, 818–831 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Pinton, P. & Rizzuto, R. Bcl-2 and Ca2+ homeostasis in the endoplasmic reticulum. Cell Death Differ. 13, 1409–1418 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Cory, S., Huang, D. C. S. & Adams, J. M. The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 22, 8590–8607 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Zhong, F., Davis, M. C., McColl, K. S. & Distelhorst, C. W. Bcl-2 differentially regulates Ca2+ signals according to the strength of T cell receptor activation. J. Cell. Biol. 172, 127–137 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen, R. et al. Bcl-2 functionally interacts with inositol 1, 4, 5-trisphosphate receptors to regulate calcium release from the ER in response to inositol 1, 4, 5-trisphosphate. J. Cell. Biol. 166, 193–203 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Prasad, V. et al. Haploinsufficiency of Atp2a2, encoding the sarco(endo)plasmic reticulum Ca2+-ATPase isoform 2 Ca2+ pump, predisposes mice to squamous cell tumors via a novel mode of cancer susceptibility. Cancer Res. 65, 8655–8661 (2005). This is a key paper in the field for its demonstration of the link between a specific Ca2+ transporter and susceptibility to a specific cancer.

    Article  CAS  PubMed  Google Scholar 

  25. Gomez-Ospina, N., Tsuruta, F., Barreto-Chang, O., Hu, L. & Dolmetsch, R. The C terminus of the L-type voltage-gated calcium channel Ca(V)1. 2 encodes a transcription factor. Cell 127, 591–606 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chung, H. J. & Jan, L. Y. Channeling to the nucleus. Neuron. 52, 937–940 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Ebinu, J. O. & Yankner, B. A. A RIP tide in neuronal signal transduction. Neuron 34, 499–502 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Miele, L., Miao, H. & Nickoloff, B. J. NOTCH signaling as a novel cancer therapeutic target. Curr. Cancer Drug Targets 6, 313–323 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Toyota, M., Ho, C., Ohe-Toyota, M., Baylin, S. B. & Issa, J. P. Inactivation of CACNA1G, a T-type calcium channel gene, by aberrant methylation of its 5′ CpG island in human tumors. Cancer Res. 59, 4535–4541 (1999).

    CAS  PubMed  Google Scholar 

  30. Kim, S. G. et al. Epigenetic and genetic alterations in duodenal carcinomas are distinct from biliary and ampullary carcinomas. Gastroenterology 124, 1300–1310 (2003).

    Article  PubMed  Google Scholar 

  31. Paz, M. F. et al. Genetic unmasking of epigenetically silenced tumor suppressor genes in colon cancer cells deficient in DNA methyltransferases. Hum. Mol. Genet. 12, 2209–2219 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Ji, L., Minna, J. D. & Roth, J. A. 3p21. 3 tumor suppressor cluster: prospects for translational applications. Future Oncol. 1, 79–92 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Hesson, L. et al. Frequent epigenetic inactivation of RASSF1A and BLU genes located within the critical 3p21. 3 region in gliomas. Oncogene 23, 2408–2419 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Endo, Y. et al. Sarcoendoplasmic reticulum Ca(2+) ATPase type 2 downregulated in human oral squamous cell carcinoma. Int. J. Cancer 110, 225–231 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Saito, K. et al. Plasma membrane Ca2+ ATPase isoform 1 down-regulated in human oral cancer. Oncol. Rep. 15, 49–55 (2006).

    CAS  PubMed  Google Scholar 

  36. Korosec, B., Glavac, D., Rott, T. & Ravnik-Glavac, M. Alterations in the ATP2A2 gene in correlation with colon and lung cancer. Cancer Genet. Cytogenet. 171, 105–111 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Heighway, J., Betticher, D. C., Hoban, P. R., Altermatt, H. J. & Cowen, R. Coamplification in tumors of KRAS2, type 2 inositol 1, 4, 5 triphosphate receptor gene, and a novel human gene, KRAG. Genomics 35, 207–214 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Mahieu, F. et al. TRPM8-independent menthol-induced Ca2+ release from endoplasmic reticulum and golgi. J. Biol. Chem. 282, 3325–3336 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Thebault, S. et al. Novel role of cold/menthol-sensitive transient receptor potential melastatine family member 8 (TRPM8) in the activation of store-operated channels in LNCaP human prostate cancer epithelial cells. J. Biol. Chem. 280, 39423–39435 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, L. & Barritt, G. J. Evidence that TRPM8 is an androgen-dependent Ca2+ channel required for the survival of prostate cancer cells. Cancer Res. 64, 8365–8373 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Leszczyniecka, M., Roberts, T., Dent, P., Grant, S. & Fisher, P. B. Differentiation therapy of human cancer: basic science and clinical applications. Pharmacol. Ther. 90, 105–156 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Ribiczey, P. et al. Isoform-specific up-regulation of plasma membrane Ca(2+)ATPase expression during colon and gastric cancer cell differentiation. Cell Calcium 10 April 2007 [Epub ahead of print].

  43. Aung, C. S., Kruger, W. A., Poronnick, P., Roberts-Thomson, S. J. & Monteith, G. R. Plasma membrane Ca2+-ATPase expression during colon cancer cell line differentiation. Biochem. Biophys. Res. Commun. 355, 932–936 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Gelebart, P. et al. Expression of endomembrane calcium pumps in colon and gastric cancer cells. Induction of SERCA3 expression during differentiation. J. Biol. Chem. 277, 26310–26320 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Vanoverberghe, K. et al. Ca2+ homeostasis and apoptotic resistance of neuroendocrine-differentiated prostate cancer cells. Cell Death Differ. 11, 321–330 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Lee, W. J., Roberts-Thomson, S. J. & Monteith, G. R. Plasma membrane calcium-ATPase 2 and 4 in human breast cancer cell lines. Biochem. Biophys. Res. Commun. 337, 779–783 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Stauffer, T. P., Guerini, D. & Carafoli, E. Tissue distribution of the four gene products of the plasma membrane Ca2+ pump. A study using specific antibodies. J. Biol. Chem. 270, 12184–12190 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Reinhardt, T. A., Filoteo, A. G., Penniston, J. T. & Horst, R. L. Ca(2+)-ATPase protein expression in mammary tissue. Am. J. Physiol. Cell Physiol. 279, C1595–C1602 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Lee, W. J., Monteith, G. R. & Roberts-Thomson, S. J. Calcium transport and signaling in the mammary gland: targets for breast cancer. Biochim. Biophys. Acta. 1765, 235–255 (2006).

    CAS  PubMed  Google Scholar 

  50. Beck, B. et al. Prospects for prostate cancer imaging and therapy using high-affinity TRPM8 activators. Cell. Calcium 41, 285–294 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Fuessel, S. et al. Vaccination of hormone-refractory prostate cancer patients with peptide cocktail-loaded dendritic cells: results of a phase I clinical trial. Prostate 66, 811–821 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Kabore, A. F., Johnston, J. B. & Gibson, S. B. Changes in the apoptotic and survival signaling in cancer cells and their potential therapeutic implications. Curr. Cancer Drug Targets 4, 147–163 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Weinstein, I. B. Cancer. Addiction to oncogenes — the Achilles heal of cancer. Science 297, 63–64 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Downward, J. Targeting RAS signalling pathways in cancer therapy. Nature Rev. Cancer 3, 11–22 (2003).

    Article  CAS  Google Scholar 

  55. Collins, I. & Workman, P. New approaches to molecular cancer therapeutics. Nature Chem. Biol. 2, 689–700 (2006).

    Article  CAS  Google Scholar 

  56. Bandyopadhyay, B. C. et al. Apical localization of a functional TRPC3/TRPC6-Ca2+-signaling complex in polarized epithelial cells. Role in apical Ca2+ influx. J. Biol. Chem. 280, 12908–12916 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Denmeade, S. R. & Isaacs, J. T. The SERCA pump as a therapeutic target: making a 'smart bomb' for prostate cancer. Cancer Biol. Ther. 4, 14–22 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Prasad, V., Okunade, G. W., Miller, M. L. & Shull, G. E. Phenotypes of SERCA and PMCA knockout mice. Biochem. Biophys. Res. Commun. 322, 1192–1203 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Caterina, M. J. et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288, 306–313 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Catterall, W. A., Perez-Reyes, E., Snutch, T. P. & Striessnig, J. International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol. Rev. 57, 411–425 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. National Cancer Institute. Carboxyamidotriazole and Paclitaxel in Treating Patients with Advanced Solid Tumors or Refractory Lymphomas. Clinical Trial.gov [online], (2007).

  62. North Central Cancer Treatment Group & National Cancer Institute. Carboxyamidotriazole in Treating Patients with Stage III or Stage IV Non-Small Cell Lung Cancer. Clinical Trials.gov [online], (2007).

  63. Kohn, E. C. et al. Structure-function analysis of signal and growth inhibition by carboxyamido-triazole, CAI. Cancer Res. 54, 935–942 (1994).

    CAS  PubMed  Google Scholar 

  64. Dutcher, J. P. et al. Phase II study of carboxyamidotriazole in patients with advanced renal cell carcinoma refractory to immunotherapy: E4896, an Eastern Cooperative Oncology Group Study. Cancer 104, 2392–2399 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Stadler, W. M. et al. Successful implementation of the randomized discontinuation trial design: an application to the study of the putative antiangiogenic agent carboxyaminoimidazole in renal cell carcinoma: CALGB 69901. J. Clin. Oncol. 23, 3726–3732 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Thebault, S. et al. Differential role of transient receptor potential channels in Ca2+ entry and proliferation of prostate cancer epithelial cells. Cancer Res. 66, 2038–2047 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Timmerman, L. A., Clipstone, N. A., Ho, S. N., Northrop, J. P. & Crabtree, G. R. Rapid shuttling of NF-AT in discrimination of Ca2+ signals and immunosuppression. Nature 383, 837–840 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. Lee, W. J. et al. Expression of plasma membrane calcium pump isoform mRNAs in breast cancer cell lines. Cell Signal. 14, 1015–1022 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Tsavaler, L., Shapero, M. H., Morkowski, S. & Laus, R. Trp-p8, a novel prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins. Cancer Res. 61, 3760–3769 (2001).

    CAS  PubMed  Google Scholar 

  70. Zhuang, L. et al. Calcium-selective ion channel, CaT1, is apically localized in gastrointestinal tract epithelia and is aberrantly expressed in human malignancies. Lab. Invest. 82, 1755–1764 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Lee, W. J. et al. Antisense-mediated Inhibition of the plasma membrane calcium-ATPase suppresses proliferation of MCF-7 cells. J. Biol. Chem. 280, 27076–27084 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Normanno, N. et al. Mechanisms of endocrine resistance and novel therapeutic strategies in breast cancer. Endocr. Relat. Cancer 12, 721–747 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Zhang, W. et al. Tamoxifen-induced enhancement of calcium signaling in glioma and MCF-7 breast cancer cells. Cancer Res. 60, 5395–5400 (2000).

    CAS  PubMed  Google Scholar 

  74. Gulino, A. et al. Calmodulin antagonism and growth-inhibiting activity of triphenylethylene antiestrogens in MCF-7 human breast cancer cells. Cancer Res. 46, 6274–6278 (1986).

    CAS  PubMed  Google Scholar 

  75. Monteith, G. R. & Bird, G. S. Techniques: high-throughput measurement of intracellular Ca(2+): back to basics. Trends Pharmacol. Sci. 26, 218–223 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Rosenberger, S., Thorey, I. S., Werner, S. & Boukamp, P. A novel regulator of telomerase: S100A8 mediates differentiation-dependent and calcium-induced inhibition of telomerase activity in the human epidermal keratinocyte line HaCaT. J. Biol. Chem. 282, 6126–6135 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Jacques-Fricke, B. T., Seow, Y., Gottlieb, P. A., Sachs, F. & Gomez, T. M. Ca2+ influx through mechanosensitive channels inhibits neurite outgrowth in opposition to other influx pathways and release from intracellular stores. J. Neurosci. 26, 5656–5664 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Amuthan, G. et al. Mitochondrial stress-induced calcium signaling, phenotypic changes and invasive behavior in human lung carcinoma A549 cells. Oncogene 21, 7839–7849 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Huang, J. B., Kindzelskii, A. L., Clark, A. J. & Petty, H. R. Identification of channels promoting calcium spikes and waves in HT1080 tumor cells: their apparent roles in cell motility and invasion. Cancer Res. 64, 2482–2489 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Liao, J., Schneider, A., Datta, N. S. & McCauley, L. K. Extracellular calcium as a candidate mediator of prostate cancer skeletal metastasis. Cancer Res. 66, 9065–9073 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Patton, A. M., Kassis, J., Doong, H. & Kohn, E. C. Calcium as a molecular target in angiogenesis. Curr. Pharm. Des. 9, 543–551 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Bentle, M. S., Reinicke, K. E., Bey, E. A., Spitz, D. R. & Boothman, D. A. Calcium-dependent modulation of poly(ADP-ribose) polymerase-1 alters cellular metabolism and DNA repair. J. Biol. Chem. 281, 33684–33696 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Bikle, D. D., Oda, Y. & Xie, Z. Calcium and 1, 25(OH)2D: interacting drivers of epidermal differentiation. J. Steroid Biochem. Mol. Biol. 89–90, 355–360 (2004).

    Article  PubMed  CAS  Google Scholar 

  84. Cullen, P. J. & Lockyer, P. J. Integration of calcium and Ras signalling. Nature Rev. Mol. Cell. Biol. 3, 339–348 (2002).

    Article  CAS  Google Scholar 

  85. Minaguchi, T., Waite, K. A. & Eng, C. Nuclear localization of PTEN is regulated by Ca(2+) through a tyrosil phosphorylation-independent conformational modification in major vault protein. Cancer Res. 66, 11677–11682 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Cook, S. J. & Lockyer, P. J. Recent advances in Ca(2+)-dependent Ras regulation and cell proliferation. Cell Calcium 39, 101–112 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Thrower, E. C., Hagar, R. E. & Ehrlich, B. E. Regulation of Ins(1, 4, 5)P3 receptor isoforms by endogenous modulators. Trends Pharmacol. Sci. 22, 580–586 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Fleig, A. & Penner, R. The TRPM ion channel subfamily: molecular, biophysical and functional features. Trends Pharmacol. Sci. 25, 633–639 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Brauchi, S., Orta, G., Salazar, M., Rosenmann, E. & Latorre, R. A hot-sensing cold receptor: C-terminal domain determines thermosensation in transient receptor potential channels. J. Neurosci. 26, 4835–4840 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bandell, M. et al. High-throughput random mutagenesis screen reveals TRPM8 residues specifically required for activation by menthol. Nature Neurosci. 9, 493–500 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Pande, J. et al. Aortic smooth muscle and endothelial plasma membrane Ca2+ pump isoforms are inhibited differently by the extracellular inhibitor caloxin 1b1. Am. J. Physiol. Cell Physiol. 290, C1341–C1349 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Carafoli, E. Biogenesis: plasma membrane calcium ATPase: 15 years of work on the purified enzyme. FASEB J. 8, 993–1002 (1994).

    Article  CAS  PubMed  Google Scholar 

  93. Iwamoto, T. et al. The exchanger inhibitory peptide region-dependent inhibition of Na+/Ca2+ exchange by SN-6 [2-[4-(4-nitrobenzyloxy)benzyl]thiazolidine-4-carboxylic acid ethyl ester], a novel benzyloxyphenyl derivative. Mol. Pharmacol. 66, 45–55 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Philipson, K. D. & Nicoll, D. A. Sodium-calcium exchange: a molecular perspective. Annu. Rev. Physiol. 62, 111–133 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Toyoshima, C. & Nomura, H. Structural changes in the calcium pump accompanying the dissociation of calcium. Nature 418, 605–11 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Vangheluwe, P., Raeymaekers, L., Dode, L. & Wuytack, F. Modulating sarco(endo)plasmic reticulum Ca2+ ATPase 2 (SERCA2) activity: cell biological implications. Cell Calcium 38, 291–302 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Choe, C. U. & Ehrlich, B. E. The inositol 1, 4, 5-trisphosphate receptor (IP3R) and its regulators: sometimes good and sometimes bad teamwork. Sci. STKE. 2006, re15 (2006).

    Article  PubMed  Google Scholar 

  98. Montell, C. The TRP superfamily of cation channels. Sci. STKE. 2005, re3 (2005).

    PubMed  Google Scholar 

  99. Shull, G. E. Gene knockout studies of Ca2+-transporting ATPases. Eur. J. Biochem. 267, 5284–5290 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Joseph, S. K. The inositol triphosphate receptor family. Cell Signal. 8, 1–7 (1996).

    Article  CAS  PubMed  Google Scholar 

  101. McPherson, P. S. & Campbell, K. P. The ryanodine receptor/Ca2+ release channel. J. Biol. Chem. 268, 13765–13768 (1993).

    CAS  PubMed  Google Scholar 

  102. Sakakura, C. et al. Possible involvement of inositol-1,4,5-trisphosphate receptor type 3 (IP3R3) in the peritoneal dissemination of gastric cancers. Anticancer Res. 23, 3691–3697 (2003).

    CAS  PubMed  Google Scholar 

  103. Kusner, L. L., Mygland, A. & Kaminski, H. J. Ryanodine receptor gene expression thymomas. Muscle Nerve 21, 1299–1303 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Wang, X. T. et al. The mRNA of L-type calcium channel elevated in colon cancer: protein distribution in normal and cancerous colon. Am. J. Pathol. 157, 1549–1562 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhang, L. et al. Gene expression profiles in normal and cancer cells. Science 276, 1268–1272 (1997).

    Article  CAS  PubMed  Google Scholar 

  106. Latour, I. et al. Expression of T-type calcium channel splice variants in human glioma. Glia. 48, 112–119 (2004).

    Article  PubMed  Google Scholar 

  107. Lerman, M. I. & Minna, J. D. The 630-kb lung cancer homozygous deletion region on human chromosome 3p21. 3: identification and evaluation of the resident candidate tumor suppressor genes. The International Lung Cancer Chromosome 3p21. 3 Tumor Suppressor Gene Consortium. Cancer Res. 60, 6116–6133 (2000).

    CAS  PubMed  Google Scholar 

  108. Fuessel, S. et al. Multiple tumor marker analyses (PSA, hK2, PSCA, trp-p8) in primary prostate cancers using quantitative RT-PCR. Int. J. Oncol. 23, 221–228 (2003).

    CAS  PubMed  Google Scholar 

  109. Schmidt, U. et al. Quantitative multi-gene expression profiling of primary prostate cancer. Prostate 66, 1521–1534 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Duncan, L. M. et al. Down-regulation of the novel gene melastatin correlates with potential for melanoma metastasis. Cancer Res. 58, 1515–1520 (1998).

    CAS  PubMed  Google Scholar 

  111. Fang, D. & Setaluri, V. Expression and up-regulation of alternatively spliced transcripts of melastatin, a melanoma metastasis-related gene, in human melanoma cells. Biochem. Biophys. Res. Commun. 279, 53–61 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Duncan, L. M. et al. Melastatin expression and prognosis in cutaneous malignant melanoma. J. Clin. Oncol. 19, 568–576 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Hammock, L. et al. Chromogenic in situ hybridization analysis of melastatin mRNA expression in melanomas from American joint committee on cancer stage I and II patients with recurrent melanoma. J. Cutan. Pathol. 33, 599–607 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Deeds, J., Cronin, F. & Duncan, L. M. Patterns of melastatin mRNA expression in melanocytic tumors. Hum. Pathol. 31, 1346–1356 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Lazzeri, M. et al. Transient receptor potential vanilloid type 1 (TRPV1) expression changes from normal urothelium to transitional cell carcinoma of human bladder. Eur. Urol. 48, 691–698 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Contassot, E. et al. Arachidonylethanolamide induces apoptosis of human glioma cells through vanilloid receptor-1. J. Neuropathol. Exp. Neurol. 63, 956–963 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Fixemer, T., Wissenbach, U., Flockerzi, V. & Bonkhoff, H. Expression of the Ca2+-selective cation channel TRPV6 in human prostate cancer: a novel prognostic marker for tumor progression. Oncogene 22, 7858–7861 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Wissenbach, U. et al. Expression of CaT-like, a novel calcium-selective channel, correlates with the malignancy of prostate cancer. J. Biol. Chem. 276, 19461–19468 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Peng, J. B. et al. CaT1 expression correlates with tumor grade in prostate cancer. Biochem. Biophys. Res. Commun. 282, 729–734 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Buess, M., Engler, O., Hirsch, H. H. & Moroni, C. Search for oncogenic regulators in an autocrine tumor model using differential display PCR: identification of novel candidate genes including the calcium channel mtrp6. Oncogene 18, 1487–1494 (1999).

    Article  CAS  PubMed  Google Scholar 

  121. Reisner, P. D., Brandt, P. C. & Vanaman, T. C. Analysis of plasma membrane Ca(2+)-ATPase expression in control and SV40-transformed human fibroblasts. Cell Calcium 21, 53–62 (1997).

    Article  CAS  PubMed  Google Scholar 

  122. Chung, F. Y. et al. Sarco/endoplasmic reticulum calcium-ATPase 2 expression as a tumor marker in colorectal cancer. Am. J. Surg. Pathol. 30, 969–974 (2006).

    Article  PubMed  Google Scholar 

  123. Pacifico, F. et al. The expression of the sarco/endoplasmic reticulum Ca2+-ATPases in thyroid and its down-regulation following neoplastic transformation. J. Mol. Endocrinol. 30, 399–409 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Brouland, J. P. et al. The loss of sarco/endoplasmic reticulum calcium transport ATPase 3 expression is an early event during the multistep process of colon carcinogenesis. Am. J. Pathol. 167, 233–242 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Takahashi, M., Tanzawa, K. & Takahashi, S. Adenophostins, newly discovered metabolites of Penicillium brevicompactum, act as potent agonists of the inositol 1, 4, 5-trisphosphate receptor. J. Biol. Chem. 269, 369–372 (1994).

    CAS  PubMed  Google Scholar 

  126. O'Rourke, F. & Feinstein, M. B. The inositol 1, 4, 5-trisphosphate receptor binding sites of platelet membranes. pH-dependency, inhibition by polymeric sulphates, and the possible presence of arginine at the binding site. Biochem. J. 267, 297–302 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Herrmann-Frank, A., Richter, M., Sarkozi, S., Mohr, U. & Lehmann-Horn, F. 4-Chloro-m-cresol, a potent and specific activator of the skeletal muscle ryanodine receptor. Biochim. Biophys. Acta 1289, 31–40 (1996).

    Article  PubMed  Google Scholar 

  128. Zorzato, F., Scutari, E., Tegazzin, V., Clementi, E. & Treves, S. Chlorocresol: an activator of ryanodine receptor-mediated Ca2+ release. Mol. Pharmacol. 44, 1192–1201 (1993).

    CAS  PubMed  Google Scholar 

  129. Hohenegger, M. et al. Activation of the skeletal muscle ryanodine receptor by suramin and suramin analogs. Mol. Pharmacol. 50, 1443–1453 (1996).

    CAS  PubMed  Google Scholar 

  130. Ehrlich, B. E., Kaftan, E., Bezprozvannaya, S. & Bezprozvanny, I. The pharmacology of intracellular Ca(2+)-release channels. Trends Pharmacol. Sci. 15, 145–149 (1994).

    Article  CAS  PubMed  Google Scholar 

  131. Zhao, F., Li, P., Chen, S. R., Louis, C. F. & Fruen, B. R. Dantrolene inhibition of ryanodine receptor Ca2+ release channels. Molecular mechanism and isoform selectivity. J. Biol. Chem. 276, 13810–13816 (2001).

    Article  CAS  PubMed  Google Scholar 

  132. Zimanyi, I., Buck, E., Abramson, J. J., Mack, M. M. & Pessah, I. N. Ryanodine induces persistent inactivation of the Ca2+ release channel from skeletal muscle sarcoplasmic reticulum. Mol. Pharmacol. 42, 1049–1057 (1992).

    CAS  PubMed  Google Scholar 

  133. Franckowiak, G., Bechem, M., Schramm, M. & Thomas, G. The optical isomers of the 1, 4-dihydropyridine BAY K 8644 show opposite effects on Ca channels. Eur. J. Pharmacol. 114, 223–236 (1985).

    Article  CAS  PubMed  Google Scholar 

  134. Mintz, I. M. et al. P-type calcium channels blocked by the spider toxin omega-Aga-IVA. Nature 355, 827–829 (1992).

    Article  CAS  PubMed  Google Scholar 

  135. Martin, R. L., Lee, J. H., Cribbs, L. L., Perez-Reyes, E. & Hanck, D. A. Mibefradil block of cloned T-type calcium channels. J. Pharmacol. Exp. Ther. 295, 302–308 (2000).

    CAS  PubMed  Google Scholar 

  136. Santi, C. M. et al. Differential inhibition of T-type calcium channels by neuroleptics. J. Neurosci. 22, 396–403 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kolisek, M., Beck, A., Fleig, A. & Penner, R. Cyclic ADP-ribose and hydrogen peroxide synergize with ADP-ribose in the activation of TRPM2 channels. Mol. Cell 18, 61–69 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Kraft, R., Grimm, C., Frenzel, H. & Harteneck, C. Inhibition of TRPM2 cation channels by N-(p-amylcinnamoyl)anthranilic acid. Br. J. Pharmacol. 148, 264–273 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Hill, K., McNulty, S. & Randall, A. D. Inhibition of TRPM2 channels by the antifungal agents clotrimazole and econazole. Naunyn Schmiedebergs Arch. Pharmacol. 370, 227–237 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. McKemy, D. D., Neuhausser, W. M. & Julius, D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416, 52–58 (2002).

    Article  CAS  PubMed  Google Scholar 

  141. Behrendt, H. J., Germann, T., Gillen, C., Hatt, H. & Jostock, R. Characterization of the mouse cold-menthol receptor TRPM8 and vanilloid receptor type-1 VR1 using a fluorometric imaging plate reader (FLIPR) assay. Br. J. Pharmacol. 141, 737–745 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Peier, A. M. et al. A TRP channel that senses cold stimuli and menthol. Cell 108, 705–715 (2002).

    Article  CAS  PubMed  Google Scholar 

  143. Weil, A., Moore, S. E., Waite, N. J., Randall, A. & Gunthorpe, M. J. Conservation of functional and pharmacological properties in the distantly related temperature sensors TRVP1 and TRPM8. Mol. Pharmacol. 68, 518–527 (2005).

    CAS  PubMed  Google Scholar 

  144. Seabrook, G. R. et al. Functional properties of the high-affinity TRPV1 (VR1) vanilloid receptor antagonist (4-hydroxy-5-iodo-3-methoxyphenylacetate ester) iodo-resiniferatoxin. J. Pharmacol. Exp. Ther. 303, 1052–1060 (2002).

    Article  CAS  PubMed  Google Scholar 

  145. Tominaga, M. et al. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21, 531–543 (1998).

    Article  CAS  PubMed  Google Scholar 

  146. Smart, D. et al. The endogenous lipid anandamide is a full agonist at the human vanilloid receptor (hVR1). Br. J. Pharmacol. 129, 227–230 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Szallasi, A. & Blumberg, P. M. Resiniferatoxin, a phorbol-related diterpene, acts as an ultrapotent analog of capsaicin, the irritant constituent in red pepper. Neuroscience 30, 515–520 (1989).

    Article  CAS  PubMed  Google Scholar 

  148. Wahl, P., Foged, C., Tullin, S. & Thomsen, C. Iodo-resiniferatoxin, a new potent vanilloid receptor antagonist. Mol. Pharmacol. 59, 9–15 (2001).

    Article  CAS  PubMed  Google Scholar 

  149. Trevisani, M. et al. Ethanol elicits and potentiates nociceptor responses via the vanilloid receptor-1. Nature Neurosci. 5, 546–551 (2002).

    Article  CAS  PubMed  Google Scholar 

  150. Chung, M. K., Guler, A. D. & Caterina, M. J. Biphasic currents evoked by chemical or thermal activation of the heat-gated ion channel, TRPV3. J. Biol. Chem. 280, 15928–15941 (2005).

    Article  CAS  PubMed  Google Scholar 

  151. Moqrich, A. et al. Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 307, 1468–1472 (2005).

    Article  CAS  PubMed  Google Scholar 

  152. Xu, H., Blair, N. T. & Clapham, D. E. Camphor activates and strongly desensitizes the transient receptor potential vanilloid subtype 1 channel in a vanilloid-independent mechanism. J. Neurosci. 25, 8924–8937 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Xu, H., Delling, M., Jun, J. C. & Clapham, D. E. Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nature Neurosci. 9, 628–635 (2006).

    Article  CAS  PubMed  Google Scholar 

  154. Smith, P. L., Maloney, K. N., Pothen, R. G., Clardy, J. & Clapham, D. E. Bisandrographolide from Andrographis paniculata activates TRPV4 channels. J. Biol. Chem. 281, 29897–29904 (2006).

    Article  CAS  PubMed  Google Scholar 

  155. Macpherson, L. J. et al. The pungency of garlic: activation of TRPA1 and TRPV1 in response to allicin. Curr. Biol. 15, 929–934 (2005).

    Article  CAS  PubMed  Google Scholar 

  156. Holmes, M. E., Chaudhary, J. & Grover, A. K. Mechanism of action of the novel plasma membrane Ca(2+)-pump inhibitor caloxin. Cell. Calcium 33, 241–245 (2003).

    Article  CAS  PubMed  Google Scholar 

  157. Chaudhary, J., Walia, M., Matharu, J., Escher, E. & Grover, A. K. Caloxin: a novel plasma membrane Ca2+ pump inhibitor. Am. J. Physiol. Cell Physiol. 280, C1027–C1030 (2001).

    Article  CAS  PubMed  Google Scholar 

  158. Thastrup, O., Cullen, P. J., Drobak, B. K., Hanley, M. R. & Dawson, A. P. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2+-ATPase. Proc. Natl Acad. Sci. USA 87, 2466–2470 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Goeger, D. E., Riley, R. T., Dorner, J. W. & Cole, R. J. Cyclopiazonic acid inhibition of the Ca2+-transport ATPase in rat skeletal muscle sarcoplasmic reticulum vesicles. Biochem. Pharmacol. 37, 978–981 (1988).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gregory R. Monteith or Sarah J. Roberts-Thomson.

Ethics declarations

Competing interests

Sarah Roberts-Thomson and Gregory Monteith are recipients of a pathfinder grant awarded by UniQuest pty Ltd, a subsidiary company of the University of Queensland, Australia.

Related links

Related links

FURTHER INFORMATION

Sarah Roberts-Thomson's homepage

Gregory Monteith's homepage

Glossary

Ca2+ stores

Intracellular organelles (such as the endoplasmic reticulum; ER) that sequester and store Ca2+. Organelles such as the ER can release this stored Ca2+ through intracellular signals such as IP3 or through a Ca2+-induced Ca2+ release mechanism.

Ca2+ channel

A protein or protein complex capable of forming Ca2+-permeable pores in membranes. When channels are open, Ca2+ is able to diffuse through the pore, down its concentration gradient.

Ca2+ pump (ATPase)

A membrane Ca2+ transporter that uses energy derived from ATP hydrolysis to transport Ca2+ across membranes against their concentration gradient.

Exchanger

A secondary active transporter that derives energy from the flow of one ion down its concentration gradient, produced by primary active transport, to transport another ion against its concentration gradient.

Facilitated diffusion

The diffusion of molecules across membranes (either intracellular or the plasma membrane) assisted by proteins (such as Ca2+ channels).

Active transport

The transport of molecules across a biological membrane against their electrical or concentration gradient. This kind of transport requires an energy source. Primary active transporters (such as Ca2+ pumps) use energy derived from ATP. Secondary active transporters (such as Na+/Ca2+ exchangers) derive energy from the flow of one ion down its concentration gradient to transport another ion against its concentration gradient.

Ca2+ oscillations

Ca2+ signals that are periodic increases in [Ca2+]CYT. The concentration of a stimulus can often control the frequency of oscillations.

Chemogenomics

A drug discovery approach whereby information about a gene or protein family guides the drug development process. For example, a known pharmacological modulator of one member of a gene family could be used to guide the development of new pharmacological modulators for another family member, and provide information about potential structure–activity relationships.

Ca2+ waves

Increases in [Ca2+]CYT characterized as an initial increase in free Ca2+ in one area of the cell. These signals then propagate throughout the cell as an intracellular Ca2+ wave. In some cases the wave can spread throughout a cell population, termed an intercellular Ca2+ wave.

Sensory neuropathy

Can result from physical or chemical stimulus on the peripheral sensory neurons (known as nociceptors) owing to tissue injury caused directly by a tumour, or as a toxic side effect of therapies used to treat cancer. This can manifest as numbness or tremor, hyperalgesia (mild noxious sensory stimuli being perceived as highly noxious stimuli) or allodynia (normally non-noxious sensory stimuli being perceived as noxious stimuli).

Hyponatraemia

Deficiency of Na+ in the blood.

Ca2+ transient

A short increase in [Ca2+]CYT, usually caused by the opening of Ca2+ channels in the plasma membrane or on Ca2+ storage organelles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monteith, G., McAndrew, D., Faddy, H. et al. Calcium and cancer: targeting Ca2+ transport. Nat Rev Cancer 7, 519–530 (2007). https://doi.org/10.1038/nrc2171

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2171

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing