Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

Why do viruses cause cancer? Highlights of the first century of human tumour virology

Abstract

The year 2011 marks the centenary of Francis Peyton Rous's landmark experiments on an avian cancer virus. Since then, seven human viruses have been found to cause 10–15% of human cancers worldwide. Viruses have been central to modern cancer research and provide profound insights into both infectious and non-infectious cancer causes. This diverse group of viruses reveals unexpected connections between innate immunity, immune sensors and tumour suppressor signalling that control both viral infection and cancer. This Timeline article describes common features of human tumour viruses and discusses how new technologies can be used to identify infectious causes of cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Historical figures.
Figure 2: Common cellular targets for unrelated tumour virus oncoproteins.
Figure 3: Two views for the origins of viral oncoproteins.
Figure 4: The molecular evolution of a human tumour virus.

References

  1. Parkin, D. M. The global health burden of infection-associated cancers in the year 2002. Int. J. Cancer 118, 3030–3044 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Bouvard, V. et al. A review of human carcinogens-part B: biological agents. Lancet Oncol. 10, 321–322 (2009).

    Article  PubMed  Google Scholar 

  3. Chang, M. H. et al. Universal hepatitis B vaccination in Taiwan and the incidence of hepatocellular carcinoma in children. Taiwan Childhood Hepatoma Study Group. N. Engl. J. Med. 336, 1855–1859 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Lavanchy, D. Hepatitis B virus epidemiology, disease burden, treatment, and current and emerging prevention and control measures. J. Viral Hepat. 11, 97–107 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Goldie, S. J. et al. Projected clinical benefits and cost-effectiveness of a human papillomavirus 16/18 vaccine. J. Natl Cancer Inst. 96, 604–615 (2004).

    Article  PubMed  Google Scholar 

  6. Polk, D. B. & Peek, R. M. Helicobacter pylori: gastric cancer and beyond. Nature Rev. Cancer 10, 403–414 (2010).

    Article  CAS  Google Scholar 

  7. Vennervald, B. J. & Polman, K. Helminths and malignancy. Parasite Immunol. 31, 686–696 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Rous, P. A transmissible avian neoplasm. (Sarcoma of the common fowl). J. Exp. Med. 12, 696–705 (1910).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rous, P. A sarcoma of the fowl transmissible by an agent separable from the tumor cells. J. Exp. Med. 13, 397–411 (1911).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ellerman, V. & Bang, O. Experimentelle leukämie bei hühnern. Centralbl. f. Bakteriol. 46, 595–609 (1908).

    Google Scholar 

  11. Beard, J. W. Avian virus growths and their etiologic agents. Adv. Cancer Res. 7, 1–127 (1963).

    Article  CAS  PubMed  Google Scholar 

  12. Becsei-Kilborn, E. Scientific discovery and scientific reputation: the reception of Peyton Rous' discovery of the chicken sarcoma virus. J. Hist. Biol. 43, 111–157 (2010).

    Article  PubMed  Google Scholar 

  13. Vogt, P. K. Peyton Rous: homage and appraisal. FASEB J. 10, 1559–1562 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Gross, L. Oncogenic Viruses (Pergamon, Oxford, 1970).

    Google Scholar 

  15. Epstein, M. A., Achong, B. G. & Barr, Y. M. Virus particles in cultured lymphoblasts from Burkitt's lymphoma. Lancet 15, 702–703 (1964).

    Article  Google Scholar 

  16. Proceedings of the IARC working group on the evaluation of carcinogenic risks to humans. Epstein-Barr virus and Kaposi's sarcoma herpesvirus/human herpesvirus 8. Lyon, France, 17–24 June 1997. IARC Monogr. Eval. Carcinog. Risks Hum. 70, 1–492 (1997).

  17. Kelly, G. L. & Rickinson, A. B. Burkitt lymphoma: revisiting the pathogenesis of a virus-associated malignancy. Hematology Am. Soc. Hematol. Educ. Program 2007, 277–284 (2007).

    Article  Google Scholar 

  18. Bunge, M. Causality: The Place of the Causal Principle in Modern Science (Meridian Books, Cleveland and New York, 1959).

    Google Scholar 

  19. Epstein, M. A., Henle, G., Achong, B. G. & Barr, Y. M. Morphological and biological studies on a virus in cultured lymphoblasts from Burkitt's lymphoma. J. Exp. Med. 121, 761–770 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Poiesz, B. J. et al. Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc. Natl Acad. Sci. USA 77, 7415–7419 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Miyoshi, I. et al. Type C virus particles in a cord T-cell line derived by co-cultivating normal human cord leukocytes and human leukaemic T cells. Nature 294, 770–771 (1981).

    Article  CAS  PubMed  Google Scholar 

  22. Yoshida, M. Discovery of HTLV-1, the first human retrovirus, its unique regulatory mechanisms, and insights into pathogenesis. Oncogene 24, 5931–5937 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Gallo, R. C. History of the discoveries of the first human retroviruses: HTLV-1 and HTLV-2. Oncogene 24, 5926–5930 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Vahlne, A. A historical reflection on the discovery of human retroviruses. Retrovirology 6, 40 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Blumberg, B. S., Alter, H. J. & Visnich, S. A “new” antigen in leukemia sera. JAMA 191, 541–546 (1965).

    Article  CAS  PubMed  Google Scholar 

  26. Prince, A. M., Fuji, H. & Gershon, R. K. Immunohistochemical studies on the etiology of anicteric hepatitis in Korea. Am. J. Hyg. 79, 365–381 (1964).

    CAS  PubMed  Google Scholar 

  27. Beasley, R. P., Hwang, L. Y., Lin, C. C. & Chien, C. S. Hepatocellular carcinoma and hepatitis B virus. A prospective study of 22,707 men in Taiwan. Lancet 2, 1129–1133 (1981).

    Article  CAS  PubMed  Google Scholar 

  28. zur Hausen, H. Condylomata acuminata and human genital cancer. Cancer Res. 36, 794 (1976).

    CAS  PubMed  Google Scholar 

  29. Durst, M., Gissmann, L., Ikenberg, H. & zur Hausen, H. A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. Proc. Natl Acad. Sci. USA 80, 3812–3815 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Boshart, M. et al. A new type of papillomavirus DNA, its presence in genital cancer biopsies and in cell lines derived from cervical cancer. EMBO J. 3, 1151–1157 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Choo, Q. L. et al. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 244, 359–362 (1989).

    Article  CAS  PubMed  Google Scholar 

  32. Wakita, T. et al. Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nature Med. 11, 791–796 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Chang, Y. et al. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science 265, 1865–1869 (1994).

    Article  Google Scholar 

  34. Feng, H., Shuda, M., Chang, Y. & Moore, P. S. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 319, 1096–1100 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lisitsyn, N., Lisitsyn, N. & Wigler, M. Cloning the differences between two complex genomes. Science 259, 946–951 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. Feng, H. et al. Human transcriptome subtraction by using short sequence tags to search for tumor viruses in conjunctival carcinoma. J. Virol. 81, 11332–11340 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xu, Y. et al. Pathogen discovery from human tissue by sequence-based computational subtraction. Genomics 81, 329–335 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Perz, J. F., Armstrong, G. L., Farrington, L. A., Hutin, Y. J. & Bell, B. P. The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J. Hepatol. 45, 529–538 (2006).

    Article  PubMed  Google Scholar 

  39. Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990).

    Article  CAS  PubMed  Google Scholar 

  40. Hahn, W. C. et al. Enumeration of the simian virus 40 early region elements necessary for human cell transformation. Mol. Cell. Biol. 22, 2111–2123 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hahn, W. C. et al. Creation of human tumour cells with defined genetic elements. Nature 400, 464–468 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Purtilo, D. T., Cassel, C. K., Yang, J. P. & Harper, R. X-linked recessive progressive combined variable immunodeficiency (Duncan's disease). Lancet 1, 935–940 (1975).

    Article  CAS  PubMed  Google Scholar 

  43. Kaposi, M. Idiopathic multiple pigmented sarcoma of the skin. CA Cancer J. Clin. 1982; 32, 340–347 (1872).

    Google Scholar 

  44. McGeoch, D. J., Gatherer, D. & Dolan, A. On phylogenetic relationships among major lineages of the Gammaherpesvirinae. J. Gen. Virol. 86, 307–316 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Miller, G. et al. Antibodies to butyrate-inducible antigens of Kaposi's sarcoma-associated herpesvirus in patients with HIV-1 infection. N. Engl. J. Med. 334, 1292–1297 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Gao, S. J. et al. Seroconversion to antibodies against Kaposi's sarcoma-associated herpesvirus-related latent nuclear antigens before the development of Kaposi's sarcoma. N. Engl. J. Med. 335, 233–241 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Simpson, G. R. et al. Prevalence of Kaposi's sarcoma associated herpesvirus infection measured by antibodies to recombinant capsid protein and latent immunofluorescence antigen. Lancet 348, 1133–1138 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Gao, S. J. et al. KSHV antibodies among Americans, Italians and Ugandans with and without Kaposi's sarcoma. Nature Med. 2, 925–928 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Kedes, D. H. et al. The seroepidemiology of human herpesvirus 8 (Kaposi's sarcoma-associated herpesvirus): distribution of infection in KS risk groups and evidence for sexual transmission. Nature Med. 2, 918–924 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Pellett, P. E. et al. Multicenter comparison of serologic assays and estimation of human herpesvirus 8 seroprevalence among US blood donors. Transfusion 43, 1260–1268 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Engels, E. A. et al. Trends in cancer risk among people with AIDS in the United States 1980–2002. AIDS 20, 1645–1654 (2006).

    Article  PubMed  Google Scholar 

  52. zur Hausen, H. Oncogenic DNA viruses. Oncogene 20, 7820–7823 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Parsonnet, J. in Microbes and Malignancy (ed. Parsonnet, J.) 3–18 (Oxford Univ. Press, New York, 1999).

    Google Scholar 

  54. Steele, C., Cowsert, L. M. & Shillitoe, E. J. Effects of human papillomavirus type 18-specific antisense oligonucleotides on the transformed phenotype of human carcinoma cell lines. Cancer Res. 53, 2330–2337 (1993).

    CAS  PubMed  Google Scholar 

  55. Tan, T. M. & Ting, R. C. In vitro and in vivo inhibition of human papillomavirus type 16 E6 and E7 genes. Cancer Res. 55, 4599–4605 (1995).

    CAS  PubMed  Google Scholar 

  56. Goodwin, E. C. & DiMaio, D. Repression of human papillomavirus oncogenes in HeLa cervical carcinoma cells causes the orderly reactivation of dormant tumor suppressor pathways. Proc. Natl Acad. Sci. USA 97, 12513–12518 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wies, E. et al. The viral interferon-regulatory factor-3 is required for the survival of KSHV-infected primary effusion lymphoma cells. Blood 111, 320–327 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Houben, R. et al. Merkel cell polyomavirus infected Merkel cell carcinoma cells require expression of viral T antigens. J. Virol. 84, 7064–7072 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Godfrey, A., Anderson, J., Papanastasiou, A., Takeuchi, Y. & Boshoff, C. Inhibiting primary effusion lymphoma by lentiviral vectors encoding short hairpin RNA. Blood (2004).

  60. Dirmeier, U. et al. Latent membrane protein 1 of Epstein-Barr virus coordinately regulates proliferation with control of apoptosis. Oncogene 24, 1711–1717 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Seeger, C. & Mason, W. S. Hepatitis B virus biology. Microbiol. Mol. Biol. Rev. 64, 51–68 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tsai, W. L. & Chung, R. T. Viral hepatocarcinogenesis. Oncogene 29, 2309–2324 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mason, W. S., Liu, C., Aldrich, C. E., Litwin, S. & Yeh, M. M. Clonal expansion of normal appearing human hepatocytes during chronic HBV infection. J. Virol. 84, 8308–8315 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yasunaga, J. & Matsuoka, M. Leukaemogenic mechanism of human T-cell leukaemia virus type I. Rev. Med. Virol. 17, 301–311 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Jeang, K. T., Giam, C. Z., Majone, F. & Aboud, M. Life, death, and tax: role of HTLV-I oncoprotein in genetic instability and cellular transformation. J. Biol. Chem. 279, 31991–31994 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Hatakeyama, M. Helicobacter pylori CagA - a bacterial intruder conspiring gastric carcinogenesis. Int. J. Cancer 119, 1217–1223 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Grulich, A. E., van Leeuwen, M. T., Falster, M. O. & Vajdic, C. M. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet 370, 59–67 (2007).

    Article  PubMed  Google Scholar 

  68. Chen, L. P., Thomas, E. K., Hu, S. L., Hellstrom, I. & Hellstrom, K. E. Human papillomavirus type 16 nucleoprotein E7 is a tumor rejection antigen. Proc. Natl Acad. Sci. USA 88, 110–114 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Guihot, A. et al. Low T cell responses to human herpesvirus 8 in patients with AIDS-related and classic Kaposi sarcoma. J. Infect. Dis. 194, 1078–1088 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Beral, V., Peterman, T. A., Berkelman, R. L. & Jaffe, H. W. Kaposi's sarcoma among persons with AIDS: a sexually transmitted infection? Lancet 335, 123–128 (1990).

    Article  CAS  PubMed  Google Scholar 

  71. Engels, E. A., Frisch, M., Goedert, J. J., Biggar, R. J. & Miller, R. W. Merkel cell carcinoma and HIV infection. Lancet 359, 497–498 (2002).

    Article  PubMed  Google Scholar 

  72. Vajdic, C. M. & van Leeuwen, M. T. Cancer incidence and risk factors after solid organ transplantation. Int. J. Cancer 125, 1747–1754 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Schulz, T. F. Cancer and viral infections in immunocompromised individuals. Int. J. Cancer 125, 1755–1763 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Sugarbaker, D. J. et al. Transcriptome sequencing of malignant pleural mesothelioma tumors. Proc. Natl Acad. Sci. USA 105, 3521–3526 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. zur Hausen, H. SV40 in human cancers-an endless tale? Int. J. Cancer 107, 687 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Zur Hausen, H. The search for infectious causes of human cancers: where and why. Virology 392, 1–10 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Small, M. B., Gluzman, Y. & Ozer, H. L. Enhanced transformation of human fibroblasts by origin-defective simian virus 40. Nature 296, 671–672 (1982).

    Article  CAS  PubMed  Google Scholar 

  78. Walter, P. R., Philippe, E., Nguemby-Mbina, C. & Chamlian, A. Kaposi's sarcoma: presence of herpes-type particles in a tumor specimen. Human Pathol. 15, 1145–1146 (1984).

    Article  CAS  Google Scholar 

  79. Zhong, W., Wang, H., Herndier, B. & Ganem, D. Restricted expression of Kaposi sarcoma-associated herpesvirus (human herpesvirus 8) genes in Kaposi sarcoma. Proc. Natl Acad. Sci. USA 93, 6641–6646 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Parravicini, C. et al. Differential viral protein expression in Kaposi's sarcoma-associated herpesvirus-infected diseases: Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. Am. J. Pathol. 156, 743–749 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sarid, R., Flore, O., Bohenzky, R. A., Chang, Y. & Moore, P. S. Transcription mapping of the Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) genome in a body cavity-based lymphoma cell line (BC-1). J. Virol. 72, 1005–1012 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Bischoff, J. R. et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 274, 373–376 (1996).

    Article  CAS  PubMed  Google Scholar 

  83. Huang, B., Sikorski, R., Kirn, D. H. & Thorne, S. H. Synergistic anti-tumor effects between oncolytic vaccinia virus and paclitaxel are mediated by the IFN response and HMGB1. Gene Ther. 26 Aug 2010 (doi:10.1038/gt.2010.121).

  84. Jacquemont, B. & Roizman, B. RNA synthesis in cells infected with herpes simplex virus. X. Properties of viral symmetric transcripts and of double-stranded RNA prepared from them. J. Virol. 15, 707–713 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Lilley, C. E., Schwartz, R. A. & Weitzman, M. D. Using or abusing: viruses and the cellular DNA damage response. Trends Microbiol. 15, 119–126 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Moore, P. S. & Chang, Y. Kaposi's sarcoma-associated herpesvirus immunoevasion and tumorigenesis: two sides of the same coin? Annu. Rev. Microbiol. 57, 609–639 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tauer, T. J., Schneiderman, M. H., Vishwanatha, J. K. & Rhode, S. L. DNA double-strand break repair functions defend against parvovirus infection. J. Virol. 70, 6446–6449 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Bauer, S., Muller, T. & Hamm, S. Pattern recognition by Toll-like receptors. Adv. Exp. Med. Biol. 653, 15–34 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Lieberman, P. M., Hu, J. & Renne, R. in Human Herpesviruses: Biology, Therapy and Immunoprophylaxis (eds Arvin, A., Campardelli-Fiome, G., Mocarski, A. E., Moore, P. S., Roizman, B., Whitley, R. J. & Yamanishi, K.) 379–402 (Cambridge Univ. Press, Cambridge, UK, 2007).

    Book  Google Scholar 

  90. Ballestas, M. E., Chatis, P. A. & Kaye, K. M. Efficient persistence of extrachromosomal KSHV DNA mediated by latency- associated nuclear antigen. Science 284, 641–644 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Roizman, B. in The Human Herpeviruses (eds Roizman, B., Whitley, R. J. & Lopez, C.) 1–9 (Raven Press, Ltd., New York, 1993).

    Google Scholar 

  92. Matsuoka, M. & Green, P. L. The HBZ gene, a key player in HTLV-1 pathogenesis. Retrovirology 6, 71 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Yoshida, M., Seiki, M., Yamaguchi, K. & Takatsuki, K. Monoclonal integration of human T-cell leukemia provirus in all primary tumors of adult T-cell leukemia suggests causative role of human T-cell leukemia virus in the disease. Proc. Natl Acad. Sci. USA 81, 2534–2537 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Raab-Traub, N. & Flynn, K. The structure of the termini of the Epstein-Barr virus as a marker of clonal cellular proliferation. Cell 47, 883–889 (1986).

    Article  CAS  PubMed  Google Scholar 

  95. Russo, J. J. et al. Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc. Natl Acad. Sci. USA 93, 14862–14867 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cannon, J. S., Hamzeh, F., Moore, S., Nicholas, J. & Ambinder, R. F. Human herpesvirus 8-encoded thymidine kinase and phosphotransferase homologues confer sensitivity to ganciclovir. J. Virol. 73, 4786–4793 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Martin, D. F. et al. Oral ganciclovir for patients with cytomegalovirus retinitis treated with a ganciclovir implant. N. Engl. J. Med. 340, 1063–1070 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Little, R. F. & Yarchoan, R. Treatment of gammaherpesvirus-related neoplastic disorders in the immunosuppressed host. Semin. Hematol. 40, 163–171 (2003).

    Article  PubMed  Google Scholar 

  99. Mason, W. S. et al. The amount of hepatocyte turnover that occurred during resolution of transient hepadnavirus infections was lower when virus replication was inhibited with entecavir. J. Virol. 83, 1778–1789 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Levine, A. J. The common mechanisms of transformation by the small DNA tumor viruses: the inactivation of tumor suppressor gene products: p53. Virology 384, 285–293 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Oh, S. T., Kyo, S. & Laimins, L. A. Telomerase activation by human papillomavirus type 16 E6 protein: induction of human telomerase reverse transcriptase expression through Myc and GC-rich Sp1 binding sites. J. Virol. 75, 5559–5566 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Klingelhutz, A. J., Foster, S. A. & McDougall, J. K. Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature 380, 79–82 (1996).

    Article  CAS  PubMed  Google Scholar 

  103. Verma, S. C., Borah, S. & Robertson, E. S. Latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus up-regulates transcription of human telomerase reverse transcriptase promoter through interaction with transcription factor Sp1. J. Virol. 78, 10348–10359 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kataoka, H. et al. Immortalization of immunologically committed Epstein-Barr virus-transformed human B-lymphoblastoid cell lines accompanied by a strong telomerase activity. Differentiation 62, 203–211 (1997).

    Article  CAS  PubMed  Google Scholar 

  105. Terrin, L. et al. Latent membrane protein 1 of Epstein-Barr virus activates the hTERT promoter and enhances telomerase activity in B lymphocytes. J. Virol. 82, 10175–10187 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Buchkovich, N. J., Yu, Y., Zampieri, C. A. & Alwine, J. C. The TORrid affairs of viruses: effects of mammalian DNA viruses on the PI3K-Akt-mTOR signalling pathway. Nature Rev. Microbiol. 6, 266–275 (2008).

    Article  CAS  Google Scholar 

  107. Mosialos, G. et al. The Epstein-Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. Cell 80, 389–399 (1995).

    Article  CAS  PubMed  Google Scholar 

  108. Sarid, R., Olsen, S. J. & Moore, P. S. Kaposi's sarcoma-associated herpesvirus: epidemiology, virology and molecular biology. Adv. Virus Res. 52, 139–232 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. Liu, L. et al. The human herpes virus 8-encoded viral FLICE inhibitory protein physically associates with and persistently activates the Iκ B kinase complex. J. Biol. Chem. 277, 13745–13751 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Fujimuro, M. et al. A novel viral mechanism for dysregulation of β-catenin in Kaposi's sarcoma-associated herpesvirus latency. Nature Med. 9, 300–306 (2003).

    Article  CAS  PubMed  Google Scholar 

  111. Moore, P. S. & Chang, Y. Antiviral activity of tumor-suppressor pathways: clues from molecular piracy by KSHV. Trends Genet. 14, 144–150 (1998).

    Article  CAS  PubMed  Google Scholar 

  112. McCance, D. J., Kopan, R., Fuchs, E. & Laimins, L. A. Human papillomavirus type 16 alters human epithelial cell differentiation in vitro. Proc. Natl Acad. Sci. USA 85, 7169–7173 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Munger, K. et al. Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. EMBO J. 8, 4099–4105 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Scheffner, M., Werness, B. A., Huibregtse, J. M., Levine, A. J. & Howley, P. M. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63, 1129–1136 (1990).

    Article  CAS  PubMed  Google Scholar 

  115. Duensing, S. et al. The human papillomavirus type 16 E6 and E7 oncoproteins cooperate to induce mitotic defects and genomic instability by uncoupling centrosome duplication from the cell division cycle. Proc. Natl Acad. Sci. USA 97, 10002–10007 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hein, J. et al. Simian virus 40 large T antigen disrupts genome integrity and activates a DNA damage response via Bub1 binding. J. Virol. 83, 117–127 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Liang, C., Lee, J. S. & Jung, J. U. Immune evasion in Kaposi's sarcoma-associated herpes virus associated oncogenesis. Semin. Cancer Biol. 18, 423–436 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Nakamura, H., Li, M., Zarycki, J. & Jung, J. U. Inhibition of p53 tumor suppressor by viral interferon regulatory factor. J. Virol. 75, 7572–7582 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Gwack, Y. et al. Kaposi's sarcoma-associated herpesvirus open reading frame 50 represses p53-induced transcriptional activity and apoptosis. J. Virol. 75, 6245–6248 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Park, J. et al. The K-bZIP protein from Kaposi's sarcoma-associated herpesvirus interacts with p53 and represses its transcriptional activity. J. Virol. 74, 11977–11982 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhang, Q., Gutsch, D. & Kenney, S. Functional and physical interaction between p53 and BZLF1: implications for Epstein-Barr latency. Mol. Cell. Biol. 14, 1929–1938 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sarid, R., Klepfish, A. & Schattner, A. Virology, pathogenetic mechanisms, and associated diseases of Kaposi sarcoma-associated herpesvirus (human herpesvirus 8). Mayo Clin. Proc. 77, 941–949 (2002).

    Article  CAS  PubMed  Google Scholar 

  123. Pfeffer, S. et al. Identification of microRNAs of the herpesvirus family. Nature Methods 2, 269–276 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Gottwein, E. et al. A viral microRNA functions as an orthologue of cellular miR-155. Nature 450, 1096–1099 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Choy, E. Y. et al. An Epstein-Barr virus-encoded microRNA targets PUMA to promote host cell survival. J. Exp. Med. 205, 2551–2560 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Young, L. S. & Rickinson, A. B. Epstein-Barr virus: 40 years on. Nature Rev. Cancer 4, 757–768 (2004).

    Article  CAS  Google Scholar 

  127. Friborg, J., Kong, W., Hottiger, M. O. & Nabel, G. J. p53 inhibition by the LANA protein of KSHV protects against cell death. Nature 402, 889–894 (1999).

    Article  CAS  PubMed  Google Scholar 

  128. Radkov, S. A., Kellam, P. & Boshoff, C. The latent nuclear antigen of kaposi sarcoma-associated herpesvirus targets the retinoblastoma-E2F pathway and with the oncogene hras transforms primary rat cells. Nature Med. 6, 1121–1127 (2000).

    Article  CAS  PubMed  Google Scholar 

  129. Cloutier, N. & Flamand, L. Kaposi sarcoma-associated herpesvirus latency-associated nuclear antigen inhibits interferon (IFN) β expression by competing with IFN regulatory factor-3 for binding to IFNB promoter. J. Biol. Chem. 285, 7208–7221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Chang, Y. et al. Cyclin encoded by KS herpesvirus. Nature 382, 410 (1996).

    Article  CAS  PubMed  Google Scholar 

  131. Verschuren, E. W., Klefstrom, J., Evan, G. I. & Jones, N. The oncogenic potential of Kaposi's sarcoma-associated herpesvirus cyclin is exposed by p53 loss in vitro and in vivo. Cancer Cell 2, 229–241 (2002).

    Article  CAS  PubMed  Google Scholar 

  132. Sarid, R., Wiezorek, J. S., Moore, P. S. & Chang, Y. Characterization and cell cycle regulation of the major Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) latent genes and their promoter. J. Virol. 73, 1438–1446 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Shah, K. M. & Young, L. S. Epstein-Barr virus and carcinogenesis: beyond Burkitt's lymphoma. Clin. Microbiol. Infect. 15, 982–988 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Barton, E. S. et al. Herpesvirus latency confers symbiotic protection from bacterial infection. Nature 447, 326–329 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Chin, Y. E. et al. Cell growth arrest and induction of cyclin-dependent kinase inhibitor p21 WAF1/CIP1 mediated by STAT1. Science 272, 719–722 (1996).

    Article  CAS  PubMed  Google Scholar 

  136. Takaoka, A. et al. Integration of interferon-α/β signalling to p53 responses in tumour suppression and antiviral defence. Nature 424, 516–523 (2003).

    Article  CAS  PubMed  Google Scholar 

  137. Sadler, A. J. & Williams, B. R. Interferon-inducible antiviral effectors. Nature Rev. Immunol. 8, 559–568 (2008).

    Article  CAS  Google Scholar 

  138. Senger, K. et al. Gene repression by coactivator repulsion. Mol. Cell 6, 931–937 (2000).

    Article  CAS  PubMed  Google Scholar 

  139. Harada, H. et al. Anti-oncogenic and oncogenic potentials of interferon regulatory factors-1 and -2. Science 259, 971–974 (1993).

    Article  CAS  PubMed  Google Scholar 

  140. Lee, H. R., Kim, M. H., Lee, J. S., Liang, C. & Jung, J. U. Viral interferon regulatory factors. J. Interferon Cytokine Res. 29, 621–627 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Gao, S. J. et al. KSHV ORF K9 (vIRF) is an oncogene which inhibits the interferon signaling pathway. Oncogene 15, 1979–1985 (1997).

    Article  CAS  PubMed  Google Scholar 

  142. Chatterjee, M., Osborne, J., Bestetti, G., Chang, Y. & Moore, P. S. Viral IL-6-induced cell proliferation and immune evasion of interferon activity. Science 298, 1432–1435 (2002).

    Article  CAS  PubMed  Google Scholar 

  143. Lee, H. et al. Deregulation of cell growth by the K1 gene of Kaposi's sarcoma- associated herpesvirus. Nature Med. 4, 435–440 (1998).

    Article  CAS  PubMed  Google Scholar 

  144. Rivas, C., Thlick, A. E., Parravicini, C., Moore, P. S. & Chang, Y. Kaposi's sarcoma-associated herpesvirus LANA2 is a B-cell-specific latent viral protein that inhibits p53. J. Virol. 75, 429–438 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Wies, E. et al. The Kaposi's Sarcoma-associated Herpesvirus-encoded vIRF-3 Inhibits Cellular IRF-5. J. Biol. Chem. 284, 8525–8538 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Iwakiri, D. & Takada, K. Role of EBERs in the pathogenesis of EBV infection. Adv. Cancer Res. 107, 119–136 (2010).

    Article  CAS  PubMed  Google Scholar 

  147. Yang, X. J., Ogryzko, V. V., Nishikawa, J., Howard, B. H. & Nakatani, Y. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382, 319–324 (1996).

    Article  CAS  PubMed  Google Scholar 

  148. Bhattacharya, S. et al. Cooperation of Stat2 and p300/CBP in signalling induced by interferon-α. Nature 383, 344–347 (1996).

    Article  CAS  PubMed  Google Scholar 

  149. Lane, D. P. p53, guardian of the genome. Nature 358, 15–16 (1992).

    Article  CAS  PubMed  Google Scholar 

  150. Gasser, S., Orsulic, S., Brown, E. J. & Raulet, D. H. The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 436, 1186–1190 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Hornung, V. & Latz, E. Intracellular DNA recognition. Nature Rev. Immunol. 10, 123–130 (2010).

    Article  CAS  Google Scholar 

  152. Ranjan, P. et al. Cytoplasmic nucleic acid sensors in antiviral immunity. Trends Mol. Med. 15, 359–368 (2009).

    Article  CAS  PubMed  Google Scholar 

  153. Stracker, T. H., Carson, C. T. & Weitzman, M. D. Adenovirus oncoproteins inactivate the Mre11-Rad50-NBS1 DNA repair complex. Nature 418, 348–352 (2002).

    Article  CAS  PubMed  Google Scholar 

  154. Lilley, C. E., Carson, C. T., Muotri, A. R., Gage, F. H. & Weitzman, M. D. DNA repair proteins affect the lifecycle of herpes simplex virus 1. Proc. Natl Acad. Sci. USA 102, 5844–5849 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Shin, Y. C. et al. Inhibition of the ATM/p53 signal transduction pathway by Kaposi's sarcoma-associated herpesvirus interferon regulatory factor 1. J. Virol. 80, 2257–2266 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Wu, Z. H. & Miyamoto, S. Many faces of NF-κB signaling induced by genotoxic stress. J. Mol. Med. 85, 1187–1202 (2007).

    Article  CAS  PubMed  Google Scholar 

  157. Shuda, M. et al. T antigen mutations are a human tumor-specific signature for Merkel cell polyomavirus. Proc. Natl Acad. Sci. USA 105, 16272–16277 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kean, J. M., Rao, S., Wang, M. & Garcea, R. L. Seroepidemiology of human polyomaviruses. PLoS Pathog. 5, e1000363 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Tolstov, Y. L. et al. Human Merkel cell polyomavirus infection II. MCV is a common human infection that can be detected by conformational capsid epitope immunoassays. Int. J. Cancer 125, 1250–1256 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Carter, J. J. et al. Association of Merkel cell polyomavirus-specific antibodies with Merkel cell carcinoma. J. Natl Cancer Inst. 101, 1510–1522 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Pastrana, D. V. et al. Quantitation of human seroresponsiveness to Merkel cell polyomavirus. PLoS Pathog. 5, e1000578 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Touze, A. et al. Generation of Merkel cell polyomavirus (MCV)-like particles and their application to detection of MCV antibodies. J. Clin. Microbiol. 48, 1767–1770 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Shuda, M. et al. Human Merkel cell polyomavirus infection I. MCV T antigen expression in Merkel cell carcinoma, lymphoid tissues and lymphoid tumors. Int. J. Cancer 125, 1243–1249 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Sastre-Garau, X. et al. Merkel cell carcinoma of the skin: pathological and molecular evidence for a causative role of MCV in oncogenesis. J. Pathol. 218, 48–56 (2009).

    Article  CAS  PubMed  Google Scholar 

  165. Schowalter, R. M., Pastrana, D. V., Pumphrey, K. A., Moyer, A. L. & Buck, C. B. Merkel cell polyomavirus and two previously unknown polyomaviruses are chronically shed from human skin. Cell Host Microbe 7, 509–515 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Kwun, H. J. et al. The minimum replication origin of merkel cell polyomavirus has a unique large T-antigen loading architecture and requires small T-antigen expression for optimal replication. J. Virol. 83, 12118–12128 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Allander, T. et al. Identification of a third human polyomavirus. J. Virol. 81, 4130–4136 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Gaynor, A. M. et al. Identification of a novel polyomavirus from patients with acute respiratory tract infections. PLoS Pathog. 3, e64 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. D'Souza, G. et al. Case-control study of human papillomavirus and oropharyngeal cancer. N. Engl. J. Med. 356, 1944–1956 (2007).

    Article  CAS  PubMed  Google Scholar 

  170. Parkin, D. M. et al. Part I: cancer in Indigenous Africans-burden, distribution, and trends. Lancet Oncol. 9, 683–692 (2008).

    Article  PubMed  Google Scholar 

  171. Rous, P. The possible role of viruses in cancer. Opening remarks. Cancer Res. 20, 672–676 (1960).

    CAS  PubMed  Google Scholar 

  172. Temin, H. M. & Rubin, H. Characteristics of an assay for Rous sarcoma virus and Rous sarcoma cells in tissue culture. Virology 6, 669–688 (1958).

    Article  CAS  PubMed  Google Scholar 

  173. Baltimore, D. RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature 226, 1209–1211 (1970).

    Article  CAS  PubMed  Google Scholar 

  174. Temin, H. M. & Mizutani, S. RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature 226, 1211–1213 (1970).

    Article  CAS  PubMed  Google Scholar 

  175. Chang, H. W. et al. Transformation of chicken cells by the gene encoding the catalytic subunit of PI 3-kinase. Science 276, 1848–1850 (1997).

    Article  CAS  PubMed  Google Scholar 

  176. Bishop, J. M. Nobel Lecture. Retroviruses and oncogenes II. Biosci. Rep. 10, 473–491 (1990).

    Article  CAS  PubMed  Google Scholar 

  177. Stehelin, D., Varmus, H. E., Bishop, J. M. & Vogt, P. K. DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature 260, 170–173 (1976).

    Article  CAS  PubMed  Google Scholar 

  178. Coffin, J. M., Hughes, S. H. & Varmus, H. E. Retroviruses (CSHL Press, Cold Spring Harbor, 1997).

    Google Scholar 

  179. Weiss, R. A. The discovery of endogenous retroviruses. Retrovirology 3, 67 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Ebbesen, P. in Viruses Associated with Human Cancer (ed. Phillips, L. A.) 369–409 (Marcel Dekker, New York, 1983).

    Google Scholar 

  181. Klein, G. The Athiest and the Holy City: Encounters and Reflections (MIT Press, 1992).

    Google Scholar 

  182. Linzer, D. I. & Levine, A. J. Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 17, 43–52 (1979).

    Article  CAS  PubMed  Google Scholar 

  183. Lane, D. P. & Crawford, L. V. T antigen is bound to a host protein in SV40-transformed cells. Nature 278, 261–263 (1979).

    Article  CAS  PubMed  Google Scholar 

  184. Arnaud, F., Varela, M., Spencer, T. E. & Palmarini, M. Coevolution of endogenous betaretroviruses of sheep and their host. Cell. Mol. Life Sci. 65, 3422–3432 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Contreras-Galindo, R. et al. Human endogenous retrovirus K (HML-2) elements in the plasma of people with lymphoma and breast cancer. J. Virol. 82, 9329–9336 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Urisman, A. et al. Identification of a novel Gammaretrovirus in prostate tumors of patients homozygous for R462Q RNASEL variant. PLoS Pathog. 2, e25 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Hohn, O. et al. Lack of evidence for xenotropic murine leukemia virus-related virus(XMRV) in German prostate cancer patients. Retrovirology 6, 92 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Weiss, R. A. A cautionary tale of virus and disease. BMC Biol. 8, 124 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Koch, R. in Source Book of Medical History (ed. Clark, D. H.) 392–406 (Dover Publications, Inc, New York, 1942).

    Google Scholar 

  190. Fredericks, D. N. & Relman, D. A. Sequence-based identification of microbial pathogens: a reconsideration of Koch's postulates. Clin. Microbiol. Rev. 9, 18–33 (1996).

    Article  PubMed Central  Google Scholar 

  191. Hill, A. B. Environment and disease: association or causation? Proc. R. Soc. Med. 58, 295–300 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Henle, W., Diehl, V., Kohn, G., Zur Hausen, H. & Henle, G. Herpes-type virus and chromosome marker in normal leukocytes after growth with irradiated Burkitt cells. Science 157, 1064–1065 (1967).

    Article  CAS  PubMed  Google Scholar 

  193. Ernberg, I. & Klein, G. in Human Herpesviruses: Biology, Therapy and Immunoprophylaxis (eds Arvin, A. et al.) 514–539 (Cambridge Univ. Press, Cambridge, UK, 2007).

    Google Scholar 

  194. Saemundsen, A. K. et al. Documentation of Epstein-Barr virus infection in immunodeficient patients with life-threatening lymphoproliferative diseases by Epstein-Barr virus complementary RNA/DNA and viral DNA/DNA hybridization. Cancer Res. 41, 4237–4242 (1981).

    CAS  PubMed  Google Scholar 

  195. Epstein-Barr Virus and Kaposi's Sarcoma Herpesvirus/Human Herpesvirus 8 (ed. IARC) (World Health Organization, 1997).

  196. Shope, R. E. & Hurst, E. W. Infectious papillomatosis of rabbits: with a note on the histopathology. J. Exp. Med. 58, 607–624 (1933).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Bittner, J. J. Some possible effects of nursing on the mammary gland tumor incidence in mice. Science 84, 162 (1936).

    Article  CAS  PubMed  Google Scholar 

  198. Gross, L. “Spontaneous” leukemia developing in C3H mice following inoculation in infancy, with AK-leukemic extracts, or AK-embrvos. Proc. Soc. Exp. Biol. Med. 76, 27–32 (1951).

    Article  CAS  PubMed  Google Scholar 

  199. Gross, L. A filterable agent, recovered from Ak leukemic extracts, causing salivary gland carcinomas in C3H mice. Proc. Soc. Exp. Biol. Med. 83, 414–421 (1953).

    Article  CAS  PubMed  Google Scholar 

  200. Eddy, B. E., Borman, G. S., Grubbs, G. E. & Young, R. D. Identification of the oncogenic substance in rhesus monkey kidney cell culture as simian virus 40. Virology 17, 65–75 (1962).

    Article  CAS  PubMed  Google Scholar 

  201. Trentin, J. J., Yabe, Y. & Taylor, G. The quest for human cancer viruses. Science 137, 835–841 (1962).

    Article  CAS  PubMed  Google Scholar 

  202. Kaposi's sarcoma and Pneumocystis pneumonia among homosexual men-New York City and California. MMWR Morb. Mortal. Wkly Rep. 30, 305–308 (1981).

  203. Barre-Sinoussi, F. et al. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220, 868–871 (1983).

    Article  CAS  PubMed  Google Scholar 

  204. Baer, R. et al. DNA sequence and expression of the B95–98 Epstein-Barr virus genome. Nature 310, 207–211 (1984).

    Article  CAS  PubMed  Google Scholar 

  205. DeCaprio, J. A. et al. SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell 54, 275–283 (1988).

    Article  CAS  PubMed  Google Scholar 

  206. Dyson, N., Howley, P. M., Munger, K. & Harlow, E. The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243, 934–937 (1989).

    Article  CAS  PubMed  Google Scholar 

  207. Werness, B. A., Levine, A. J. & Howley, P. M. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 248, 76–79 (1990).

    Article  CAS  PubMed  Google Scholar 

  208. Albrecht, J.-C. et al. Primary structure of the herpesvirus saimiri genome. J. Virol. 66, 5047–5058 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Cesarman, E., Chang, Y., Moore, P. S., Said, J. W. & Knowles, D. M. Kaposi's sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N. Engl. J. Med. 332, 1186–1191 (1995).

    Article  CAS  PubMed  Google Scholar 

  210. Cesarman, E. et al. In vitro establishment and characterization of two acquired immunodeficiency syndrome-related lymphoma cell lines (BC-1 and BC-2) containing Kaposi's sarcoma-associated herpesvirus-like (KSHV) DNA sequences. Blood 86, 2708–2714 (1995).

    CAS  PubMed  Google Scholar 

  211. Schiffman, M., Clifford, G. & Buonaguro, F. M. Classification of weakly carcinogenic human papillomavirus types: addressing the limits of epidemiology at the borderline. Infect. Agent. Cancer 4, 8 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank G. Klein and O. Gjoerup for helpful comments and corrections to the manuscript; M. Melbye at the Danish Statens Serum Institut, and T. Söderqvist and his staff at the Medical Museion, University of Copenhagen, Denmark, for materials; and F. Zappa for help in preparing the manuscript. The authors are supported by NIH CA136363, CA120726, the Al Copeland Foundation, and American Cancer Society Research Professorships.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors hold numerous patents that are related to KSHV and MCV that have been assigned to Columbia University, USA, and the University of Pittsburgh, USA.

Related links

Related links

FURTHER INFORMATION

Patrick S. Moore's and Yuan Chang's homepage

Glossary

Antibody panning

cDNA from a tumour is used to express proteins in bacteria and transferred to replicate filters. Antibody screening of the filters can then be used to identify colonies expressing the specific cDNA encoding an antigen.

Bayesian reasoning

A scientific approach developed from Bayes theorem, combining features of the Logical Positivist and Kuhnian schools of science philosophy, and describing how the probability of a hypothesis (in this case, virus A causes cancer B) changes with new evidence. In simple terms, it can be described as the repeated application of the scientific method to falsify a hypothesis such that the hypothesis has a high probability of being either true or false.

Digital transcriptome subtraction

DTS. Method to discover new viruses by exhaustively sequencing cDNA libraries and aligning known human sequences by computer leaving a smaller candidate pool of potential viral sequences for analysis36.

Endogenous retrovirus

ERV. Retrovirus that has inserted into the metazoan germline genome over evolutionary timescales and is now transmitted to offspring as a genetic element through Mendelian inheritance. Approximately 8% of the human genome is estimated to be derived from retroviral precursors.

High-risk papillomaviruses

More than 160 different genotypes or strains of HPV have been described but only a few genotypes belonging to a high-risk carcinogenic clade of the α-HPV genus are responsible for invasive HPV-related anogenital cancers211.

Longitudinal study

Virus infection is measured initially in a cohort of patients who are then followed over time to determine cancer occurrence.

Prodromal phase

An early set of nonspecific symptoms that occur before the onset of specific disease symptoms.

Representational difference analysis

A PCR-based subtractive hybridization technique that can subtract common human sequences from a tumour genomic library using a control human tissue genomic library35.

Serology

The measurement of antibodies against viruses in blood or bodily fluids. This usually does not distinguish ongoing infections from past viral infections.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, P., Chang, Y. Why do viruses cause cancer? Highlights of the first century of human tumour virology. Nat Rev Cancer 10, 878–889 (2010). https://doi.org/10.1038/nrc2961

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2961

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer