Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Endothelin 1 in cancer: biological implications and therapeutic opportunities

Key Points

  • Aberrant expression of endothelin 1 (ET1), or overexpression of endothelin receptors or their linked signalling circuits can contribute to tumour initiation and progression through both autocrine and paracrine mechanisms. These alteration mechanisms may arise from genetic and epigenetic changes.

  • An intricate network of crosstalk between ET1 signalling and other growth factor pathways drives tumour progression. This includes crosstalk between the endothelin receptors and epidermal growth factor receptor and vascular endothelial growth factor receptor.

  • ET1 signalling promotes cell proliferation, survival, epithelial-to-mesenchymal transition, neovascularization, response of immune cells and drug resistance in a context-dependent manner. Hence, endothelin receptors have emerged as key targets for cancer therapy.

  • In addition to tumour cells, endothelin receptors are found on tumour-associated host cells, such as blood and lymphatic endothelial cells, fibroblasts and inflammatory cells, thus regulating the contribution of these cell types to cancer progression. Therefore, endothelin receptor antagonists may inhibit tumour progression by blocking crucial signalling events in both the tumour microenvironment and the tumour cells.

  • The activation of ET1 signalling pathways is often negatively correlated with patient outcomes in different types of cancer.

  • Small-molecule antagonists for targeting endothelin receptors have been evaluated in several recent clinical trials. However, the clinical results to date have been disappointing and it is crucial to decipher why the promising preclinical data have not yet been translated to the clinic.

  • Future improved clinical trials might incorporate predictive biomarkers to focus on subsets of patients who are most likely to respond, use other clinical settings or use rational combination therapy with chemotherapeutics or targeted agents.

Abstract

Activation of autocrine and paracrine signalling by endothelin 1 (ET1) binding to its receptors elicits pleiotropic effects on tumour cells and on the host microenvironment. This activation modulates cell proliferation, apoptosis, migration, epithelial-to-mesenchymal transition, chemoresistance and neovascularization, thus providing a strong rationale for targeting ET1 receptors in cancer. In this Review, we discuss the advances in our understanding of the diverse biological roles of ET1 in cancer and describe the latest preclinical and clinical progress that has been made using small-molecule antagonists of ET1 receptors that inhibit ET1-driven signalling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The ET1 signalling network.
Figure 2: Crosstalk between ET1 signalling and the β-catenin and HIF1α signalling pathways.
Figure 3: The ET1-regulated tumour–microenvironment interactions in tumour maintenance and progression.
Figure 4: The ET1 axis in immunomodulation.

Similar content being viewed by others

References

  1. Nelson, J., Bagnato, A., Battistini, B. & Nisen, P. The endothelin axis: emerging role in cancer. Nature Rev. Cancer 3, 110–116 (2003).

    CAS  Google Scholar 

  2. Nelson, J. B. et al. Identification of endothelin-1 in the pathophysiology of metastatic adenocarcinoma of the prostate. Nature Med. 1, 944–949 (1995).

    CAS  PubMed  Google Scholar 

  3. Bagnato, A. et al. Autocrine actions of endothelin-1 as a growth factor in human ovarian carcinoma cells. Clin. Cancer Res. 1, 1059–1066 (1995). References 2 and 3 provide the first descriptions of ETAR as a potential target in advanced prostate cancer and ovarian cancer, respectively.

    CAS  PubMed  Google Scholar 

  4. Yanagisawa, M. et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332, 411–415 (1988). This seminal study identifies the EDN1 gene encoding ET1.

    CAS  PubMed  Google Scholar 

  5. Ling, L., Maguire, J. J. & Davenport, A. P. Endothelin-2, the forgotten isoform: emerging role in the cardiovascular system, ovarian development, immunology and cancer. Br. J. Pharmacol. 168, 283–295 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Stow, L. R., Jacobs, M. E., Wingo, C. S., Cain, B. D. Endothelin-1 gene regulation. FASEB J. 25, 16–28 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Matteucci, E. et al. Epigenetic control of endothelin-1 axis affects invasiveness of breast carcinoma cells with bone tropism. Exp. Cell Res. 319, 1865–1874 (2013).

    CAS  PubMed  Google Scholar 

  8. Li, D. et al. The inhibitory effect of miRNA-1 on ET-1 gene expression. FEBS Lett. 586, 1014–1021 (2012).

    CAS  PubMed  Google Scholar 

  9. Li, D. et al. MicroRNA-1 inhibits proliferation of hepatocarcinoma cells by targeting endothelin-1. Life Sci. 91, 440–447 (2012).

    CAS  PubMed  Google Scholar 

  10. Moraitis, S., Miller, W. R., Smyth, J. F. & Langdon, S. P. Paracrine regulation of ovarian cancer by endothelin. Eur. J. Cancer 35, 1381–1387 (1999).

    CAS  PubMed  Google Scholar 

  11. Shukla, A. K., Xiao, K. & Lefkowitz, R. J. Emerging paradigms of β-arrestin-dependent seven transmembrane receptor signaling. Trends Biochem. Sci. 36, 457–469 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Maguire, J. J. et al. Comparison of human ETA and ETB receptor signalling via G-protein and β-arrestin pathways. Life Sci. 91, 544–549 (2012).

    CAS  PubMed  Google Scholar 

  13. Daub, H., Weiss, F. U., Wallasch, C. & Ullrich, A. Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature 379, 557–560 (1996).

    CAS  PubMed  Google Scholar 

  14. Vacca, F., Bagnato, A., Catt, K. J. & Tecce, R. Transactivation of the epidermal growth factor receptor in endothelin-1-induced mitogenic signalling in human ovarian carcinoma cells. Cancer Res. 60, 5310–5317 (2000).

    CAS  PubMed  Google Scholar 

  15. Rosanò, L. et al. Combined targeting of endothelin A receptor and epidermal growth factor receptor in ovarian cancer shows enhanced antitumor activity. Cancer Res. 67, 6351–6359 (2007).

    PubMed  Google Scholar 

  16. Rosanò, L. et al. β-arrestin links endothelin A receptor to β-catenin signalling to induce ovarian cancer cell invasion and metastasis. Proc. Natl Acad. Sci. USA 106, 2806–2811 (2009). This study identifies β-arrestin as an important signalling partner of ETAR signalling in cancer.

    PubMed  PubMed Central  Google Scholar 

  17. Spinella, F. et al. Endothelin-1 induces the transactivation of vascular endothelial growth factor receptor-3 and modulates cell migration and vasculogenic mimicry in melanoma cells. J. Mol. Med 91, 395–405 (2013).

    CAS  PubMed  Google Scholar 

  18. Hinsley, E. E., Hunt, S., Hunter, K. D., Whawell, S. A. & Lambert, D. W. Endothelin-1 stimulates motility of head and neck squamous carcinoma cells by promoting stromal-epithelial interactions. Int. J. Cancer 130, 40–47 (2012).

    CAS  PubMed  Google Scholar 

  19. Kim, T. H., Xiong, H., Zhang, Z. & Ren, B. β-catenin activates the growth factor endothelin-1 in colon cancer cells. Oncogene 24, 597–604 (2005).

    CAS  PubMed  Google Scholar 

  20. Sun, P., Xiong, H., Kim, T. H., Ren, B. & Zhang, Z. Positive inter-regulation between β-catenin/T cell factor-4 signaling and endothelin-1 signaling potentiates proliferation and survival of prostate cancer cells. Mol. Pharmacol. 69, 520–531 (2006).

    CAS  PubMed  Google Scholar 

  21. Rosanò, L. et al. β-arrestin-1 is a nuclear transcriptional regulator of endothelin-1-induced β-catenin signaling. Oncogene http://dx.doi.org/10.1038/onc.2012.527 (2012).

  22. Bagnato, A. et al. Growth inhibition of cervix carcinoma cell in vivo by endothelin A receptor blockade. Cancer Res. 62, 6381–6384 (2002).

    CAS  PubMed  Google Scholar 

  23. Rosanò, L. et al. ZD4054, a specific antagonist of the endothelin A receptor, inhibits tumor growth and enhances paclitaxel activity in human ovarian carcinoma in vitro and in vivo. Mol. Cancer Ther. 6, 2003–2011 (2007).

    PubMed  Google Scholar 

  24. Rosanò, L. et al. Therapeutic targeting of the endothelin A receptor in human ovarian carcinoma. Cancer Res. 63, 2447–2453 (2003).

    PubMed  Google Scholar 

  25. Banerjee, S. et al. In vitro and in vivo molecular evidence for better therapeutic efficacy of ABT-627 and taxotere combination in prostate cancer. Cancer Res. 67, 3818–3826 (2007).

    CAS  PubMed  Google Scholar 

  26. Del Bufalo, D. et al. Endothelin-1 protects ovarian carcinoma cells against paclitaxel-induced apoptosis: requirement for Akt activation. Mol. Pharmacol. 61, 524–532 (2002).

    CAS  PubMed  Google Scholar 

  27. Nelson, J. B., Udan, M. S., Guruli, G. & Pflug, B. R. Endothelin-1 inhibits apoptosis in prostate cancer. Neoplasia 7, 631–637 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Eberl, L. P., Valdenaire, O., Saintgiorgio, V., Jeannin, J. F. & Juillerat-Jeanneret, L. Endothelin receptor blockade potentiates FasL-induced apoptosis in rat colon carcinoma cells. Int. J. Cancer 86, 182–187 (2000).

    CAS  PubMed  Google Scholar 

  29. Akhavan, A. et al. Endothelin receptor A blockade enhances taxane effects in prostate cancer. Neoplasia 8, 725–732 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim, S. J. Macitentan (ACT-064992), a tissue-targeting endothelin receptor antagonist, enhances therapeutic efficacy of paclitaxel by modulating survival pathways in orthotopic models of metastatic human ovarian cancer. Neoplasia 13, 167–179 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim, S. J. et al. Antivascular therapy for multidrug-resistant ovarian tumors by macitentan, a dual endothelin receptor antagonist. Transl. Oncol. 5, 39–47 (2012).

    PubMed  PubMed Central  Google Scholar 

  32. Polyak, K. & Weinberg, R. A. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nature Rev. Cancer 9, 265–273 (2009).

    CAS  Google Scholar 

  33. Ha, N. et al. Lactoferrin-endothelin-1 axis contributes to the development and invasiveness of triple-negative breast cancer phenotypes. Cancer Res. 71, 7259–7269 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Rosanò, L. et al. Endothelin-1 induces tumor proteinase activation and invasiveness of ovarian carcinoma cells. Cancer Res. 61, 8340–8346 (2001).

    PubMed  Google Scholar 

  35. Wu, M. H. et al. Endothelin-1 promotes MMP-13 production and migration in human chondrosarcoma cells through FAK/PI3K/Akt/mTOR pathways. J. Cell. Phisiol. 227, 3016–3026 (2012).

    CAS  Google Scholar 

  36. Bagnato, A., Tecce, R., Di Castro, V. & Catt, K. J. Activation of mitogenic signaling by endothelin 1 in ovarian carcinoma cells. Cancer Res. 57, 1306–1311 (1997).

    CAS  PubMed  Google Scholar 

  37. Lange, K. et al. Endothelin receptor type B counteracts tenascin-C-induced endothelin receptor type A-dependent focal adhesion and actin stress fiber disorganization. Cancer Res. 67, 6163–6173 (2007).

    CAS  PubMed  Google Scholar 

  38. Rosanò, L. et al. Integrin-linked kinase functions as a downstream mediator of endothelin-1 to promote invasive behavior in ovarian carcinoma. Mol. Cancer Ther. 5, 833–842 (2006).

    PubMed  Google Scholar 

  39. Bagnato, A. et al. Endothelin B receptor blockade inhibits dynamics of cell interactions and communications in melanoma cell progression. Cancer Res. 64, 1436–1443 (2004).

    CAS  PubMed  Google Scholar 

  40. Spinella, F. et al. Endothelin-1 decreases gap junctional intercellular communication by inducing phosphorylation of connexin 43 in human ovarian carcinoma cells. J. Biol. Chem. 278, 41294–41301 (2003).

    CAS  PubMed  Google Scholar 

  41. Rosanò, L. et al. Endothelin-1 promotes epithelial-to-mesenchymal transition in human ovarian cancer cells. Cancer Res. 65, 11649–11657 (2005). This study gives an insight into the role of ET1 in the induction of EMT.

    PubMed  Google Scholar 

  42. Peng, J. et al. ROCK cooperated with ET-1 to induce epithelial to mesenchymal transition through SLUG in human ovarian cancer cells. Biosci. Biotechnol. Biochem. 76, 42–47 (2012).

    CAS  PubMed  Google Scholar 

  43. Jamal, S. & Schneider, R. J. UV-induction of keratinocyte endothelin-1 downregulates E-cadherin in melanocytes and melanoma cells. J. Clin. Invest. 110, 443–452 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Spinella, F. et al. Endothelin-1 and endothelin-3 promote invasive behavior via hypoxia-inducible factor-1α in human melanoma cells. Cancer Res. 67, 1725–1734 (2007).

    CAS  PubMed  Google Scholar 

  45. Spinella, F., Rosanò, L., Di Castro, V., Natali, P. G. & Bagnato, A. Endothelin-1 induces vascular endothelial growth factor by increasing hypoxia-inducibile factor-1α in ovarian carcinoma cells. J. Biol. Chem. 277, 27850–27855 (2002).

    CAS  PubMed  Google Scholar 

  46. Mani, S. A. et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Coffman, L. et al. Endothelin receptor-A is required for the recruitment of antitumor T cells and modulates chemotherapy induction of cancer stem cells. Cancer Biol. Ther. 14, 184–192 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu, Q. et al. Molecular properties of CD133+ glioblastoma stem cells derived from treatment-refractory recurrent brain tumors. J. Neurooncol. 94, 1–19 (2009).

    PubMed  PubMed Central  Google Scholar 

  49. Liu, Y. et al. Autocrine endothelin-3/endothelin receptor B signaling maintains cellular and molecular properties of glioblastoma stem cells. Mol. Cancer Res. 9, 1668–1685 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Puglisi, M. A. et al. Identification of Endothelin-1 and NR4A2 as CD133-regulated genes in colon cancer cells. J. Pathol. 225, 305–314 (2011).

    CAS  PubMed  Google Scholar 

  51. Wiesmann, F. Frequent loss of endothelin-3 (EDN3) expression due to epigenetic inactivation in human breast cancer. Breast Cancer Res. 11, R34 (2009).

    PubMed  PubMed Central  Google Scholar 

  52. Sun, de J. et al. Endothelin-3 growth factor levels decreased in cervical cancer compared with normal cervical epithelial cells. Hum. Pathol. 38, 1047–1056 (2007).

    PubMed  Google Scholar 

  53. Jazaeri, A. A. et al. Gene expression profiles associated with response to chemotherapy in epithelial ovarian cancers. Clin. Cancer Res. 11, 6300–6310 (2005).

    CAS  PubMed  Google Scholar 

  54. Helleman, J., Smid, M., Jansen, M. P., van der Burg, M. E. & Beins, E. M. Pathway analysis of gene lists associated with platinum-based chemotherapy resistance in ovarian cancer: the big picture. Gynecol. Oncol. 117, 170–176 (2010).

    CAS  PubMed  Google Scholar 

  55. Rosanò, L. et al. Acquisition of chemoresistance and EMT phenotype is linked with activation of the endothelin A receptor pathway in ovarian carcinoma cells. Clin. Cancer Res. 17, 2350–2360 (2011). Demonstrates that ETAR-mediated signalling is responsible for resistance to chemotherapeutic agents and shows the importance of using other therapeutic agents in combination with ETAR antagonists for effective therapy.

    PubMed  Google Scholar 

  56. Ghoul, A. et al. Epithelial-to-mesenchymal transition and resistance to ingenol 3-angelate, a novel protein kinase C modulator, in colon cancer cells. Cancer Res. 69, 4260–4269 (2009).

    CAS  PubMed  Google Scholar 

  57. Cruz-Muñoz, W. et al. Roles for endothelin receptor B and BCL2A1 in spontaneous CNS metastasis of melanoma. Cancer Res. 72, 4909–4919 (2012).

    PubMed  PubMed Central  Google Scholar 

  58. Titus, B. et al. Endothelin axis is a target of the lung metastasis suppressor gene RhoGDI2. Cancer Res. 65, 7320–7327 (2005).

    CAS  PubMed  Google Scholar 

  59. Said, N., Smith, S., Sanchez-Carbayo, M. & Theodorescu, D. Tumor endothelin-1 enhances metastatic colonization of the lung in mouse xenograft models of bladder cancer. J. Clin. Invest. 121, 132–147 (2011). A key paper demonstrating how ET1 signalling in bladder cancer enhances metastatic colonization of the lung.

    CAS  PubMed  Google Scholar 

  60. Yin, J. J. et al. A causal role for endothelin-1 in the pathogenesis of osteoblastic bone metastasis. Proc. Natl Acad. Sci. USA 100, 10954–10959 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Guise, T. A. et al. Basic mechanisms responsible for osteolytic and osteoblastic bone metastases. Clin. Cancer Res. 12, 6213–6216 (2006). References 60 and 61 describe an essential role of ET1 in bone metastases.

    Google Scholar 

  62. Clines, G. A. et al. Dickkopf homolog 1 mediates endothelin-1-stimulated new bone formation. Mol. Endocrinol. 21, 486–498 (2007).

    CAS  PubMed  Google Scholar 

  63. Dréau, D. et al. Bosentan inhibits tumor vascularization and bone metastasis in an immunocompetent skin-fold chamber model of breast carcinoma cell metastasis. Clin. Exp. Metastasis 23, 41–53 (2006).

    PubMed  Google Scholar 

  64. Khodorova, A. et al. Endothelin-B receptor activation triggers an endogenous analgesic cascade at sites of peripheral injury. Nature Med. 9, 1055–1061 (2003).

    CAS  PubMed  Google Scholar 

  65. Yuyama, H. et al. Effects of selective endothelin ETA receptor antagonists on endothelin-1-induced potentiation of cancer pain. Eur. J. Pharmacol. 492, 177–182 (2004).

    CAS  PubMed  Google Scholar 

  66. Quang, P. N. & Schmidt, B. L. Peripheral endothelin B receptor agonist-induced antinociception involves endogenous opioids in mice. Pain 149, 254–262 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Spinella, F. et al. Endothelin-1 stimulates lymphatic endothelial cells and lymphatic vessels to grow and invade. Cancer Res. 69, 2669–2676 (2009).

    CAS  PubMed  Google Scholar 

  68. Salani, D. et al. Endothelin-1 induces an angiogenic phenotype in cultured endothelial cells and stimulates neovascularization in vivo. Am. J. Pathol. 157, 1703–1711 (2000). References 67 and 68 describe how ET-1 signalling contributes to angiogenesis and lymphangiogenesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Wu, M. H. et al. Endothelin-1 promotes vascular endothelial growth factor-dependent angiogenesis in human chondrosarcoma cells. Oncogene http://dx.doi.org/10.1038/onc.2013.109 (2013).

  70. Salani, D. et al. Role of endothelin-1 in neovascularization of ovarian carcinoma. Am. J. Pathol. 157, 1537–1547 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Wülfing, P. et al. Expression of endothelin-1, endothelin-A, and endothelin-B receptor in human breast cancer and correlation with long-term follow-up. Clin. Cancer Res. 9, 4125–4131 (2003).

    PubMed  Google Scholar 

  72. Wülfing, P. et al. Expression patterns of angiogenic and lymphangiogenic factors in ductal breast carcinoma in situ. Br. J. Cancer 92, 1720–1728 (2005).

    PubMed  PubMed Central  Google Scholar 

  73. Clasper, S. et al. A novel gene expression profile in lymphatics associated with tumor growth and nodal metastasis. Cancer Res. 68, 7293–7303 (2008).

    CAS  PubMed  Google Scholar 

  74. Cueni, L. N. et al. Tumor lymphangiogenesis and metastasis to lymph nodes induced by cancer cell expression of podoplanin. Am. J. Pathol. 177, 1004–1016 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Spinella, F. et al. Endothelin-1 inhibits prolyl hydroxylase domain 2 to activate hypoxia-inducible factor-1α in melanoma cells. PLoS ONE 5, e11241 (2010).

    PubMed  PubMed Central  Google Scholar 

  76. Wilson, J. L., Burchell, J. & Grimshaw, M. J. Endothelins induce CCR7 expression by breast tumor cells via endothelin receptor A and hypoxia-inducible factor-1. Cancer Res. 66, 11802–11807 (2006).

    CAS  PubMed  Google Scholar 

  77. Grimshaw, M. J. Endothelins and hypoxia-inducible factor in cancer. Endocr. Relat. Cancer 14, 233–244 (2007).

    CAS  PubMed  Google Scholar 

  78. Spinella, F. et al. Inhibition of cyclooxygenase-1 and -2 expression by targeting the endothelin A receptor in human ovarian carcinoma cells. Clin. Cancer Res. 10, 4670–4679 (2004).

    CAS  PubMed  Google Scholar 

  79. Huang, W. H. et al. Mesenchymal stem cells promote growth and angiogenesis of tumors in mice. Oncogene http://dx.doi.org/10.1038/onc.2012.458 (2012).

  80. Bittner, M. et al. Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406, 536–540 (2000).

    CAS  PubMed  Google Scholar 

  81. Knowles, J. P. et al. Endothelin-1 stimulates colon cancer adjacent fibroblasts. Int. J. Cancer 130, 1264–1272 (2012). This study describes how ET1 stimulates fibroblasts to promote formation of a supportive tumour stroma.

    CAS  PubMed  Google Scholar 

  82. Haque, S. U. et al. Efficacy of the specific endothelin A receptor antagonist zibotentan (ZD4054) in colorectal cancer: a preclinical study. Mol Cancer Ther. 30 May 2013 (http://dx.doi.org/10.1158/1535-7163.MCT-12-0975).

  83. Schrey, M. P., Patel, K. V. & Tezapsidis, N. Bombesin and glucocorticoids stimulate human breast cancer cells to produce endothelin, a paracrine mitogen for breast stromal cells. Cancer Res. 52, 1786–1790 (1992).

    CAS  PubMed  Google Scholar 

  84. Patel, K. V., Sheth, H. G. & Schrey, M. P. Stimulation or endothelin-1 secretion by human breast cancer cells through protein kinase A activation: a possible novel paracrine loop involving breast fibroblast-derived prostaglandin E2. Mol. Cell. Endocrinol. 126, 143–151 (1997).

    CAS  PubMed  Google Scholar 

  85. Guruli, G. et al. Function and survival of dendritic cells depend on endothelin-1 and endothelin receptor autocrine loops. Blood 104, 2107–2115 (2004). This study reveals for the first time how ET-1 regulates dendritic cell maturation, with a subsequent effect on immune response.

    CAS  PubMed  Google Scholar 

  86. Kandalaft, L. E., Motz, G. T., Duraiswamy, J. & Coukos, G. Tumor immune surveillance and ovarian cancer: lessons on immune mediated tumor rejection or tolerance. Cancer Metastasis Rev. 30, 141–151 (2011).

    CAS  PubMed  Google Scholar 

  87. Kandalaft, L. E., Facciabene, A., Buckanovich, R. J. & Coukos, G. Endothelin B receptor, a new target in cancer immune therapy. Clin. Cancer Res. 15, 4521–4528 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Buckanovich, R. J. et al. Endothelin B receptor mediates the endothelial barrier to T cell homing to tumors and disables immune therapy. Nature Med. 14, 28–36 (2008). This report describes a mechanism whereby ET1–ETBR signalling regulates homing of T cells in cancer.

    CAS  PubMed  Google Scholar 

  89. Rosanò, L. et al. Endothelin receptor blockade inhibits molecular effectors of Kaposi's sarcoma cell invasion and tumor growth in vivo. Am. J. Pathol. 163, 753–762 (2003).

    PubMed  PubMed Central  Google Scholar 

  90. Lahav, R., Heffner, G. & Patterson, P. H. An endothelin receptor B antagonist inhibits growth and induces cell death in human melanoma cells in vitro and in vivo. Proc. Natl Acad. Sci. USA 96, 11496–11500 (1999). This study illustrates how ETBR regulates melanoma cell growth differently from that of other tumour types.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Venuti, A., Salani, D., Manni, V., Poggiali, F. & Bagnato, A. Expression of endothelin 1 and endothelin A receptor in HPV-associated cervical carcinoma: new potential targets for anticancer therapy. FASEB J. 14, 2277–2283 (2000).

    CAS  PubMed  Google Scholar 

  92. Egidy, G. et al. Modulation of human colon tumor-stromal interactions by the endothelin system. Am. J. Pathol. 157, 1863–1874 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Li, Y. et al. Knockdown of endothelin A receptor expression inhibits osteosarcoma pulmonary metastasis in an orthotopic xenograft mouse model. Mol. Med. Rep. 5, 1391–1395 (2012).

    CAS  PubMed  Google Scholar 

  94. Groenewegen, G. et al. Targeting the endothelin axis with atrasentan, in combination with IFN-α, in metastatic renal cell carcinoma. Br. J. Cancer 106, 284–289 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Büther, K. et al. Assessment of endothelin-A receptor expression in subcutaneous and orthotopic thyroid carcinoma xenografts in vivo employing optical imaging methods. Endocrinology 153, 2907–2918 (2012).

    PubMed  Google Scholar 

  96. Ishimoto, S. et al. Role of endothelin receptor signalling in squamous cell carcinoma. Int. J. Oncol. 40, 1011–1019 (2012).

    CAS  PubMed  Google Scholar 

  97. Pagotto, U. et al. Expression and localization of endothelin-1 and endothelin receptors in human meningiomas. Evidence for a role in tumoral growth. J. Clin. Invest. 96, 2017–2025 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Bagnato, A. et al. Role of the endothelin axis and its antagonists in the treatment of cancer. Br. J. Pharmacol. 163, 220–233 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Rajeshkumar, N. V., Rai, A. & Gulati, A. Endothelin B receptor agonist, IRL 1620, enhances the anti-tumor efficacy of paclitaxel in breast tumor rats. Breast Cancer Res. Treat. 94, 237–247 (2005).

    CAS  PubMed  Google Scholar 

  100. Gulati, A., Sunila, E. S. & Kuttan, G. IRL-1620, an endothelin-B receptor agonist, enhanced radiation induced reduction in tumor volume in Dalton's Lymphoma Ascites tumor model. Arzneimittelforschung 62, 14–17 (2012).

    CAS  PubMed  Google Scholar 

  101. Spinella, F. et al. Green tea polyphenol epigallocatechin-3-gallate inhibits the endothelin axis and downstream signalling pathways in ovarian carcinoma. Mol. Cancer Ther. 5, 1483–1492 (2006).

    CAS  PubMed  Google Scholar 

  102. Corder, R. et al. Endothelin-1 synthesis reduced by red wine. Nature 414, 863–864 (2001).

    CAS  PubMed  Google Scholar 

  103. Papandreou, C. N. et al. Neutral endopeptidase 24.11 loss in metastatic human prostate cancer contributes to androgen-independent progression. Nature Med. 4, 50–57 (1998).

    CAS  PubMed  Google Scholar 

  104. Kajiyama, H. et al. Neutral endopeptidase 24.11/CD10 suppresses progressive potential in ovarian carcinoma in vitro and in vivo. Clin. Cancer Res. 11, 1798–1808 (2005).

    CAS  PubMed  Google Scholar 

  105. Morris, C. D. et al. Specific inhibition of the endothelin A receptor with ZD4054: clinical and pre-clinical evidence. Br. J. Cancer 92, 2148–2152 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Miller, K. et al. Phase III, randomized, placebo-controlled study of once-daily oral zibotentan (ZD4054) in patients with non-metastatic castration-resistant prostate cancer. Prostate Cancer Prostatic Dis. 16, 187–192 (2013).

    CAS  PubMed  Google Scholar 

  107. Yu, E. Y. et al. Detection of previously unidentified metastatic disease as a leading cause of screening failure in a Phase III trial of zibotentan versus placebo in patients with nonmetastatic, castration resistant prostate cancer. J. Urol. 188, 103–109 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Cognetti, F. et al. A Phase II, randomized, double-blind study of zibotentan (ZD4054) in combination with carboplatin/paclitaxel versus placebo in combination with carboplatin/paclitaxel in patients with advanced ovarian cancer sensitive to platinum-based chemotherapy (AGO-OVAR 2.14). Gynecol. Oncol. 130, 31–37 (2012).

    PubMed  Google Scholar 

  109. Spirig, R. et al. TLR2 and TLR4 agonists induce production of the vasoactive peptide endothelin-1 by human dendritic cells. Mol. Immunol. 46, 3178–3182 (2009).

    CAS  PubMed  Google Scholar 

  110. Fischgräbe, J. et al. Targeting endothelin A receptor enhances anti-proliferative and anti-invasive effects of the HER2 antibody trastuzumab in HER2-overexpressing breast cancer cells. Int. J. Cancer 127, 696–706 (2010).

    PubMed  Google Scholar 

  111. Chang, I. et al. Endothelin-2 deficiency causes growth retardation, hypothermia, and emphysema in mice. J. Clin. Invest. 123, 2643–2653 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Grimshaw, M. J., Naylor, S. & Balkwill, F. R. Endothelin-2 is a hypoxia-induced autocrine survival factor for breast tumor cells. Mol. Cancer. Ther. 1, 1273–1281 (2002).

    CAS  PubMed  Google Scholar 

  113. Grimshaw, M. J. et al. A role for endothelin-2 and its receptors in breast tumor cell invasion. Cancer Res. 64, 2461–2468 (2004). References 111 and 112 describe an essential role for ET2 in breast tumour cell invasion.

    CAS  PubMed  Google Scholar 

  114. Hagemann, T. et al. Enhanced invasiveness of breast cancer cell lines upon co-cultivation with macrophages is due to TNF-α dependent up-regulation of matrix metalloproteases. Carcinogenesis 25, 1543–1549 (2004).

    CAS  PubMed  Google Scholar 

  115. Tanese, K., Fukuma, M., Ishiko, A. & Sakamoto, M. Endothelin-2 is upregulated in basal cell carcinoma under control of Hedgehog signaling pathway. Biochem. Biophys. Res. Commun. 391, 486–491 (2010).

    CAS  PubMed  Google Scholar 

  116. Chang, C. Y. et al. NFIB is a governor of epithelial-melanocyte stem cell behaviour in a shared niche. Nature. 495, 98–102 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Hosoda, K. et al. Targeted and natural (piebald-lethal) mutations of endothelin-B receptor gene produce megacolon associated with spotted coat color in mice. Cell 79, 1267–1276 (1994).

    CAS  PubMed  Google Scholar 

  118. Tang, L. et al. Endothelin-3 is produced by metastatic melanoma cells and promotes melanoma cell survival. J. Cutan. Med. Surg. 12, 64–70 (2008).

    CAS  PubMed  Google Scholar 

  119. Palladini, A. et al. Endothelin-3 production by human rhabdomyosarcoma: a possible new marker with a paracrine role. Eur. J. Cancer. 42, 680–687 (2006).

    CAS  PubMed  Google Scholar 

  120. Welch, A., Jacobs, M., Wingo, C. & Cain, B. Early progress in epigenetic regulation of endothelin pathway genes. Br. J. Pharmacol. 168, 327–334 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Wang, R. et al. Epigenetic inactivation of endothelin-2 and endothelin-3 in colon cancer. Int. J. Cancer 132, 1004–1012 (2013).

    CAS  PubMed  Google Scholar 

  122. Eltze, E. et al. Expression of the endothelin axis in noninvasive and superficially invasive bladder cancer: relation to clinicopathologic and molecular prognostic parameters. Eur. Urol. 56, 837–845 (2009).

    CAS  PubMed  Google Scholar 

  123. Egidy, G. et al. The endothelin system in human glioblastoma. Lab. Invest. 80, 1681–1689 (2000).

    CAS  PubMed  Google Scholar 

  124. Anguelova, E. et al. Functional endothelin ET B receptors are selectively expressed in human oligodendrogliomas. Brain Res. Mol. Brain Res. 137, 77–88 (2005).

    CAS  PubMed  Google Scholar 

  125. Wülfing, P. et al. Endothelin-1, Endothelin-A and Endothelin-B-receptor expression is correlated with VEGF expression and angiogenesis in breast cancer. Clin. Cancer Res. 10, 2393–2400 (2004).

    PubMed  Google Scholar 

  126. Hoosein, M. M. et al. Altered endothelin receptor subtypes in colorectal cancer. Eur. J. Gastroenterol. Hepatol. 19, 775–782 (2007).

    CAS  PubMed  Google Scholar 

  127. Liakou, P. et al. Expression patterns of endothelin-1 and its receptors in colorectal cancer. J. Surg. Oncol. 105, 643–649 (2012).

    CAS  PubMed  Google Scholar 

  128. Hsu, L. S. et al. Aberrant methylation of EDNRB and p16 genes in hepatocellular carcinoma (HCC) in Taiwan. Oncol. Rep. 15, 507–511 (2006).

    CAS  PubMed  Google Scholar 

  129. Fukui, R. et al. Inhibitory effect of endothelin A receptor blockade on tumor growth and liver metastasis of a human gastric cancer cell line. Gastr. Cancer 10, 123–128 (2007).

    CAS  Google Scholar 

  130. Tao, K. et al. Quantitative analysis of promoter methylation of the EDNRB gene in gastric cancer. Med. Oncol. 29, 107–112 (2012).

    CAS  PubMed  Google Scholar 

  131. Wen, Y. F. et al. Polymorphisms in the endothelin-1 and endothelin A receptor genes and survival in patients with locoregionally advanced nasopharyngeal carcinoma. Clin. Cancer Res. 17, 2451–2458 (2011).

    CAS  PubMed  Google Scholar 

  132. Boldrini, L. et al. Expression of endothelin-1 is related to poor prognosis in non-small cell lung carcinoma. Eur. J. Cancer. 41, 2828–2835 (2005).

    CAS  PubMed  Google Scholar 

  133. Blouquit-Laye, S. et al. Expression of endothelin receptor subtypes in bronchial tumors. Oncol. Rep. 23, 457–463 (2010).

    PubMed  Google Scholar 

  134. Demunter, A., De Wolf-Peeters, C., Degreef, H., Stas, M. & van den Oord, J. J. Expression of the endothelin-B receptor in pigment cell lesions of the skin. Evidence for its role as tumor progression marker in malignant melanoma. Virchows Arch. 438, 485–491 (2001).

    CAS  PubMed  Google Scholar 

  135. Smith, S. L. et al. Decreased endothelin receptor B expression in large primary uveal melanomas is associated with early clinical metastasis and short survival. Br. J. Cancer 87, 1308–1313 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Bagnato, A. et al. Expression of endothelin 1 and endothelin A receptor in ovarian carcinoma: evidence for an autocrine role in tumor growth. Cancer Res. 59, 720–727 (1999).

    CAS  PubMed  Google Scholar 

  137. Godara, G. et al. Distinct patterns of endothelin axis expression in primary prostate cancer. Urology 70, 209–215 (2007).

    PubMed  Google Scholar 

  138. Nelson, J. B. et al. Suppression of prostate cancer induced bone remodeling by the endothelin receptor A antagonist atrasentan. J. Urol. 169, 1143–1149 (2003).

    CAS  PubMed  Google Scholar 

  139. Herrmann, E. et al. Expression of the endothelin-axis in the different histologic subtypes of renal cell carcinoma: a tissue microarray analysis. Oncol. Rep. 17, 275–280 (2007).

    CAS  PubMed  Google Scholar 

  140. Wuttig, D. et al. CD31, EDNRB and TSPAN7 are promising prognostic markers in clear-cell renal cell carcinoma revealed by genome-wide expression analyses of primary tumors and metastases. Int. J. Cancer 131, e693–e704 (2012).

    CAS  PubMed  Google Scholar 

  141. Douglas, M. L., Richardson, M. M. & Nicol, D. L. Endothelin axis expression is markedly different in the two main subtypes of renal cell carcinoma. Cancer 100, 2118–2124 (2004).

    CAS  PubMed  Google Scholar 

  142. Yao, M. et al. A three-gene expression signature model to predict clinical outcome of clear cell renal carcinoma. Int. J. Cancer 123, 1126–1132 (2008).

    CAS  PubMed  Google Scholar 

  143. Eltze, E. et al. Expression and prognostic relevance of endothelin-B receptor in vulvar cancer. Oncol. Rep. 18, 305–311 (2007).

    CAS  PubMed  Google Scholar 

  144. Nelson, J. B. et al. Phase 3, randomized, placebo-controlled study of zibotentan (ZD4054) in patients with castration-resistant prostate cancer metastatic to bone. Cancer 118, 5709–5718 (2012).

    CAS  PubMed  Google Scholar 

  145. Chouaid, C., Nathan, F., Pemberton, K. & Morris, T. A Phase II, randomized, multicenter study to assess the efficacy, safety, and tolerability of zibotentan (ZD4054) in combination with pemetrexed in patients with advanced non-small cell lung cancer. Cancer Chemother. Pharmacol. 67, 1203–1208 (2011).

    CAS  PubMed  Google Scholar 

  146. Nelson, J. B. et al. Phase 3, randomized, controlled trial of atrasentan in patients with nonmetastatic, hormone-refractory prostate cancer. Cancer 113, 2478–2487 (2008).

    CAS  PubMed  Google Scholar 

  147. Carducci, M. A. et al. A Phase 3 randomized controlled trial of the efficacy and safety of atrasentan in men with metastatic hormone-refractory prostate cancer. Cancer 110, 1959–1966 (2007).

    CAS  PubMed  Google Scholar 

  148. Kefford, R. et al. A Phase II study of bosentan, a dual endothelin receptor antagonist, as monotherapy in patients with stage IV metastatic melanoma. Invest. New Drugs 25, 247–252 (2007).

    CAS  PubMed  Google Scholar 

  149. Kefford, R. F. et al. A randomized, double-blind, placebo-controlled study of high-dose bosentan in patients with stage IV metastatic melanoma receiving first-line dacarbazine chemotherapy. Mol. Cancer 9, 69 (2010).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank P. G. Natali, V. Di Castro and all members of the laboratory for their constant support and enthusiasm. Work in A.B.'s laboratory is supported in part by Associazione Italiana Ricerca sul Cancro. The authors apologize to their colleagues whose work could not be cited here owing to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Bagnato.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Nociceptive

Pertaining to nociceptors, which are nerves with specialized receptors that send pain signals to the brain and spinal cord.

Autocrine

A mode of signalling in which a secreted substance acts on surface receptors that are present on the same cell from which the substance was produced.

Paracrine

A form of bioregulation in which a secretion produced by one cell type in a tissue diffuses through the tissue and affects another cell type in the same tissue.

β-arrestins

A family of proteins that interact with the carboxyl termini of G protein-coupled receptors and that help to mediate receptor desensitization, internalization, recycling and signalling.

Lymphangiogenesis

The formation of lymphatic vessels from pre-existing lymphatic vessels, in a way similar to blood vessel development or angiogenesis.

Triple-negative breast cancer

(TNBC). Breast cancer that lacks the expression of oestrogen receptor, progesterone receptor and ERBB2.

Proenzymes

Also known as zymogens. The inactive or nearly inactive precursors of enzymes, which are converted into active enzymes by proteolysis.

Mesothelial

Pertaining to the layer of flat cells of mesodermal origin that lines the embryonic body cavity and that gives rise to the squamous cells of the peritoneum, pericardium and pleura.

Osteoblasts

Cells responsible for bone formation. They express bone sialoprotein and osteocalcin and produce osteoid, which is mainly composed of type I collagen.

Osteoclast

A cell that breaks down mineralized bone and that is responsible for bone resorption.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosanò, L., Spinella, F. & Bagnato, A. Endothelin 1 in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 13, 637–651 (2013). https://doi.org/10.1038/nrc3546

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3546

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer