Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response

Key Points

  • In many cancer types cathepsin proteases are upregulated and display altered trafficking and localization. Increased cathepsin expression generally correlates with increased malignancy and poor patient prognosis.

  • Secretion of cathepsin proteases by cancer cells and infiltrating immune cells into the extracellular space disrupts intercellular adhesion complexes, induces angiogenesis and drives local invasion by tumour cells.

  • Genetic experiments have identified crucial non-redundant roles for individual cathepsin proteases in the tumorigenesis of multiple genetically engineered mouse models.

  • The pro- or antitumorigenic properties of individual cathepsins are context dependent and specific to the tissue and cell of origin or site of metastasis.

  • Cathepsin activity exists within a larger integrated network of protease activity known as the protease web. Through interactions with other proteases and their inhibitors, cathepsins can alter general proteolytic activity within the tumour microenvironment.

  • Cathepsin proteases have demonstrated roles in intrinsic and acquired resistance to radiation and chemotherapy. Concurrent inhibition of cathepsins with different therapeutic modalities improves outcome in preclinical models.

Abstract

Cysteine cathepsin protease activity is frequently dysregulated in the context of neoplastic transformation. Increased activity and aberrant localization of proteases within the tumour microenvironment have a potent role in driving cancer progression, proliferation, invasion and metastasis. Recent studies have also uncovered functions for cathepsins in the suppression of the response to therapeutic intervention in various malignancies. However, cathepsins can be either tumour promoting or tumour suppressive depending on the context, which emphasizes the importance of rigorous in vivo analyses to ascertain function. Here, we review the basic research and clinical findings that underlie the roles of cathepsins in cancer, and provide a roadmap for the rational integration of cathepsin-targeting agents into clinical treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Integration of cysteine cathepsin proteases within a proteolytic network.
Figure 2: The yin and yang of cancer-associated lysosomal biogenesis.
Figure 3: Cathepsin proteases in tumour progression and the metastatic cascade.
Figure 4: Cathepsin proteases and therapeutic resistance.

Similar content being viewed by others

References

  1. Berti, P. J. & Storer, A. C. Alignment/phylogeny of the papain superfamily of cysteine proteases. J. Mol. Biol. 246, 273–283 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Haka, A. S. et al. Macrophages create an acidic extracellular hydrolytic compartment to digest aggregated lipoproteins. Mol. Biol. Cell 20, 4932–4940 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vaes, G. On the mechanisms of bone resorption. The action of parathyroid hormone on the excretion and synthesis of lysosomal enzymes and on the extracellular release of acid by bone cells. J. Cell Biol. 39, 676–697 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yasuda, Y., Kaleta, J. & Bromme, D. The role of cathepsins in osteoporosis and arthritis: rationale for the design of new therapeutics. Adv. Drug Deliv. Rev. 57, 973–993 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Nixon, R. A., Cataldo, A. M. & Mathews, P. M. The endosomal-lysosomal system of neurons in Alzheimer's disease pathogenesis: a review. Neurochem. Res. 25, 1161–1172 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Lutgens, S. P., Cleutjens, K. B., Daemen, M. J. & Heeneman, S. Cathepsin cysteine proteases in cardiovascular disease. FASEB J. 21, 3029–3041 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Naour, N. et al. Cathepsins in human obesity: changes in energy balance predominantly affect cathepsin S in adipose tissue and in circulation. J. Clin. Endocrinol. Metab. 95, 1861–1868 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Martin, S. L. et al. Association of airway cathepsin B and S with inflammation in cystic fibrosis. Pediatr. Pulmonol. 45, 860–868 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Sajid, M. & McKerrow, J. H. Cysteine proteases of parasitic organisms. Mol. Biochem. Parasitol. 120, 1–21 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Simmons, G. et al. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc. Natl Acad. Sci. USA 102, 11876–11881 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pan, L. et al. Cathepsin S deficiency results in abnormal accumulation of autophagosomes in macrophages and enhances Ang II-induced cardiac inflammation. PLoS ONE 7, e35315 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dennemarker, J. et al. Impaired turnover of autophagolysosomes in cathepsin L deficiency. Biol. Chem. 391, 913–922 (2010).

    Article  PubMed  Google Scholar 

  13. Navab, R. et al. Loss of responsiveness to IGF-I in cells with reduced cathepsin L expression levels. Oncogene 27, 4973–4985 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Bruchard, M. et al. Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nat. Med. 19, 57–64 (2013). This paper was the first to demonstrate a crucial role for CTSB in chemotherapy-induced inflammasome activation and IL-1β release in the tumour microenvironment.

    Article  CAS  PubMed  Google Scholar 

  15. Dennemarker, J. et al. Deficiency for the cysteine protease cathepsin L promotes tumor progression in mouse epidermis. Oncogene 29, 1611–1621 (2010). This paper provided the first genetic evidence for a tumour-suppressive role of a cathepsin.

    Article  CAS  PubMed  Google Scholar 

  16. Park, B. et al. Proteolytic cleavage in an endolysosomal compartment is required for activation of Toll-like receptor 9. Nat. Immunol. 9, 1407–1414 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Guinec, N., Dalet-Fumeron, V. & Pagano, M. “In vitro” study of basement membrane degradation by the cysteine proteinases, cathepsins B, B-like and L. Digestion of collagen IV, laminin, fibronectin, and release of gelatinase activities from basement membrane fibronectin. Biol. Chem. Hoppe Seyler 374, 1135–1146 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Clark, A. K. et al. Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain. Proc. Natl Acad. Sci. USA 104, 10655–10660 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yin, M. et al. TGF-beta signaling, activated stromal fibroblasts, and cysteine cathepsins B and L drive the invasive growth of human melanoma cells. Am. J. Pathol. 181, 2202–2216 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Gocheva, V. et al. IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev. 24, 241–255 (2010). This paper identified IL-4 as a major regulator of cathepsin expression in TAMs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sevenich, L. et al. Analysis of tumour- and stroma-supplied proteolytic networks reveals a brain-metastasis-promoting role for cathepsin S. Nat. Cell Biol. 16, 876–888 (2014). This paper revealed a role for CTSS in brain-specific metastasis and identified JAM-B, a blood–brain barrier component, as a CTSS substrate.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sobotic, B. et al. Proteomic identification of cysteine cathepsin substrates shed from the surface of cancer cells. Mol. Cell Proteom. 14, 2213–2228 (2015). This paper represents the first unbiased investigation into the functional role of cathepsin proteases as sheddases.

    Article  CAS  Google Scholar 

  23. Joyce, J. A. et al. Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis. Cancer Cell 5, 443–453 (2004). This paper was the first to demonstrate the upregulation and targeting of multiple cathepsin family members during multistage tumorigenesis.

    Article  CAS  PubMed  Google Scholar 

  24. Gocheva, V. et al. Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes Dev. 20, 543–556 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Akkari, L. et al. Distinct functions of macrophage-derived and cancer cell-derived cathepsin Z combine to promote tumor malignancy via interactions with the extracellular matrix. Genes Dev. 28, 2134–2150 (2014). This paper was the first to demonstrate a tumour-promoting role for a cathepsin independent of its catalytic activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vasiljeva, O. et al. Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer. Cancer Res. 66, 5242–5250 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Sevenich, L. et al. Transgenic expression of human cathepsin B promotes progression and metastasis of polyoma-middle-T-induced breast cancer in mice. Oncogene 30, 54–64 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Shree, T. et al. Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer. Genes Dev. 25, 2465–2479 (2011). This study described an increase in TAMs and cathepsin proteases following chemotherapy and demonstrated their role in suppressing tumour cell death.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sloane, B. F., Dunn, J. R. & Honn, K. V. Lysosomal cathepsin B: correlation with metastatic potential. Science 212, 1151–1153 (1981). This was a pioneering study for the field, demonstrating the association between cathepsin expression and increased metastatic potential.

    Article  CAS  PubMed  Google Scholar 

  30. Berdowska, I. Cysteine proteases as disease markers. Clin. Chim. Acta 342, 41–69 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Jedeszko, C. & Sloane, B. F. Cysteine cathepsins in human cancer. Biol. Chem. 385, 1017–1027 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Paik, S. et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J. Clin. Oncol. 24, 3726–3734 (2006). This paper described the inclusion of CTSL2 expression in a commercial diagnostic test directing treatment decisions in patients with breast cancer.

    Article  CAS  PubMed  Google Scholar 

  33. Harbeck, N. et al. Prognostic impact of proteolytic factors (urokinase-type plasminogen activator, plasminogen activator inhibitor 1, and cathepsins B, D, and L) in primary breast cancer reflects effects of adjuvant systemic therapy. Clin. Cancer Res. 7, 2757–2764 (2001).

    CAS  PubMed  Google Scholar 

  34. Gormley, J. A. et al. The role of cathepsin S as a marker of prognosis and predictor of chemotherapy benefit in adjuvant CRC: a pilot study. Br. J. Cancer 105, 1487–1494 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dohchin, A. et al. Immunostained cathepsins B and L correlate with depth of invasion and different metastatic pathways in early stage gastric carcinoma. Cancer 89, 482–487 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Vizin, T., Christensen, I. J., Nielsen, H. J. & Kos, J. Cathepsin X in serum from patients with colorectal cancer: relation to prognosis. Radiol. Oncol. 46, 207–212 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang, W. et al. Overexpression of cysteine cathepsin L is a marker of invasion and metastasis in ovarian cancer. Oncol. Rep. 31, 1334–1342 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Jobs, E. et al. Association between serum cathepsin S and mortality in older adults. JAMA 306, 1113–1121 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Cox, J. L. Cystatins and cancer. Front. Biosci. 14, 463–474 (2009).

    Article  CAS  Google Scholar 

  40. Inoue, T., Ishida, T., Sugio, K. & Sugimachi, K. Cathepsin B expression and laminin degradation as factors influencing prognosis of surgically treated patients with lung adenocarcinoma. Cancer Res. 54, 6133–6136 (1994).

    CAS  PubMed  Google Scholar 

  41. Walker, E., Gopalakrishnan, R., Bogyo, M. & Basilion, J. P. Microscopic detection of quenched activity-based optical imaging probes using an antibody detection system: localizing protease activity. Mol. Imag. Biol. 16, 608–618 (2014).

    Article  Google Scholar 

  42. Segal, E. et al. Detection of intestinal cancer by local, topical application of a quenched fluorescence probe for cysteine cathepsins. Chem. Biol. 22, 148–158 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ofori, L. O. et al. Design of protease activated optical contrast agents that exploit a latent lysosomotropic effect for use in fluorescence-guided surgery. ACS Chem. Biol. 18, 1977–1988 (2015). References 42 and 43 represent the cutting edge in cathepsin activity-based probe development and the potential application to fluorescence-guided surgery.

    Article  CAS  Google Scholar 

  44. Deu, E., Verdoes, M. & Bogyo, M. New approaches for dissecting protease functions to improve probe development and drug discovery. Nat. Struct. Mol. Biol. 19, 9–16 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Verdoes, M. et al. A nonpeptidic cathepsin S activity-based probe for noninvasive optical imaging of tumor-associated macrophages. Chem. Biol. 19, 619–628 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Verdoes, M. et al. Improved quenched fluorescent probe for imaging of cysteine cathepsin activity. J. Am. Chem. Soc. 135, 14726–14730 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. De Palma, M. & Lewis, C. E. Macrophage regulation of tumor responses to anticancer therapies. Cancer Cell 23, 277–286 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Quail, D. F. & Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423–1437 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yan, S., Berquin, I. M., Troen, B. R. & Sloane, B. F. Transcription of human cathepsin B is mediated by Sp1 and Ets family factors in glioma. DNA Cell Biol. 19, 79–91 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Sardiello, M. et al. A gene network regulating lysosomal biogenesis and function. Science 325, 473–477 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Sloane, B. F. et al. Membrane association of cathepsin B can be induced by transfection of human breast epithelial cells with c-Ha-ras oncogene. J. Cell Sci. 107, 373–384 (1994).

    Article  CAS  PubMed  Google Scholar 

  52. Mai, J., Finley, R. L. Jr, Waisman, D. M. & Sloane, B. F. Human procathepsin B interacts with the annexin II tetramer on the surface of tumor cells. J. Biol. Chem. 275, 12806–12812 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Rafn, B. et al. ErbB2-driven breast cancer cell invasion depends on a complex signaling network activating myeloid zinc finger-1-dependent cathepsin B expression. Mol. Cell 45, 764–776 (2012). This study demonstrated the role of oncogenic signalling in driving cathepsin expression and cathepsin-dependent invasion.

    Article  CAS  PubMed  Google Scholar 

  54. Chi, P. et al. ETV1 is a lineage survival factor that cooperates with KIT in gastrointestinal stromal tumours. Nature 467, 849–853 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Storm van's Gravesande, K. et al. IFN regulatory factor-1 regulates IFN-gamma-dependent cathepsin S expression. J. Immunol. 168, 4488–4494 (2002).

    Article  PubMed  Google Scholar 

  56. Gocheva, V., Chen, X., Peters, C., Reinheckel, T. & Joyce, J. A. Deletion of cathepsin H perturbs angiogenic switching, vascularization and growth of tumors in a mouse model of pancreatic islet cell cancer. Biol. Chem. 391, 937–945 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Small, D. M. et al. Cathepsin S from both tumor and tumor-associated cells promote cancer growth and neovascularization. Int. J. Cancer 133, 2102–2112 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Ruffell, B. et al. Cathepsin C is a tissue-specific regulator of squamous carcinogenesis. Genes Dev. 27, 2086–2098 (2013). This was the first study to address the context-dependent role of cathepsins by comparing and contrasting cathepsin deficiencies in different cancer models.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sevenich, L. et al. Synergistic antitumor effects of combined cathepsin B and cathepsin Z deficiencies on breast cancer progression and metastasis in mice. Proc. Natl Acad. Sci. USA 107, 2497–2502 (2010). This paper was the first example of functional compensation among different cathepsin family members in cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Vasiljeva, O. et al. Reduced tumour cell proliferation and delayed development of high-grade mammary carcinomas in cathepsin B-deficient mice. Oncogene 27, 4191–4199 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. McGuire, M. J., Lipsky, P. E. & Thiele, D. L. Generation of active myeloid and lymphoid granule serine proteases requires processing by the granule thiol protease dipeptidyl peptidase I. J. Biol. Chem. 268, 2458–2467 (1993).

    Article  CAS  PubMed  Google Scholar 

  62. Pham, C. T. & Ley, T. J. Dipeptidyl peptidase I is required for the processing and activation of granzymes A and B in vivo. Proc. Natl Acad. Sci. USA 96, 8627–8632 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gopinathan, A. et al. Cathepsin B promotes the progression of pancreatic ductal adenocarcinoma in mice. Gut 61, 877–884 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Halangk, W. et al. Role of cathepsin B in intracellular trypsinogen activation and the onset of acute pancreatitis. J. Clin. Invest. 106, 773–781 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chauhan, S. S., Goldstein, L. J. & Gottesman, M. M. Expression of cathepsin L in human tumors. Cancer Res. 51, 1478–1481 (1991).

    CAS  PubMed  Google Scholar 

  66. Budihna, M. et al. Prognostic value of cathepsins B, H, L, D and their endogenous inhibitors stefins A and B in head and neck carcinoma. Biol. Chem. Hoppe Seyler 377, 385–390 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. Foekens, J. A. et al. Prognostic significance of cathepsins B and L in primary human breast cancer. J. Clin. Oncol. 16, 1013–1021 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Christofori, G., Naik, P. & Hanahan, D. Deregulation of both imprinted and expressed alleles of the insulin-like growth factor 2 gene during beta-cell tumorigenesis. Nat. Genet. 10, 196–201 (1995).

    Article  CAS  PubMed  Google Scholar 

  69. Inoue, M., Hager, J. H., Ferrara, N., Gerber, H. P. & Hanahan, D. VEGF-A has a critical, nonredundant role in angiogenic switching and pancreatic beta cell carcinogenesis. Cancer Cell 1, 193–202 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Benavides, F. et al. Protective role of cathepsin L in mouse skin carcinogenesis. Mol. Carcinog. 51, 352–361 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Tobin, D. J. et al. The lysosomal protease cathepsin L is an important regulator of keratinocyte and melanocyte differentiation during hair follicle morphogenesis and cycling. Am. J. Pathol. 160, 1807–1821 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Reinheckel, T. et al. The lysosomal cysteine protease cathepsin L regulates keratinocyte proliferation by control of growth factor recycling. J. Cell Sci. 118, 3387–3395 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. de Duve, C. The lysosome turns fifty. Nat. Cell Biol. 7, 847–849 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Kondo, Y., Kanzawa, T., Sawaya, R. & Kondo, S. The role of autophagy in cancer development and response to therapy. Nat. Rev. Cancer 5, 726–734 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Zoncu, R. et al. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H+-ATPase. Science 334, 678–683 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang, S. et al. Metabolism. lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 347, 188–194 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rebsamen, M. et al. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature 519, 477–481 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Commisso, C. et al. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497, 633–637 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kamphorst, J. J. et al. Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein. Cancer Res. 75, 544–553 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Perera, R. M. et al. Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism. Nature 524, 361–365 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Palm, W. et al. The utilization of extracellular proteins as nutrients is suppressed by mTORC1. Cell 162, 259–270 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kallunki, T., Olsen, O. D. & Jaattela, M. Cancer-associated lysosomal changes: friends or foes? Oncogene 32, 1995–2004 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Jahchan, N. S. et al. A drug repositioning approach identifies tricyclic antidepressants as inhibitors of small cell lung cancer and other neuroendocrine tumors. Cancer Discov. 3, 1364–1377 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Sukhai, M. A. et al. Lysosomal disruption preferentially targets acute myeloid leukemia cells and progenitors. J. Clin. Invest. 123, 315–328 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Petersen, N. H. et al. Transformation-associated changes in sphingolipid metabolism sensitize cells to lysosomal cell death induced by inhibitors of acid sphingomyelinase. Cancer Cell 24, 379–393 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Nylandsted, J. et al. Eradication of glioblastoma, and breast and colon carcinoma xenografts by Hsp70 depletion. Cancer Res. 62, 7139–7142 (2002).

    CAS  PubMed  Google Scholar 

  87. Nylandsted, J. et al. Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization. J. Exp. Med. 200, 425–435 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kurz, T., Terman, A., Gustafsson, B. & Brunk, U. T. Lysosomes and oxidative stress in aging and apoptosis. Biochim. Biophys. Acta 1780, 1291–1303 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Johansson, A. C. et al. Regulation of apoptosis-associated lysosomal membrane permeabilization. Apoptosis 15, 527–540 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kreuzaler, P. A. et al. Stat3 controls lysosomal-mediated cell death in vivo. Nat. Cell Biol. 13, 303–309 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Sargeant, T. J. et al. Stat3 controls cell death during mammary gland involution by regulating uptake of milk fat globules and lysosomal membrane permeabilization. Nat. Cell Biol. 16, 1057–1068 (2014). The studies in references 90 and 91 describe the role of STAT3 in driving LMP and cell death during mammary gland involution.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Boya, P. et al. Lysosomal membrane permeabilization induces cell death in a mitochondrion-dependent fashion. J. Exp. Med. 197, 1323–1334 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Stoka, V. et al. Lysosomal protease pathways to apoptosis. Cleavage of bid, not pro-caspases, is the most likely route. J. Biol. Chem. 276, 3149–3157 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Droga-Mazovec, G. et al. Cysteine cathepsins trigger caspase-dependent cell death through cleavage of bid and antiapoptotic Bcl-2 homologues. J. Biol. Chem. 283, 19140–19150 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Taha, T. A. et al. Tumor necrosis factor induces the loss of sphingosine kinase-1 by a cathepsin B-dependent mechanism. J. Biol. Chem. 280, 17196–17202 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. McComb, S. et al. Cathepsins limit macrophage necroptosis through cleavage of Rip1 kinase. J. Immunol. 192, 5671–5678 (2014).

    Article  CAS  PubMed  Google Scholar 

  97. Oberle, C. et al. Lysosomal membrane permeabilization and cathepsin release is a Bax/Bak-dependent, amplifying event of apoptosis in fibroblasts and monocytes. Cell Death Differ. 17, 1167–1178 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Guicciardi, M. E. et al. Cathepsin B contributes to TNF-α-mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c. J. Clin. Invest. 106, 1127–1137 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Werneburg, N., Guicciardi, M. E., Yin, X. M. & Gores, G. J. TNF-α-mediated lysosomal permeabilization is FAN and caspase 8/Bid dependent. Am. J. Physiol. Gastrointest Liver Physiol. 287, G436–G443 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Boya, P. & Kroemer, G. Lysosomal membrane permeabilization in cell death. Oncogene 27, 6434–6451 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Kirkegaard, T. & Jaattela, M. Lysosomal involvement in cell death and cancer. Biochim. Biophys. Acta 1793, 746–754 (2009).

    Article  CAS  PubMed  Google Scholar 

  102. Lechner, A. M. et al. RGD-dependent binding of procathepsin X to integrin αvβ3 mediates cell-adhesive properties. J. Biol. Chem. 281, 39588–39597 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Wang, B. et al. Cathepsin S controls angiogenesis and tumor growth via matrix-derived angiogenic factors. J. Biol. Chem. 281, 6020–6029 (2006). The studies in references 15, 24–26, 56, 58–60, 63, 70 and 103 report the functional roles of individual cathepsin family members determined from genetic experiments in different mouse models of cancer.

    Article  CAS  PubMed  Google Scholar 

  104. Veillard, F. et al. Cysteine cathepsins S and L modulate anti-angiogenic activities of human endostatin. J. Biol. Chem. 286, 37158–37167 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chang, S. H. et al. VEGF-A induces angiogenesis by perturbing the cathepsin-cysteine protease inhibitor balance in venules, causing basement membrane degradation and mother vessel formation. Cancer Res. 69, 4537–4544 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kostoulas, G., Lang, A., Nagase, H. & Baici, A. Stimulation of angiogenesis through cathepsin B inactivation of the tissue inhibitors of matrix metalloproteinases. FEBS Lett. 455, 286–290 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Dean, R. A. & Overall, C. M. Proteomics discovery of metalloproteinase substrates in the cellular context by iTRAQ labeling reveals a diverse MMP-2 substrate degradome. Mol. Cell Proteom. 6, 611–623 (2007).

    Article  CAS  Google Scholar 

  108. Abboud-Jarrous, G. et al. Cathepsin L is responsible for processing and activation of proheparanase through multiple cleavages of a linker segment. J. Biol. Chem. 283, 18167–18176 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hunter, K. E. et al. Heparanase promotes lymphangiogenesis and tumor invasion in pancreatic neuroendocrine tumors. Oncogene 33, 1799–1808 (2013).

    Article  PubMed  CAS  Google Scholar 

  110. Urbich, C. et al. Cathepsin L is required for endothelial progenitor cell-induced neovascularization. Nat. Med. 11, 206–213 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Jiang, H. et al. Cathepsin K-mediated Notch1 activation contributes to neovascularization in response to hypoxia. Nat. Commun. 5, 3838 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Sevenich, L. & Joyce, J. A. Pericellular proteolysis in cancer. Genes Dev. 28, 2331–2347 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Biniossek, M. L., Nagler, D. K., Becker-Pauly, C. & Schilling, O. Proteomic identification of protease cleavage sites characterizes prime and non-prime specificity of cysteine cathepsins B, L, and S. J. Proteome Res. 10, 5363–5373 (2011). This paper described the cleavage site preference for individual cathepsin proteases based on peptide profiling.

    Article  CAS  PubMed  Google Scholar 

  114. Kern, U., Wischnewski, V., Biniossek, M. L., Schilling, O. & Reinheckel, T. Lysosomal protein turnover contributes to the acquisition of TGFβ1 induced invasive properties of mammary cancer cells. Mol. Cancer 14, 39 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Alonso-Curbelo, D. et al. RAB7 controls melanoma progression by exploiting a lineage-specific wiring of the endolysosomal pathway. Cancer Cell 26, 61–76 (2014).

    Article  CAS  PubMed  Google Scholar 

  116. Seo, H. R., Bae, S. & Lee, Y. S. Radiation-induced cathepsin S is involved in radioresistance. Int. J. Cancer 124, 1794–1801 (2009). This paper demonstrated tumour cell-intrinsic upregulation of CTSS in response to ionizing radiation and its role in acquired resistance.

    Article  CAS  PubMed  Google Scholar 

  117. Lee, H. J. et al. Differential gene signatures in rat mammary tumors induced by DMBA and those induced by fractionated gamma radiation. Radiat. Res. 170, 579–590 (2008).

    Article  CAS  PubMed  Google Scholar 

  118. Nakasone, E. S. et al. Imaging tumor-stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance. Cancer Cell 21, 488–503 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Burden, R. E. et al. Inhibition of cathepsin S by Fsn0503 enhances the efficacy of chemotherapy in colorectal carcinomas. Biochimie 94, 487–493 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Alamir, I. et al. Beneficial effects of cathepsin inhibition to prevent chemotherapy-induced intestinal mucositis. Clin. Exp. Immunol. 162, 298–305 (2010). This study demonstrated the ability of cathepsin inhbitors to suppress detrimental chemotherapy-induced side effects.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Shi, G. P. et al. Cathepsin S required for normal MHC class II peptide loading and germinal center development. Immunity 10, 197–206 (1999).

    Article  CAS  PubMed  Google Scholar 

  122. Buhling, F. et al. Gene targeting of the cysteine peptidase cathepsin H impairs lung surfactant in mice. PLoS ONE 6, e26247 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Roth, W. et al. Cathepsin L deficiency as molecular defect of furless: hyperproliferation of keratinocytes and pertubation of hair follicle cycling. FASEB J. 14, 2075–2086 (2000).

    Article  CAS  PubMed  Google Scholar 

  124. Kiviranta, R. et al. Impaired bone resorption in cathepsin K-deficient mice is partially compensated for by enhanced osteoclastogenesis and increased expression of other proteases via an increased RANKL/OPG ratio. Bone 36, 159–172 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Jensen, A. B. et al. The cathepsin K inhibitor odanacatib suppresses bone resorption in women with breast cancer and established bone metastases: results of a 4-week, double-blind, randomized, controlled trial. Clin. Breast Cancer 10, 452–458 (2010). This paper reported the first use of cathepsin inhibitors in the clinical treatment of cancer.

    Article  CAS  PubMed  Google Scholar 

  126. Coussens, L. M., Fingleton, B. & Matrisian, L. M. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295, 2387–2392 (2002).

    Article  CAS  PubMed  Google Scholar 

  127. Overall, C. M. & Kleifeld, O. Tumour microenvironment - opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat. Rev. Cancer 6, 227–239 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Gupta, S., Singh, R. K., Dastidar, S. & Ray, A. Cysteine cathepsin S as an immunomodulatory target: present and future trends. Expert Opin. Ther. Targets 12, 291–299 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Costa, A. G., Cusano, N. E., Silva, B. C., Cremers, S. & Bilezikian, J. P. Cathepsin K: its skeletal actions and role as a therapeutic target in osteoporosis. Nat. Rev. Rheumatol. 7, 447–456 (2011).

    Article  CAS  PubMed  Google Scholar 

  130. Hook, G., Yu, J., Toneff, T., Kindy, M. & Hook, V. Brain pyroglutamate amyloid-β is produced by cathepsin B and is reduced by the cysteine protease inhibitor E64d, representing a potential Alzheimer's disease therapeutic. J. Alzheimers Dis. 41, 129–149 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Navab, R., Mort, J. S. & Brodt, P. Inhibition of carcinoma cell invasion and liver metastases formation by the cysteine proteinase inhibitor E-64. Clin. Exp. Metastasis 15, 121–129 (1997).

    Article  CAS  PubMed  Google Scholar 

  132. Bergers, G. et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat. Cell Biol. 2, 737–744 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Shchors, K. et al. Increased invasiveness of MMP-9-deficient tumors in two mouse models of neuroendocrine tumorigenesis. Oncogene 32, 502–513 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. Schurigt, U. et al. Trial of the cysteine cathepsin inhibitor JPM-OEt on early and advanced mammary cancer stages in the MMTV-PyMT-transgenic mouse model. Biol. Chem. 389, 1067–1074 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Mikhaylov, G. et al. Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Nat. Nanotechnol. 6, 594–602 (2011). This study demonstrated the improved response to cathepsin inhibitors using a targeted drug delivery system.

    Article  CAS  PubMed  Google Scholar 

  136. Zhu, D. M. & Uckun, F. M. Cathepsin inhibition induces apoptotic death in human leukemia and lymphoma cells. Leuk. Lymphoma 39, 343–354 (2000).

    Article  CAS  PubMed  Google Scholar 

  137. Colella, R. et al. Induction of cell death in neuroblastoma by inhibition of cathepsins B and L. Cancer Lett. 294, 195–203 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Uhlen, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article  PubMed  CAS  Google Scholar 

  139. auf dem Keller, U., Prudova, A., Eckhard, U., Fingleton, B. & Overall, C. M. Systems-level analysis of proteolytic events in increased vascular permeability and complement activation in skin inflammation. Sci. Signal. 6, rs2 (2013). This paper is one of the first examples of N-terminomic approaches to study the role of proteases in vivo at a system-wide level.

    Article  PubMed  CAS  Google Scholar 

  140. Wang, Q. et al. Targeting therapy of hepatocellular carcinoma with doxorubicin prodrug PDOX increases anti-metastatic effect and reduces toxicity: a preclinical study. J. Transl Med. 11, 192 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Ueki, N., Lee, S., Sampson, N. S. & Hayman, M. J. Selective cancer targeting with prodrugs activated by histone deacetylases and a tumour-associated protease. Nat. Commun. 4, 2735 (2013).

    Article  PubMed  CAS  Google Scholar 

  142. Satsangi, A., Roy, S. S., Satsangi, R. K., Vadlamudi, R. K. & Ong, J. L. Design of a paclitaxel prodrug conjugate for active targeting of an enzyme upregulated in breast cancer cells. Mol. Pharm. 11, 1906–1918 (2014).

    Article  CAS  PubMed  Google Scholar 

  143. Fonovic, M. & Turk, B. Cysteine cathepsins and extracellular matrix degradation. Biochim. Biophys. Acta 1840, 2560–2570 (2014).

    Article  CAS  PubMed  Google Scholar 

  144. Devanathan, G. et al. Carboxy-monopeptidase substrate specificity of human cathepsin X. Biochem. Biophys. Res. Commun. 329, 445–452 (2005).

    Article  CAS  PubMed  Google Scholar 

  145. Nagler, D. K. et al. Human cathepsin X: A cysteine protease with unique carboxypeptidase activity. Biochemistry 38, 12648–12654 (1999).

    Article  CAS  PubMed  Google Scholar 

  146. Nagler, D. K. & Menard, R. Human cathepsin X: a novel cysteine protease of the papain family with a very short proregion and unique insertions. FEBS Lett. 434, 135–139 (1998).

    Article  CAS  PubMed  Google Scholar 

  147. Ghosh, P., Dahms, N. M. & Kornfeld, S. Mannose 6-phosphate receptors: new twists in the tale. Nat. Rev. Mol. Cell Biol. 4, 202–212 (2003).

    Article  CAS  PubMed  Google Scholar 

  148. Li, J. & Sahagian, G. G. Demonstration of tumor suppression by mannose 6-phosphate/insulin-like growth factor 2 receptor. Oncogene 23, 9359–9368 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Brix, K., Dunkhorst, A., Mayer, K. & Jordans, S. Cysteine cathepsins: cellular roadmap to different functions. Biochimie 90, 194–207 (2008).

    Article  CAS  PubMed  Google Scholar 

  150. Reddy, V. Y., Zhang, Q. Y. & Weiss, S. J. Pericellular mobilization of the tissue-destructive cysteine proteinases, cathepsins B, L, and S, by human monocyte-derived macrophages. Proc. Natl Acad. Sci. USA 92, 3849–3853 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Jerala, R., Zerovnik, E., Kidric, J. & Turk, V. pH-induced conformational transitions of the propeptide of human cathepsin L. A role for a molten globule state in zymogen activation. J. Biol. Chem. 273, 11498–11504 (1998).

    Article  CAS  PubMed  Google Scholar 

  152. Quraishi, O. et al. The occluding loop in cathepsin B defines the pH dependence of inhibition by its propeptide. Biochemistry 38, 5017–5023 (1999).

    Article  CAS  PubMed  Google Scholar 

  153. Maubach, G. et al. The inhibition of cathepsin S by its propeptide—specificity and mechanism of action. Eur. J. Biochem. 250, 745–750 (1997).

    Article  CAS  PubMed  Google Scholar 

  154. Carmona, E. et al. Potency and selectivity of the cathepsin L propeptide as an inhibitor of cysteine proteases. Biochemistry 35, 8149–8157 (1996).

    Article  CAS  PubMed  Google Scholar 

  155. Pisoni, R. L., Acker, T. L., Lisowski, K. M., Lemons, R. M. & Thoene, J. G. A cysteine-specific lysosomal transport system provides a major route for the delivery of thiol to human fibroblast lysosomes: possible role in supporting lysosomal proteolysis. J. Cell Biol. 110, 327–335 (1990).

    Article  CAS  PubMed  Google Scholar 

  156. Gallagher, F. A. et al. Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate. Nature 453, 940–943 (2008).

    Article  CAS  PubMed  Google Scholar 

  157. Gerweck, L. E. & Seetharaman, K. Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Cancer Res. 56, 1194–1198 (1996).

    CAS  PubMed  Google Scholar 

  158. Rozhin, J., Sameni, M., Ziegler, G. & Sloane, B. F. Pericellular pH affects distribution and secretion of cathepsin B in malignant cells. Cancer Res. 54, 6517–6525 (1994).

    CAS  PubMed  Google Scholar 

  159. Rothberg, J. M. et al. Acid-mediated tumor proteolysis: contribution of cysteine cathepsins. Neoplasia 15, 1125–1137 (2013). This work demonstrated the importance of acidification within the tumour miroenvironment to cathepsin activity.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Robey, I. F. et al. Bicarbonate increases tumor pH and inhibits spontaneous metastases. Cancer Res. 69, 2260–2268 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Fortelny, N. et al. Network analyses reveal pervasive functional regulation between proteases in the human protease web. PLoS Biol. 12, e1001869 (2014). This study characterizes the protease web and provides considerable insight into the application of systems biology approaches to the study of proteases.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Kleifeld, O. et al. Identifying and quantifying proteolytic events and the natural N terminome by terminal amine isotopic labeling of substrates. Nat. Protoc. 6, 1578–1611 (2011).

    Article  CAS  PubMed  Google Scholar 

  163. Schilling, O., Barre, O., Huesgen, P. F. & Overall, C. M. Proteome-wide analysis of protein carboxy termini: C terminomics. Nat. Methods 7, 508–511 (2010).

    Article  CAS  PubMed  Google Scholar 

  164. Lopez-Otin, C. & Overall, C. M. Protease degradomics: a new challenge for proteomics. Nat. Rev. Mol. Cell Biol. 3, 509–519 (2002).

    Article  CAS  PubMed  Google Scholar 

  165. Hsieh, C. S., deRoos, P., Honey, K., Beers, C. & Rudensky, A. Y. A role for cathepsin L and cathepsin S in peptide generation for MHC class II presentation. J. Immunol. 168, 2618–2625 (2002).

    Article  CAS  PubMed  Google Scholar 

  166. Driessen, C. et al. Cathepsin S controls the trafficking and maturation of MHC class II molecules in dendritic cells. J. Cell Biol. 147, 775–790 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Riese, R. J. et al. Essential role for cathepsin S in MHC class II-associated invariant chain processing and peptide loading. Immunity 4, 357–366 (1996).

    Article  CAS  PubMed  Google Scholar 

  168. Nakagawa, T. Y. et al. Impaired invariant chain degradation and antigen presentation and diminished collagen-induced arthritis in cathepsin S null mice. Immunity 10, 207–217 (1999).

    Article  CAS  PubMed  Google Scholar 

  169. Shi, G. P. et al. Role for cathepsin F in invariant chain processing and major histocompatibility complex class II peptide loading by macrophages. J. Exp. Med. 191, 1177–1186 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Honey, K. et al. Thymocyte expression of cathepsin L is essential for NKT cell development. Nat. Immunol. 3, 1069–1074 (2002).

    Article  CAS  PubMed  Google Scholar 

  171. Meade, J. L. et al. A family with Papillon-Lefevre syndrome reveals a requirement for cathepsin C in granzyme B activation and NK cell cytolytic activity. Blood 107, 3665–3668 (2006).

    Article  CAS  PubMed  Google Scholar 

  172. D'Angelo, M. E. et al. Cathepsin H is an additional convertase of pro-granzyme B. J. Biol. Chem. 285, 20514–20519 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Konjar, S. et al. Human and mouse perforin are processed in part through cleavage by the lysosomal cysteine proteinase cathepsin L. Immunology 131, 257–267 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Balaji, K. N., Schaschke, N., Machleidt, W., Catalfamo, M. & Henkart, P. A. Surface cathepsin B protects cytotoxic lymphocytes from self-destruction after degranulation. J. Exp. Med. 196, 493–503 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Jevnikar, Z. et al. Three-dimensional invasion of macrophages is mediated by cysteine cathepsins in protrusive podosomes. Eur. J. Immunol. 42, 3429–3441 (2012).

    Article  CAS  PubMed  Google Scholar 

  176. Jevnikar, Z., Obermajer, N., Pecar-Fonovic, U., Karaoglanovic-Carmona, A. & Kos, J. Cathepsin X cleaves the β2 cytoplasmic tail of LFA-1 inducing the intermediate affinity form of LFA-1 and α-actinin-1 binding. Eur. J. Immunol. 39, 3217–3227 (2009).

    Article  CAS  PubMed  Google Scholar 

  177. Jevnikar, Z. et al. Cathepsin X cleavage of the β2 integrin regulates talin-binding and LFA-1 affinity in T cells. J. Leukoc. Biol. 90, 99–109 (2011).

    Article  CAS  PubMed  Google Scholar 

  178. Jevnikar, Z. et al. Cathepsin H mediates the processing of talin and regulates migration of prostate cancer cells. J. Biol. Chem. 288, 2201–2209 (2013). References 176–178 provide some important examples of cathepsin protease activity in the cytoplasm independent of LMP.

    Article  CAS  PubMed  Google Scholar 

  179. auf dem Keller, U., Doucet, A. & Overall, C. M. Protease research in the era of systems biology. Biol. Chem. 388, 1159–1162 (2007).

    CAS  PubMed  Google Scholar 

  180. Mason, S. D. & Joyce, J. A. Proteolytic networks in cancer. Trends Cell Biol. 21, 228–237 (2011).

    Article  CAS  PubMed  Google Scholar 

  181. Olson, O. C. & Joyce, J. A. A splicing twist on metastasis. Sci. Transl Med. 5, 169fs2 (2013).

    Article  PubMed  CAS  Google Scholar 

  182. Paik, S. et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 351, 2817–2826 (2004).

    Article  CAS  PubMed  Google Scholar 

  183. Nouh, M. A. et al. Cathepsin B: a potential prognostic marker for inflammatory breast cancer. J. Transl Med. 9, 1 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Lah, T. T. et al. Cathepsin B, a prognostic indicator in lymph node-negative breast carcinoma patients: comparison with cathepsin D, cathepsin L, and other clinical indicators. Clin. Cancer Res. 6, 578–584 (2000).

    CAS  PubMed  Google Scholar 

  185. Thomssen, C. et al. Prognostic value of the cysteine proteases cathepsins B and cathepsin L in human breast cancer. Clin. Cancer Res. 1, 741–746 (1995).

    CAS  PubMed  Google Scholar 

  186. Herszenyi, L. et al. The role of cysteine and serine proteases in colorectal carcinoma. Cancer 86, 1135–1142 (1999).

    Article  CAS  PubMed  Google Scholar 

  187. Troy, A. M. et al. Expression of cathepsin B and L antigen and activity is associated with early colorectal cancer progression. Eur. J. Cancer 40, 1610–1616 (2004).

    Article  CAS  PubMed  Google Scholar 

  188. Adenis, A. et al. Cathepsin B, L, and D activities in colorectal carcinomas: relationship with clinico-pathological parameters. Cancer Lett. 96, 267–275 (1995).

    Article  CAS  PubMed  Google Scholar 

  189. Sukoh, N. et al. Immunohistochemical study of cathepsin B. Prognostic significance in human lung cancer. Cancer 74, 46–51 (1994).

    Article  CAS  PubMed  Google Scholar 

  190. Werle, B. et al. Immunochemical analysis of cathepsin B in lung tumours: an independent prognostic factor for squamous cell carcinoma patients. Br. J. Cancer 81, 510–519 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Kayser, K. et al. Expression, proliferation activity and clinical significance of cathepsin B and cathepsin L in operated lung cancer. Anticancer Res. 23, 2767–2772 (2003).

    CAS  PubMed  Google Scholar 

  192. Schweiger, A. et al. Cysteine proteinase cathepsin H in tumours and sera of lung cancer patients: relation to prognosis and cigarette smoking. Br. J. Cancer 82, 782–788 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Kos, J. et al. Cathepsin S in tumours, regional lymph nodes and sera of patients with lung cancer: relation to prognosis. Br. J. Cancer 85, 1193–1200 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Scorilas, A. et al. Determination of cathepsin B expression may offer additional prognostic information for ovarian cancer patients. Biol. Chem. 383, 1297–1303 (2002).

    Article  CAS  PubMed  Google Scholar 

  195. Niedergethmann, M. et al. Prognostic impact of cysteine proteases cathepsin B and cathepsin L in pancreatic adenocarcinoma. Pancreas 29, 204–211 (2004).

    Article  CAS  PubMed  Google Scholar 

  196. Husmann, K. et al. Cathepsins and osteosarcoma: expression analysis identifies cathepsin K as an indicator of metastasis. Mol. Carcinog. 47, 66–73 (2008).

    Article  CAS  PubMed  Google Scholar 

  197. Butinar, M. et al. Stefin B deficiency reduces tumor growth via sensitization of tumor cells to oxidative stress in a breast cancer model. Oncogene 33, 3392–3400 (2014).

    Article  CAS  PubMed  Google Scholar 

  198. Yu, W. et al. Cystatin C deficiency promotes epidermal dysplasia in K14-HPV16 transgenic mice. PLoS ONE 5, e13973 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

J.A.J. is supported by grants from the National Cancer Institute, the American Cancer Society, the Breast Cancer Research Foundation and the Center for Metastasis Research at Memorial Sloan Kettering Cancer Center. O.C.O. is supported by F31 CA171384-04 from the National Cancer Institute. The authors are grateful to L. Akkari and L. Sevenich for insightful comments on the manuscript. The authors apologize to all the investigators whose research could not be appropriately cited because of the journal's space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna A. Joyce.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Extracellular matrix

(ECM). The ECM represents the multitude of proteins and macromolecules secreted by cells into the extracellular space, including collagens, laminins and fibronectin, which provide structural support as well as organizational architecture within the tissue. Tumorigenesis is characterized by remodelling of the ECM in association with disease progression.

Protease web

The interconnected system of biological interactions between all proteases and protease inhibitors.

N-terminomic and C-terminomic approaches

Covalent labelling of either the N terminus or C terminus within a protein sample allows identification of the original terminus in proteomic mass spectrometry analysis.

Cystatins

A protein family of cysteine protease inhibitors.

Tumour-associated macrophages

(TAMs). These macrophages are 'educated' in the tumour microenvironment where they provide various tumour-promoting functions. TAMs have been shown to promote tumour angiogenesis, invasion and metastasis, immunosuppression and therapeutic resistance.

RIP1-Tag2 PanNET mouse model

Expression of the SV40 large T antigen (Tag) under the control of the rat insulin promoter (RIP) causes β-cell hyperplasia, which progresses through a series of rate-limiting stages to invasive pancreatic neuroendocrine tumour (PanNET).

MMTV-PyMT mammary carcinoma mouse model

Expression of the polyomavirus middle T (PyMT) oncoprotein under control of the mouse mammary tumour virus (MMTV) long terminal repeat promoter induces mammary neoplasia reminiscent of that observed in human breast cancer. MMTV-PyMT tumours progress through stereotypical stages of cancer progression and metastasize to the lung.

K14-HPV16 mouse model of squamous cell carcinoma

Use of the keratin 14 promoter (K14) to drive expression of human papilloma virus type 16 (HPV16) E6 and E7 genes in basal cells of the squamous epithelium results in stepwise progression to squamous cell carcinoma.

KPC mouse model

Addition of the LSL-Trp53R172H allele to the KC model, results in widely metastatic invasive pancreatic ductal carcinoma.

Angiogenic switching

The stage at which incipient tumours acquire the capacity to induce angiogenesis.

Apoptosome

A pro-apoptotic structure comprising cytochrome c, apoptotic protease-activating factor 1 (APAF1) and caspase 9 formed upon mitochondrial outer membrane permeabilization and release of cytochrome c into the cytosol.

Blood–brain barrier

A highly selective vascular barrier between the circulation and the extracellular fluid of the brain.

Myeloid-derived suppressor cells

Tumour-associated myeloid cells that are phenotypically characterized by their ability to suppress T cell function.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olson, O., Joyce, J. Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response. Nat Rev Cancer 15, 712–729 (2015). https://doi.org/10.1038/nrc4027

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc4027

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer