Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Inside the human cancer tyrosine phosphatome

Key Points

  • The protein tyrosine phosphatase (Ptp) family comprises 107 members that are classified into four classes on the basis of the amino acid sequences of their catalytic domains.

  • Recent evidence has shown that members of the Ptp family are key components of tumorigenesis in various human cancers, exerting either putative oncogenic or tumour suppressive functions, depending on the cellular context.

  • Genetic alterations such as mutation, deletion and amplification are the most important features for putative oncogenic PTPs, whereas in most cases epigenetic modifications such as DNA methylation counter the tumour suppressive functions of PTPs.

  • Recent advances have begun to decipher the molecular mechanisms by which putative oncogenic PTPs may drive tumorigenesis in human cells. Proliferation, survival, apoptosis, vesicular trafficking, adhesion, migration and invasion are all altered by the aberrant functions of PTPs during tumour development.

  • Evidence for an association between PTPs and an increased risk of developing cancer remains controversial and elusive. Here, we focus on the pertinent genetic and functional data that support the relevance of members of the Ptp family to human cancer.

  • PTP inhibitors are currently being developed. However, a better understanding of the basic biology of PTPs in human tumour development will be required to improve the therapeutic use of such inhibitors.

Abstract

Members of the protein tyrosine phosphatase (Ptp) family dephosphorylate target proteins and counter the activities of protein tyrosine kinases that are involved in cellular phosphorylation and signalling. As such, certain PTPs might be tumour suppressors. Indeed, PTPs play an important part in the inhibition or control of growth, but accumulating evidence indicates that some PTPs may exert oncogenic functions. Recent large-scale genetic analyses of various human tumours have highlighted the relevance of PTPs either as putative tumour suppressors or as candidate oncoproteins. Progress in understanding the regulation and function of PTPs has provided insights into which PTPs might be potential therapeutic targets in human cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Ptp superfamily and human cancer.
Figure 2: Chromosome mapping of human PTP genes and linkage to genetic alterations in human cancer.
Figure 3: Selected PTPs and the location of mutations and SNPs reported in human cancer.
Figure 4: Proposed mechanisms of tumour suppressor functions of PTPs.
Figure 5: Mechanisms of putative oncogenic function of PTPs in cancer.

Similar content being viewed by others

References

  1. Hunter, T. Tyrosine phosphorylation: thirty years and counting. Curr. Opin. Cell Biol. 21, 140–146 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tonks, N. K., Diltz, C. D. & Fischer, E. H. Purification of the major protein-tyrosine-phosphatases of human placenta. J. Biol. Chem. 263, 6722–6730 (1988). A landmark study reporting the characterization of the first PTP in humans.

    CAS  PubMed  Google Scholar 

  3. Andersen, J. N. et al. A genomic perspective on protein tyrosine phosphatases: gene structure, pseudogenes, and genetic disease linkage. FASEB J. 18, 8–30 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Esteller, M. Epigenetics in cancer. N. Engl. J. Med. 358, 1148–1159 (2008). An up-to-date review that deciphers the mechanisms and clinical outcomes of gene silencing in cancer.

    Article  CAS  PubMed  Google Scholar 

  5. van Doorn, R. et al. Epigenetic profiling of cutaneous T-cell lymphoma: promoter hypermethylation of multiple tumor suppressor genes including BCL7a, PTPRG, and p73. J. Clin. Oncol. 23, 3886–3896 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Wang, J. F. & Dai, D. Q. Metastatic suppressor genes inactivated by aberrant methylation in gastric cancer. World J. Gastroenterol. 13, 5692–5698 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Veeriah, S. et al. The tyrosine phosphatase PTPRD is a tumor suppressor that is frequently inactivated and mutated in glioblastoma and other human cancers. Proc. Natl Acad. Sci. USA 106, 9435–9440 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Motiwala, T. et al. Methylation and silencing of protein tyrosine phosphatase receptor type O in chronic lymphocytic leukemia. Clin. Cancer Res. 13, 3174–3181 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Motiwala, T. et al. Protein tyrosine phosphatase receptor-type O (PTPRO) exhibits characteristics of a candidate tumor suppressor in human lung cancer. Proc. Natl Acad. Sci. USA 101, 13844–13849 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yeh, S. H. et al. Genetic characterization of fas-associated phosphatase-1 as a putative tumor suppressor gene on chromosome 4q21.3 in hepatocellular carcinoma. Clin. Cancer Res. 12, 1097–1108 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Jacob, S. T. & Motiwala, T. Epigenetic regulation of protein tyrosine phosphatases: potential molecular targets for cancer therapy. Cancer Gene Ther. 12, 665–672 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Oka, T. et al. Gene silencing of the tyrosine phosphatase SHP1 gene by aberrant methylation in leukemias/lymphomas. Cancer Res. 62, 6390–6394 (2002).

    CAS  PubMed  Google Scholar 

  13. Koyama, M. et al. Activated proliferation of B-cell lymphomas/leukemias with the SHP1 gene silencing by aberrant CpG methylation. Lab. Invest. 83, 1849–1858 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Reddy, J. et al. Differential methylation of genes that regulate cytokine signaling in lymphoid and hematopoietic tumors. Oncogene 24, 732–736 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Zapata, P. D. et al. Autocrine regulation of human prostate carcinoma cell proliferation by somatostatin through the modulation of the SH2 domain containing protein tyrosine phosphatase (SHP)-1. J. Clin. Endocrinol. Metab. 87, 915–926 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Rauhala, H. E. et al. Dual-specificity phosphatase 1 and serum/glucocorticoid-regulated kinase are downregulated in prostate cancer. Int. J. Cancer 117, 738–745 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Xu, S., Furukawa, T., Kanai, N., Sunamura, M. & Horii, A. Abrogation of DUSP6 by hypermethylation in human pancreatic cancer. J. Hum. Genet. 50, 159–167 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Wang, Z. et al. Mutational analysis of the tyrosine phosphatome in colorectal cancers. Science 304, 1164–1166 (2004). This study used high-throughput sequence-based mutational analysis to identify somatic inactivating mutations in genes encoding PTPs and found that six function as tumour suppressors in normal colon cells.

    Article  CAS  PubMed  Google Scholar 

  19. Zhao, Y. et al. Identification and functional characterization of paxillin as a target of protein tyrosine phosphatase receptor, T. Proc. Natl Acad. Sci. USA 107, 2592–2597 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Korff, S. et al. Frameshift mutations in coding repeats of protein tyrosine phosphatase genes in colorectal tumors with microsatellite instability. BMC Cancer 8, 329 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Solomon, D. A. et al. Mutational inactivation of PTPRD in glioblastoma multiforme and malignant melanoma. Cancer Res. 68, 10300–10306 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Uetani, N. et al. Impaired learning with enhanced hippocampal long-term potentiation in PTPdelta-deficient mice. EMBO J. 19, 2775–2785 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hendriks, W. J., Elson, A., Harroch, S. & Stoker, A. W. Protein tyrosine phosphatases: functional inferences from mouse models and human diseases. FEBS J. 275, 816–830 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Kleppe, M. et al. Deletion of the protein tyrosine phosphatase gene PTPN2 in T-cell acute lymphoblastic leukemia. Nature Genet. 42, 530–535 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Saha, S. et al. A phosphatase associated with metastasis of colorectal cancer. Science 294, 1343–1346 (2001). This work showed for the first time that PRL3 is involved in human cancer. More specifically, PRL3 was only consistently overexpressed in colon cancer metastasis, suggesting that PRL3 could be a new therapeutic target for these lesions.

    Article  CAS  PubMed  Google Scholar 

  26. Bardelli, A. et al. PRL-3 expression in metastatic cancers. Clin. Cancer Res. 9, 5607–5615 (2003).

    CAS  PubMed  Google Scholar 

  27. Ahmadiyeh, N. et al. 8q24 prostate, breast, and colon cancer risk loci show tissue-specific long-range interaction with MYC. Proc. Natl Acad. Sci. USA 107, 9742–9746 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang, S. H. et al. Gene copy number change events at chromosome 20 and their association with recurrence in gastric cancer patients. Clin. Cancer Res. 11, 612–620 (2005).

    CAS  PubMed  Google Scholar 

  29. Mahlamaki, E. H. et al. Frequent amplification of 8q24, 11q, 17q, and 20q-specific genes in pancreatic cancer. Genes Chromosomes Cancer 35, 353–358 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Zanke, B. et al. A hematopoietic protein tyrosine phosphatase (HePTP) gene that is amplified and overexpressed in myeloid malignancies maps to chromosome 1q32.1. Leukemia 8, 236–244 (1994).

    CAS  PubMed  Google Scholar 

  31. Yu, W. et al. A novel amplification target, DUSP26, promotes anaplastic thyroid cancer cell growth by inhibiting p38 MAPK activity. Oncogene 26, 1178–1187 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Ruivenkamp, C. A. et al. Ptprj is a candidate for the mouse colon-cancer susceptibility locus Scc1 and is frequently deleted in human cancers. Nature Genet. 31, 295–300 (2002). This study provides strong evidence for the putative tumour suppressive function of DEP1 (also known as PTPRJ) in human and mouse samples.

    Article  CAS  PubMed  Google Scholar 

  33. Iuliano, R. et al. The tyrosine phosphatase PTPRJ/DEP-1 genotype affects thyroid carcinogenesis. Oncogene 23, 8432–8438 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Mita, Y. et al. Missense polymorphisms of PTPRJ and PTPN13 genes affect susceptibility to a variety of human cancers. J. Cancer Res. Clin. Oncol. 136, 249–259 (2009).

    Article  PubMed  CAS  Google Scholar 

  35. Ying, J. et al. Epigenetic disruption of two proapoptotic genes MAPK10/JNK3 and PTPN13/FAP-1 in multiple lymphomas and carcinomas through hypermethylation of a common bidirectional promoter. Leukemia 20, 1173–1175 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Ding, L. et al. Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 464, 999–1005 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sacco, F. et al. Tumor suppressor density-enhanced phosphatase-1 (DEP-1) inhibits the RAS pathway by direct dephosphorylation of ERK1/2 kinases. J. Biol. Chem. 284, 22048–22058 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Trapasso, F. et al. Genetic ablation of Ptprj, a mouse cancer susceptibility gene, results in normal growth and development and does not predispose to spontaneous tumorigenesis. DNA Cell Biol. 25, 376–382 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Streit, S. et al. PTP-PEST phosphatase variations in human cancer. Cancer Genet. Cytogenet. 170, 48–53 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Larsen, M., Tremblay, M. L. & Yamada, K. M. Phosphatases in cell-matrix adhesion and migration. Nature Rev. Mol. Cell Biol. 4, 700–711 (2003).

    Article  CAS  Google Scholar 

  41. Mustelin, T., Vang, T. & Bottini, N. Protein tyrosine phosphatases and the immune response. Nature Rev. Immunol. 5, 43–57 (2005).

    Article  CAS  Google Scholar 

  42. Ostman, A., Hellberg, C. & Bohmer, F. D. Protein-tyrosine phosphatases and cancer. Nature Rev. Cancer 6, 307–320 (2006).

    Article  CAS  Google Scholar 

  43. Tarcic, G. et al. An unbiased screen identifies DEP-1 tumor suppressor as a phosphatase controlling EGFR endocytosis. Curr. Biol. 19, 1788–1798 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Polo, S. & Di Fiore, P. P. Endocytosis conducts the cell signaling orchestra. Cell 124, 897–900 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Kovalenko, M. et al. Site-selective dephosphorylation of the platelet-derived growth factor beta-receptor by the receptor-like protein-tyrosine phosphatase DEP-1. J. Biol. Chem. 275, 16219–16226 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Grazia Lampugnani, M. et al. Contact inhibition of VEGF-induced proliferation requires vascular endothelial cadherin, beta-catenin, and the phosphatase DEP-1/CD148. J. Cell Biol. 161, 793–804 (2003).

    Article  PubMed  CAS  Google Scholar 

  47. Zhang, X. et al. Identification of STAT3 as a substrate of receptor protein tyrosine phosphatase, T. Proc. Natl Acad. Sci. USA 104, 4060–4064 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Seo, Y. et al. Overexpression of SAP-1, a transmembrane-type protein tyrosine phosphatase, in human colorectal cancers. Biochem. Biophys. Res. Commun. 231, 705–711 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Matozaki, T. et al. Molecular cloning of a human transmembrane-type protein tyrosine phosphatase and its expression in gastrointestinal cancers. J. Biol. Chem. 269, 2075–2081 (1994).

    CAS  PubMed  Google Scholar 

  50. Sadakata, H. et al. SAP-1 is a microvillus-specific protein tyrosine phosphatase that modulates intestinal tumorigenesis. Genes Cells 14, 295–308 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Sparks, A. B., Morin, P. J., Vogelstein, B. & Kinzler, K. W. Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer. Cancer Res. 58, 1130–1134 (1998).

    CAS  PubMed  Google Scholar 

  52. Cheng, A., Bal, G. S., Kennedy, B. P. & Tremblay, M. L. Attenuation of adhesion-dependent signaling and cell spreading in transformed fibroblasts lacking protein tyrosine phosphatase-1B. J. Biol. Chem. 276, 25848–55 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Bjorge, J. D., Pang, A. & Fujita, D. J. Identification of protein-tyrosine phosphatase 1B as the major tyrosine phosphatase activity capable of dephosphorylating and activating c-Src in several human breast cancer cell lines. J. Biol. Chem. 275, 41439–46 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Julien, S. G. et al. Protein tyrosine phosphatase 1B deficiency or inhibition delays ErbB2-induced mammary tumorigenesis and protects from lung metastasis. Nature Genet. 39, 338–46 (2007). Using genetic and pharmacological approaches, PTPN1 was identified for the first time as an oncogene and a therapeutic target in breast cancer.

    Article  CAS  PubMed  Google Scholar 

  55. Bentires-Alj, M. & Neel, B. G. Protein-tyrosine phosphatase 1B is required for HER2/Neu-induced breast cancer. Cancer Res. 67, 2420–4 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Dube, N. et al. Genetic ablation of protein tyrosine phosphatase 1B accelerates lymphomagenesis of p53-null mice through the regulation of B-cell development. Cancer Res. 65, 10088–95 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Novellino, L. et al. PTPRK negatively regulates transcriptional activity of wild type and mutated oncogenic beta-catenin and affects membrane distribution of beta-catenin/E-cadherin complexes in cancer cells. Cell Signal 20, 872–883 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Anders, L. et al. Furin-, ADAM 10-, and gamma-secretase-mediated cleavage of a receptor tyrosine phosphatase and regulation of beta-catenin's transcriptional activity. Mol. Cell Biol. 26, 3917–3934 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Abaan, O. D. & Toretsky, J. A. PTPL1: a large phosphatase with a split personality. Cancer Metastasis Rev. 27, 205–214 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dubash, A. D. et al. Chapter 1. Focal adhesions: new angles on an old structure. Int. Rev. Cell. Mol. Biol. 277, 1–65 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Harder, K. W., Moller, N. P., Peacock, J. W. & Jirik, F. R. Protein-tyrosine phosphatase alpha regulates Src family kinases and alters cell-substratum adhesion. J. Biol. Chem. 273, 31890–31900 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Wu, C. W., Kao, H. L., Li, A. F., Chi, C. W. & Lin, W. C. Protein tyrosine-phosphatase expression profiling in gastric cancer tissues. Cancer Lett. 242, 95–103 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Mathew, S. et al. Potential molecular mechanism for c-Src kinase-mediated regulation of intestinal cell migration. J. Biol. Chem. 283, 22709–22722 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sahu, S. N., Nunez, S., Bai, G. & Gupta, A. Interaction of Pyk2 and PTP-PEST with leupaxin in prostate cancer cells. Am. J. Physiol. Cell Physiol. 292, C2288–C2296 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Daouti, S. et al. A selective phosphatase of regenerating liver phosphatase inhibitor suppresses tumor cell anchorage-independent growth by a novel mechanism involving p130Cas cleavage. Cancer Res. 68, 1162–1169 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Zeng, Q. et al. PRL-3 and PRL-1 promote cell migration, invasion, and metastasis. Cancer Res. 63, 2716–2722 (2003).

    CAS  PubMed  Google Scholar 

  67. Guo, K. et al. Catalytic domain of PRL-3 plays an essential role in tumor metastasis: formation of PRL-3 tumors inside the blood vessels. Cancer Biol. Ther. 3, 945–951 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Guo, K., Tang, J. P., Tan, C. P., Wang, H. & Zeng, Q. Monoclonal antibodies target intracellular PRL phosphatases to inhibit cancer metastases in mice. Cancer Biol. Ther. 7, 750–757 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Fiordalisi, J. J., Keller, P. J. & Cox, A. D. PRL tyrosine phosphatases regulate rho family GTPases to promote invasion and motility. Cancer Res. 66, 3153–3161 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. McLean, G. W., et al. The role of focal-adhesion kinase in cancer - a new therapeutic opportunity. Nature Rev. Cancer 5, 505–515 (2005).

    Article  CAS  Google Scholar 

  71. Liang, F. et al. Translational control of C-terminal Src kinase (Csk) expression by PRL3 phosphatase. J. Biol. Chem. 283, 10339–10346 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fujita, Y. et al. Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nature Cell Biol. 4, 222–231 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Sallee, J. L., Wittchen, E. S. & Burridge, K. Regulation of cell adhesion by protein-tyrosine phosphatases: II. Cell-cell adhesion. J. Biol. Chem. 281, 16189–16192 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Hellberg, C. B., Burden-Gulley, S. M., Pietz, G. E. & Brady-Kalnay, S. M. Expression of the receptor protein-tyrosine phosphatase, PTPmu, restores E-cadherin-dependent adhesion in human prostate carcinoma cells. J. Biol. Chem. 277, 11165–11173 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Aricescu, A. R. & Jones, E. Y. Immunoglobulin superfamily cell adhesion molecules: zippers and signals. Curr. Opin. Cell Biol. 19, 543–550 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Burgoyne, A. M. et al. PTPmu suppresses glioma cell migration and dispersal. Neuro Oncol. 11, 767–778 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Burgoyne, A. M. et al. Proteolytic cleavage of protein tyrosine phosphatase mu regulates glioblastoma cell migration. Cancer Res. 69, 6960–6968 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tanuma, N. et al. Protein phosphatase Dusp26 associates with KIF3 motor and promotes N-cadherin-mediated cell-cell adhesion. Oncogene 28, 752–761 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Vallat, L. et al. The resistance of B-CLL cells to DNA damage-induced apoptosis defined by DNA microarrays. Blood 101, 4598–4606 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Ren, T. et al. Prognostic Significance of Phosphatase of Regenerating Liver-3 Expression in Ovarian Cancer. Pathol. Oncol. Res. (2009).

  81. Zhou, J., Wang, S., Lu, J., Li, J. & Ding, Y. Over-expression of phosphatase of regenerating liver-3 correlates with tumor progression and poor prognosis in nasopharyngeal carcinoma. Int. J. Cancer 124, 1879–1886 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Wang, L. et al. Overexpression of phosphatase of regenerating liver-3 in breast cancer: association with a poor clinical outcome. Ann. Oncol. 17, 1517–1522 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Radke, I. et al. Expression and prognostic impact of the protein tyrosine phosphatases PRL-1, PRL-2, and PRL-3 in breast cancer. Br. J. Cancer 95, 347–354 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang, Y. et al. Expression of the human phosphatases of regenerating liver (PRLs) in colonic adenocarcinoma and its correlation with lymph node metastasis. Int. J. Colorectal Dis. 22, 1179–1184 (2007).

    Article  PubMed  Google Scholar 

  85. Mollevi, D. G. et al. PRL-3 is essentially overexpressed in primary colorectal tumours and associates with tumour aggressiveness. Br. J. Cancer 99, 1718–1725 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Xing, X. et al. Prognostic value of PRL-3 overexpression in early stages of colonic cancer. Histopathology 54, 309–318 (2009).

    Article  PubMed  Google Scholar 

  87. Peng, L., Ning, J., Meng, L. & Shou, C. The association of the expression level of protein tyrosine phosphatase PRL-3 protein with liver metastasis and prognosis of patients with colorectal cancer. J. Cancer Res. Clin. Oncol. 130, 521–526 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Kato, H. et al. High expression of PRL-3 promotes cancer cell motility and liver metastasis in human colorectal cancer: a predictive molecular marker of metachronous liver and lung metastases. Clin. Cancer Res. 10, 7318–7328 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Wang, Z. et al. Expression and prognostic impact of PRL-3 in lymph node metastasis of gastric cancer: its molecular mechanism was investigated using artificial microRNA interference. Int. J. Cancer 123, 1439–1447 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Wang, Z. et al. High expression of PRL-3 can promote growth of gastric cancer and exhibits a poor prognostic impact on patients. Ann. Surg. Oncol. 16, 208–219 (2009).

    Article  PubMed  Google Scholar 

  91. Wang, Z. et al. Elevated PRL-3 expression was more frequently detected in the large primary gastric cancer and exhibits a poor prognostic impact on the patients. J. Cancer Res. Clin. Oncol. 135, 1041–1046 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Miskad, U. A. et al. High PRL-3 expression in human gastric cancer is a marker of metastasis and grades of malignancies: an in situ hybridization study. Virchows Arch. 450, 303–310 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Miskad, U. A., Semba, S., Kato, H. & Yokozaki, H. Expression of PRL-3 phosphatase in human gastric carcinomas: close correlation with invasion and metastasis. Pathobiology 71, 176–184 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Li, Z. R. et al. Association of tyrosine PRL-3 phosphatase protein expression with peritoneal metastasis of gastric carcinoma and prognosis. Surg. Today 37, 646–651 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Givant-Horwitz, V. et al. The PAC-1 dual specificity phosphatase predicts poor outcome in serous ovarian carcinoma. Gynecol. Oncol. 93, 517–523 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Tsujita, E. et al. Suppressed MKP-1 is an independent predictor of outcome in patients with hepatocellular carcinoma. Oncology 69, 342–347 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Blaskovich, M. A. Drug discovery and protein tyrosine phosphatases. Curr. Med. Chem. 16, 2095–2176 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Jiang, Z. X. & Zhang, Z. Y. Targeting PTPs with small molecule inhibitors in cancer treatment. Cancer Metastasis Rev. 27, 263–272 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Heneberg, P. Use of protein tyrosine phosphatase inhibitors as promising targeted therapeutic drugs. Curr. Med. Chem. 16, 706–733 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Yi, T. et al. Anticancer activity of sodium stibogluconate in synergy with IFNs. J. Immunol. 169, 5978–5985 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Seifert, K., Escobar, P. & Croft, S. L. In vitro activity of anti-leishmanial drugs against Leishmania donovani is host cell dependent. J. Antimicrob. Chemother. 65, 508–511 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Liu, G. Technology evaluation: ISIS-113715, Isis. Curr. Opin. Mol. Ther. 6, 331–336 (2004).

    CAS  PubMed  Google Scholar 

  103. Zhang, S. et al. Acquisition of a potent and selective TC-PTP inhibitor via a stepwise fluorophore-tagged combinatorial synthesis and screening strategy. J. Am. Chem. Soc. 131, 13072–13079 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Seco, J., Luque, F. J. & Barril, X. Binding site detection and druggability index from first principles. J. Med. Chem. 52, 2363–2371 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Combs, A. P. Recent Advances in the discovery of competitive protein tyrosine phosphatase 1b inhibitors for the treatment of diabetes, obesity, and cancer. J. Med. Chem. 53, 2333–2344 (2009).

    Article  CAS  Google Scholar 

  106. Asante-Appiah, E. et al. Conformation-assisted inhibition of protein-tyrosine phosphatase-1B elicits inhibitor selectivity over T-cell protein-tyrosine phosphatase. J. Biol. Chem. 281, 8010–8015 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Montalibet, J. et al. Residues distant from the active site influence protein-tyrosine phosphatase 1B inhibitor binding. J. Biol. Chem. 281, 5258–5266 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Bharatham, K., Bharatham, N., Kwon, Y. J. & Lee, K. W. Molecular dynamics simulation study of PTP1B with allosteric inhibitor and its application in receptor based pharmacophore modeling. J. Comput. Aided Mol. Des. 22, 925–933 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Barr, A. J. et al. Large-scale structural analysis of the classical human protein tyrosine phosphatome. Cell 136, 352–363 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hower, A. E., Beltran, P. J. & Bixby, J. L. Dimerization of tyrosine phosphatase PTPRO decreases its activity and ability to inactivate TrkC. J. Neurochem. 110, 1635–1647 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Tremblay, M. L. The PTP family photo album. Cell 136, 213–214 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Mattila, E. et al. Inhibition of receptor tyrosine kinase signalling by small molecule agonist of T-cell protein tyrosine phosphatase. BMC Cancer 10, 7 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zbuk, K. M. & Eng, C. Cancer phenomics: RET and PTEN as illustrative models. Nature Rev. Cancer 7, 35–45 (2007).

    Article  CAS  Google Scholar 

  114. Chan, G., Kalaitzidis, D. & Neel, B. G. The tyrosine phosphatase Shp2 (PTPN11) in cancer. Cancer Metastasis Rev. 27, 179–192 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Mohi, M. G. & Neel, B. G. The role of Shp2 (PTPN11) in cancer. Curr. Opin. Genet. Dev. 17, 23–30 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Alonso, A. et al. Protein tyrosine phosphatases in the human genome. Cell 117, 699–711 (2004). A key overview of the 107 human genes encoding PTPs, providing classification and nomenclature.

    Article  CAS  PubMed  Google Scholar 

  117. Camps, M., Nichols, A. & Arkinstall, S. Dual specificity phosphatases: a gene family for control of MAP kinase function. FASEB J. 14, 6–16 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Tabiti, K., Smith, D. R., Goh, H. S. & Pallen, C. J. Increased mRNA expression of the receptor-like protein tyrosine phosphatase alpha in late stage colon carcinomas. Cancer Lett. 93, 239–248 (1995).

    Article  CAS  PubMed  Google Scholar 

  119. Berndt, A., Luo, X., Bohmer, F. D. & Kosmehl, H. Expression of the transmembrane protein tyrosine phosphatase RPTPalpha in human oral squamous cell carcinoma. Histochem. Cell Biol. 111, 399–403 (1999).

    Article  CAS  PubMed  Google Scholar 

  120. Hagerstrand, D. et al. Gene expression analyses of grade II gliomas and identification of rPTPbeta/zeta as a candidate oligodendroglioma marker. Neuro Oncol. 10, 2–9 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Foehr, E. D. et al. Targeting of the receptor protein tyrosine phosphatase beta with a monoclonal antibody delays tumor growth in a glioblastoma model. Cancer Res. 66, 2271–2278 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Ulbricht, U. et al. Expression and function of the receptor protein tyrosine phosphatase zeta and its ligand pleiotrophin in human astrocytomas. J. Neuropathol. Exp. Neurol. 62, 1265–1275 (2003).

    Article  CAS  PubMed  Google Scholar 

  123. Goldmann, T., Otto, F. & Vollmer, E. A receptor-type protein tyrosine phosphatase PTP zeta is expressed in human cutaneous melanomas. Folia Histochem. Cytobiol 38, 19–20 (2000).

    CAS  PubMed  Google Scholar 

  124. Muller, S. et al. A role for receptor tyrosine phosphatase zeta in glioma cell migration. Oncogene 22, 6661–6668 (2003).

    Article  PubMed  CAS  Google Scholar 

  125. Konishi, N. et al. Overexpression of leucocyte common antigen (LAR) P-subunit in thyroid carcinomas. Br. J. Cancer 88, 1223–1228 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Yang, T., Zhang, J. S., Massa, S. M., Han, X. & Longo, F. M. Leukocyte common antigen-related tyrosine phosphatase receptor: increased expression and neuronal-type splicing in breast cancer cells and tissue. Mol. Carcinog. 25, 139–149 (1999).

    Article  CAS  PubMed  Google Scholar 

  127. Levea, C. M., McGary, C. T., Symons, J. R. & Mooney, R. A. PTP LAR expression compared to prognostic indices in metastatic and non-metastatic breast cancer. Breast Cancer Res. Treat 64, 221–228 (2000).

    Article  CAS  PubMed  Google Scholar 

  128. Vezzalini, M. et al. Expression of transmembrane protein tyrosine phosphatase gamma (PTPgamma) in normal and neoplastic human tissues. Histopathology 50, 615–628 (2007).

    Article  CAS  PubMed  Google Scholar 

  129. Wiener, J. R. et al. Overexpression of the protein tyrosine phosphatase PTP1B in human breast cancer: association with p185c-erbB-2 protein expression. J. Natl Cancer Inst. 86, 372–378 (1994).

    Article  CAS  PubMed  Google Scholar 

  130. Wiener, J. R. et al. Overexpression of the tyrosine phosphatase PTP1B is associated with human ovarian carcinomas. Am. J. Obstet. Gynecol. 170, 1177–1183 (1994).

    Article  CAS  PubMed  Google Scholar 

  131. Wu, C. et al. Protein tyrosine phosphatase PTP1B is involved in neuroendocrine differentiation of prostate cancer. Prostate 66, 1125–1135 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Wu, C. W. et al. PTPN3 and PTPN4 tyrosine phosphatase expression in human gastric adenocarcinoma. Anticancer Res. 26, 1643–1649 (2006).

    CAS  PubMed  Google Scholar 

  133. Warabi, M., Nemoto, T., Ohashi, K., Kitagawa, M. & Hirokawa, K. Expression of protein tyrosine phosphatases and its significance in esophageal cancer. Exp. Mol. Pathol. 68, 187–195 (2000).

    Article  CAS  PubMed  Google Scholar 

  134. Mok, S. C., Kwok, T. T., Berkowitz, R. S., Barrett, A. J. & Tsui, F. W. Overexpression of the protein tyrosine phosphatase, nonreceptor type 6 (PTPN6), in human epithelial ovarian cancer. Gynecol. Oncol. 57, 299–303 (1995).

    Article  CAS  PubMed  Google Scholar 

  135. Stephens, B., Han, H., Hostetter, G., Demeure, M. J. & Von Hoff, D. D. Small interfering RNA-mediated knockdown of PRL phosphatases results in altered Akt phosphorylation and reduced clonogenicity of pancreatic cancer cells. Mol. Cancer Ther. 7, 202–210 (2008).

    Article  CAS  PubMed  Google Scholar 

  136. Liu, Y. Q., Li, H. X., Lou, X. & Lei, J. Y. Expression of phosphatase of regenerating liver 1 and 3 mRNA in esophageal squamous cell carcinoma. Arch. Pathol. Lab. Med. 132, 1307–1312 (2008).

    CAS  PubMed  Google Scholar 

  137. Ming, J., Liu, N., Gu, Y., Qiu, X. & Wang, E. H. PRL-3 facilitates angiogenesis and metastasis by increasing ERK phosphorylation and up-regulating the levels and activities of Rho-A/C in lung cancer. Pathology 41, 118–126 (2009).

    Article  CAS  PubMed  Google Scholar 

  138. Dai, N., Lu, A. P., Shou, C. C. & Li, J. Y. Expression of phosphatase regenerating liver 3 is an independent prognostic indicator for gastric cancer. World J. Gastroenterol. 15, 1499–1505 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Polato, F. et al. PRL-3 phosphatase is implicated in ovarian cancer growth. Clin. Cancer Res. 11, 6835–6839 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. Kong, L., Li, Q., Wang, L., Liu, Z. & Sun, T. The value and correlation between PRL-3 expression and matrix metalloproteinase activity and expression in human gliomas. Neuropathology 27, 516–521 (2007).

    Article  PubMed  Google Scholar 

  141. Fagerli, U. M. et al. Overexpression and involvement in migration by the metastasis-associated phosphatase PRL-3 in human myeloma cells. Blood 111, 806–815 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Zhao, W. B., Li, Y., Liu, X., Zhang, L. Y. & Wang, X. Evaluation of PRL-3 expression, and its correlation with angiogenesis and invasion in hepatocellular carcinoma. Int. J. Mol. Med. 22, 187–192 (2008).

    CAS  PubMed  Google Scholar 

  143. Bang, Y. J., Kwon, J. H., Kang, S. H., Kim, J. W. & Yang, Y. C. Increased MAPK activity and MKP-1 overexpression in human gastric adenocarcinoma. Biochem. Biophys. Res. Commun. 250, 43–47 (1998).

    Article  CAS  PubMed  Google Scholar 

  144. Colombo, J. et al. Gene expression profiling reveals molecular marker candidates of laryngeal squamous cell carcinoma. Oncol. Rep. 21, 649–663 (2009).

    CAS  PubMed  Google Scholar 

  145. Tomioka, H., Morita, K., Hasegawa, S. & Omura, K. Gene expression analysis by cDNA microarray in oral squamous cell carcinoma. J. Oral Pathol. Med. 35, 206–211 (2006).

    Article  CAS  PubMed  Google Scholar 

  146. Vicent, S. et al. Mitogen-activated protein kinase phosphatase-1 is overexpressed in non-small cell lung cancer and is an independent predictor of outcome in patients. Clin. Cancer Res. 10, 3639–3649 (2004).

    Article  CAS  PubMed  Google Scholar 

  147. Wang, H. Y., Cheng, Z. & Malbon, C. C. Overexpression of mitogen-activated protein kinase phosphatases MKP1, MKP2 in human breast cancer. Cancer Lett. 191, 229–237 (2003).

    Article  CAS  PubMed  Google Scholar 

  148. Rojo, F. et al. Mitogen-activated protein kinase phosphatase-1 in human breast cancer independently predicts prognosis and is repressed by doxorubicin. Clin. Cancer Res. 15, 3530–3539 (2009).

    Article  CAS  PubMed  Google Scholar 

  149. Liao, Q. et al. Down-regulation of the dual-specificity phosphatase MKP-1 suppresses tumorigenicity of pancreatic cancer cells. Gastroenterology 124, 1830–1845 (2003).

    Article  CAS  PubMed  Google Scholar 

  150. Loda, M. et al. Expression of mitogen-activated protein kinase phosphatase-1 in the early phases of human epithelial carcinogenesis. Am. J. Pathol. 149, 1553–1564 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Denkert, C. et al. Expression of mitogen-activated protein kinase phosphatase-1 (MKP-1) in primary human ovarian carcinoma. Int. J. Cancer 102, 507–513 (2002).

    Article  CAS  PubMed  Google Scholar 

  152. Magi-Galluzzi, C. et al. Mitogen-activated protein kinase phosphatase 1 is overexpressed in prostate cancers and is inversely related to apoptosis. Lab. Invest. 76, 37–51 (1997).

    CAS  PubMed  Google Scholar 

  153. Henkens, R. et al. Cervix carcinoma is associated with an up-regulation and nuclear localization of the dual-specificity protein phosphatase VHR. BMC Cancer 8, 147 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Levy-Nissenbaum, O. et al. Dual-specificity phosphatase Pyst2-L is constitutively highly expressed in myeloid leukemia and other malignant cells. Oncogene 22, 7649–7660 (2003).

    Article  CAS  PubMed  Google Scholar 

  155. Levy-Nissenbaum, O. et al. Overexpression of the dual-specificity MAPK phosphatase PYST2 in acute leukemia. Cancer Lett. 199, 185–192 (2003).

    Article  CAS  PubMed  Google Scholar 

  156. Lee, S. W., Reimer, C. L., Fang, L., Iruela-Arispe, M. L. & Aaronson, S. A. Overexpression of kinase-associated phosphatase (KAP) in breast and prostate cancer and inhibition of the transformed phenotype by antisense KAP expression. Mol. Cell Biol. 20, 1723–1732 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Yeh, C. T., Lu, S. C., Chen, T. C., Peng, C. Y. & Liaw, Y. F. Aberrant transcripts of the cyclin-dependent kinase-associated protein phosphatase in hepatocellular carcinoma. Cancer Res. 60, 4697–4700 (2000).

    CAS  PubMed  Google Scholar 

  158. Ardini, E. et al. Expression of protein tyrosine phosphatase alpha (RPTPalpha) in human breast cancer correlates with low tumor grade, and inhibits tumor cell growth in vitro and in vivo. Oncogene 19, 4979–4987 (2000).

    Article  CAS  PubMed  Google Scholar 

  159. Nair, P., De Preter, K., Vandesompele, J., Speleman, F. & Stallings, R. L. Aberrant splicing of the PTPRD gene mimics microdeletions identified at this locus in neuroblastomas. Genes Chromosomes Cancer 47, 197–202 (2008).

    Article  CAS  PubMed  Google Scholar 

  160. Cheung, A. K. et al. Functional analysis of a cell cycle-associated, tumor-suppressive gene, protein tyrosine phosphatase receptor type G, in nasopharyngeal carcinoma. Cancer Res. 68, 8137–8145 (2008).

    Article  CAS  PubMed  Google Scholar 

  161. Liu, S. et al. Involvement of breast epithelial-stromal interactions in the regulation of protein tyrosine phosphatase-gamma (PTPgamma) mRNA expression by estrogenically active agents. Breast Cancer Res. Treat 71, 21–35 (2002).

    Article  CAS  PubMed  Google Scholar 

  162. van Niekerk, C. C. & Poels, L. G. Reduced expression of protein tyrosine phosphatase gamma in lung and ovarian tumors. Cancer Lett. 137, 61–73 (1999).

    Article  CAS  PubMed  Google Scholar 

  163. Nagano, H. et al. Downregulation of stomach cancer-associated protein tyrosine phosphatase-1 (SAP-1) in advanced human hepatocellular carcinoma. Oncogene 22, 4656–4663 (2003).

    Article  CAS  PubMed  Google Scholar 

  164. McArdle, L. et al. Protein tyrosine phosphatase genes downregulated in melanoma. J. Invest. Dermatol. 117, 1255–1260 (2001).

    Article  CAS  PubMed  Google Scholar 

  165. Zhang, Y. et al. Cytogenetical assignment and physical mapping of the human R-PTP-kappa gene (PTPRK) to the putative tumor suppressor gene region 6q22.2-q22.3. Genomics 51, 309–311 (1998).

    Article  CAS  PubMed  Google Scholar 

  166. Nakamura, M. et al. Novel tumor suppressor loci on 6q22–23 in primary central nervous system lymphomas. Cancer Res. 63, 737–741 (2003).

    CAS  PubMed  Google Scholar 

  167. Motiwala, T. et al. PTPROt inactivates the oncogenic fusion protein BCR/ABL and suppresses transformation of K562 cells. J. Biol. Chem. 284, 455–464 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Ramaswamy, B. et al. Estrogen-mediated suppression of the gene encoding protein tyrosine phosphatase PTPRO in human breast cancer: mechanism and role in tamoxifen sensitivity. Mol. Endocrinol. 23, 176–187 (2009).

    Article  CAS  PubMed  Google Scholar 

  169. Mori, Y. et al. Identification of genes uniquely involved in frequent microsatellite instability colon carcinogenesis by expression profiling combined with epigenetic scanning. Cancer Res. 64, 2434–2438 (2004).

    Article  CAS  PubMed  Google Scholar 

  170. Lu, X. et al. PTP1B is a negative regulator of interleukin 4-induced STAT6 signaling. Blood 112, 4098–4108 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Chim, C. S., Fung, T. K., Cheung, W. C., Liang, R. & Kwong, Y. L. SOCS1 and SHP1 hypermethylation in multiple myeloma: implications for epigenetic activation of the Jak/STAT pathway. Blood 103, 4630–4635 (2004).

    Article  CAS  PubMed  Google Scholar 

  172. Ksiaa, F., Ziadi, S., Amara, K., Korbi, S. & Trimeche, M. Biological significance of promoter hypermethylation of tumor-related genes in patients with gastric carcinoma. Clin. Chim. Acta 404, 128–133 (2009).

    Article  CAS  PubMed  Google Scholar 

  173. Zhang, Q., Raghunath, P. N., Vonderheid, E., Odum, N. & Wasik, M. A. Lack of phosphotyrosine phosphatase SHP-1 expression in malignant T-cell lymphoma cells results from methylation of the SHP-1 promoter. Am. J. Pathol. 157, 1137–1146 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Chim., C. S., Liang, R., Leung, M. H. & Kwong, Y. L. Aberrant gene methylation implicated in the progression of monoclonal gammopathy of undetermined significance to multiple myeloma. J. Clin. Pathol. 60, 104–106 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Amin, H. M. et al. Decreased expression level of SH2 domain-containing protein tyrosine phosphatase-1 (Shp1) is associated with progression of chronic myeloid leukaemia. J. Pathol. 212, 402–410 (2007).

    Article  CAS  PubMed  Google Scholar 

  176. Gauffin, F. et al. Expression of PTEN and SHP1, investigated from tissue microarrays in pediatric acute lymphoblastic, leukemia. Pediatr. Hematol. Oncol. 26, 48–56 (2009).

    Article  CAS  PubMed  Google Scholar 

  177. Cariaga-Martinez, A. E. et al. Tumoral prostate shows different expression pattern of somatostatin receptor 2 (SSTR2) and phosphotyrosine phosphatase SHP-1 (PTPN6) according to tumor progression. Adv. Urol., 723831 (2009).

  178. Fridberg, M. et al. Immunohistochemical analyses of phosphatases in childhood B-cell lymphoma: lower expression of PTEN and HePTP and higher number of positive cells for nuclear SHP2 in B-cell lymphoma cases compared to controls. Pediatr. Hematol. Oncol. 25, 528–540 (2008).

    Article  CAS  PubMed  Google Scholar 

  179. Yao, H., Song, E., Chen, J. & Hamar, P. Expression of FAP-1 by human colon adenocarcinoma: implication for resistance against Fas-mediated apoptosis in cancer. Br. J. Cancer 91, 1718–1725 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Lee, S. H. et al. In vivo expression of soluble Fas and FAP-1: possible mechanisms of Fas resistance in human hepatoblastomas. J. Pathol. 188, 207–212 (1999).

    Article  CAS  PubMed  Google Scholar 

  181. Glondu-Lassis, M. et al. PTPL1/PTPN13 regulates breast cancer cell aggressiveness through direct inactivation of Src kinase. Cancer Res. 70, 5116–5126 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Revillion, F. et al. Expression of the putative tumor suppressor gene PTPN13/PTPL1 is an independent prognostic marker for overall survival in breast cancer. Int. J. Cancer 124, 638–643 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Guimaraes, G. S. et al. Identification of candidates for tumor-specific alternative splicing in the thyroid. Genes Chromosomes Cancer 45, 540–553 (2006).

    Article  CAS  PubMed  Google Scholar 

  184. Manzano, R. G. et al. CL100 expression is down-regulated in advanced epithelial ovarian cancer and its re-expression decreases its malignant potential. Oncogene 21, 4435–4447 (2002).

    Article  CAS  PubMed  Google Scholar 

  185. Kim, S. C. et al. Constitutive activation of extracellular signal-regulated kinase in human acute leukemias: combined role of activation of MEK, hyperexpression of extracellular signal-regulated kinase, and downregulation of a phosphatase, PAC1. Blood 93, 3893–3899 (1999).

    CAS  PubMed  Google Scholar 

  186. Armes, J. E. et al. Candidate tumor-suppressor genes on chromosome arm 8p in early-onset and high-grade breast cancers. Oncogene 23, 5697–5702 (2004).

    Article  CAS  PubMed  Google Scholar 

  187. Furukawa, T., Sunamura, M., Motoi, F., Matsuno, S. & Horii, A. Potential tumor suppressive pathway involving DUSP6/MKP-3 in pancreatic cancer. Am. J. Pathol. 162, 1807–1815 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Chan, D. W. et al. Loss of MKP3 mediated by oxidative stress enhances tumorigenicity and chemoresistance of ovarian cancer cells. Carcinogenesis 29, 1742–1750 (2008).

    Article  CAS  PubMed  Google Scholar 

  189. Kibel, A. S. et al. Expression mapping at 12p12–13 in advanced prostate carcinoma. Int. J. Cancer 109, 668–672 (2004).

    Article  CAS  PubMed  Google Scholar 

  190. Yu, Y. et al. Aberrant splicing of cyclin-dependent kinase-associated protein phosphatase KAP increases proliferation and migration in glioblastoma. Cancer Res. 67, 130–138 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors regret that, owing to space limitations, they could not mention the work of many investigators who have greatly contributed to the current knowledge of PTPs and their functions. The authors would like to thank B. P. Kennedy (Merck Frosst Center for Therapeutic Research, Canada), A. Pause (Goodman Cancer Research Centre, McGill University, Canada) and M. Meaney (Douglas Institute, McGill University, Canada and the Singapore Institute for Clinical Sciences) for discussions during the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel L. Tremblay.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

National Cancer Institute Drug Dictionary

sodium stibogluconate

Glossary

DNA methylation

An addition of methyl groups to DNA, most commonly at CpG sites, to convert cytosine to 5-methylcytosine. Cytosine hypermethylation in gene promoters, leading to gene silencing, is the most frequent mechanism of tumour suppressor gene silencing in human tumours.

Loss of heterozygosity

(LOH). The loss of the normal allele of a gene in which the other allele was already inactivated, leading to a complete loss of gene expression.

Frameshift mutation

Caused by an insertion or deletion within a gene, which disrupts the reading frame and frequently results in severe malignancies or diseases.

Amplification

A type of copy number gain in which there is a copy number of more than two; amplifications are often seen for oncogenes.

Single nucleotide polymorphism

(SNP). A variation of a single nucleotide in the genomic sequence between paired chromosomes. Usually silent or does not alter gene expression or the protein, although there are numerous examples of SNPs increasing the risk of developing cancer.

Missense mutation

A point mutation in which a single nucleotide is changed that changes the encoded amino acid.

Nonsense mutation

Mutation that changes a codon that encodes an amino acid to a stop codon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Julien, S., Dubé, N., Hardy, S. et al. Inside the human cancer tyrosine phosphatome. Nat Rev Cancer 11, 35–49 (2011). https://doi.org/10.1038/nrc2980

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2980

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer