Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Genetically encoded releasable photo-cross-linking strategies for studying protein–protein interactions in living cells

Abstract

Although protein–protein interactions (PPIs) have crucial roles in virtually all cellular processes, the identification of more transient interactions in their biological context remains challenging. Conventional photo-cross-linking strategies can be used to identify transient interactions, but these approaches often suffer from high background due to the cross-linked bait proteins. To solve the problem, we have developed membrane-permeable releasable photo-cross-linkers that allow for prey–bait separation after protein complex isolation and can be installed in proteins of interest (POIs) as unnatural amino acids. Here we describe the procedures for using two releasable photo-cross-linkers, DiZSeK and DiZHSeC, in both living Escherichia coli and mammalian cells. A cleavage after protein photo-cross-linking (CAPP ) strategy based on the photo-cross-linker DiZSeK is described, in which the prey protein pool is released from a POI after affinity purification. Prey proteins are analyzed using mass spectrometry or 2D gel electrophoresis for global comparison of interactomes from different experimental conditions. An in situ cleavage and mass spectrometry (MS)-label transfer after protein photo-cross-linking (IMAPP) strategy based on the photo-cross-linker DiZHSeC is also described. This strategy can be used for the identification of cross-linking sites to allow detailed characterization of PPI interfaces. The procedures for photo-cross-linker incorporation, photo-cross-linking of interaction partners and affinity purification of cross-linked complexes are similar for the two photo-cross-linkers. The final section of the protocol describes prey–bait separation (for CAPP) and MS-label transfer and identification (for IMAPP). After plasmid construction, the CAPP and IMAPP strategies can be completed within 6 and 7 d, respectively.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: General workflow for the CAPP and IMAPP strategies.
Figure 2: Synthesis routes for the genetically encoded releasable photo-cross-linkers.
Figure 3: Incorporation and photolysis of the genetically encoded releasable photo-cross-linkers in E. coli and mammalian cells.
Figure 4: Characterization of the prey–bait separation in the CAPP strategy.
Figure 5: The CAPP-DIGE strategy for a comparative proteomic study.
Figure 6: IMAPP strategy for identifying the cross-linked peptides and cross-linking sites.

Similar content being viewed by others

References

  1. Amanda, L.G. & Kim, D.J. Protein-protein interactions and cancer: targeting the central dogma. Curr. Top. Med. Chem. 11, 258–280 (2011).

    Article  Google Scholar 

  2. Berggård, T., Linse, S. & James, P. Methods for the detection and analysis of protein–protein interactions. Proteomics 7, 2833–2842 (2007).

    Article  Google Scholar 

  3. Phizicky, E.M. & Fields, S. Protein-protein interactions: methods for detection and analysis. Microbiol. Res. 59, 94–123 (1995).

    CAS  Google Scholar 

  4. Pham, N.D., Parker, R.B. & Kohler, J.J. Photocrosslinking approaches to interactome mapping. Curr. Opin. Chem. Biol. 17, 90–101 (2013).

    Article  CAS  Google Scholar 

  5. Yang, Y., Song, H. & Chen, P.R. Genetically encoded photocrosslinkers for identifying and mapping protein-protein interactions in living cells. IUBMB Life 68, 879–886 (2016).

    Article  CAS  Google Scholar 

  6. Davis, L. & Chin, J.W. Designer proteins: applications of genetic code expansion in cell biology. Nat. Rev. Mol. Cell Biol. 13, 168–182 (2012).

    Article  CAS  Google Scholar 

  7. Liu, C.C. & Schultz, P.G. Adding new chemistries to the genetic code. Annu. Rev. Biochem. 79, 413–444 (2010).

    Article  CAS  Google Scholar 

  8. Chin, J.W. Expanding and reprogramming the genetic code of cells and animals. Annu. Rev. Biochem. 83, 379–408 (2014).

    Article  CAS  Google Scholar 

  9. Li, F. et al. Expanding the genetic code for photoclick chemistry in E. coli, mammalian cells, and A. thaliana. Angew. Chem. Int. Ed. 52, 9700–9704 (2013).

    Article  CAS  Google Scholar 

  10. Lin, S. et al. Site-specific engineering of chemical functionalities on the surface of live hepatitis D virus. Angew. Chem. Int. Ed. 52, 13970–13974 (2013).

    Article  CAS  Google Scholar 

  11. Si, L. et al. Generation of influenza A viruses as live but replication-incompetent virus vaccines. Science 354, 1170–1173 (2016).

    Article  CAS  Google Scholar 

  12. Preston, G.W. & Wilson, A.J. Photo-induced covalent cross-linking for the analysis of biomolecular interactions. Chem. Soc. Rev. 42, 3289–3301 (2013).

    Article  CAS  Google Scholar 

  13. Kleiner, P., Heydenreuter, W., Stahl, M., Korotkov, V.S. & Sieber, S.A. A whole proteome inventory of background photocrosslinker binding. Angew. Chem. Int. Ed. 56, 1396–1401 (2017).

    Article  CAS  Google Scholar 

  14. Winnacker, M., Breeger, S., Strasser, R. & Carell, T. Novel diazirine-containing DNA photoaffinity probes for the investigation of DNA-protein-interactions. ChemBioChem 10, 109–118 (2009).

    Article  CAS  Google Scholar 

  15. Ai, H.-W., Shen, W., Sagi, A., Chen, P.R. & Schultz, P.G. Probing protein–protein interactions with a genetically encoded photo-crosslinking amino acid. ChemBioChem 12, 1854–1857 (2011).

    Article  CAS  Google Scholar 

  16. Chin, J.W., Martin, A.B., King, D.S., Wang, L. & Schultz, P.G. Addition of a photocrosslinking amino acid to the genetic code of Escherichia coli. Proc. Natl. Acad. Sci. USA 99, 11020–11024 (2002).

    Article  CAS  Google Scholar 

  17. Chin, J.W. et al. Addition of p-Azido-l-phenylalanine to the genetic code of Escherichia coli. J. Am. Chem. Soc. 124, 9026–9027 (2002).

    Article  CAS  Google Scholar 

  18. Tippmann, E.M., Liu, W., Summerer, D., Mack, A.V. & Schultz, P.G. A genetically encoded diazirine photocrosslinker in Escherichia coli. ChemBioChem 8, 2210–2214 (2007).

    Article  CAS  Google Scholar 

  19. Zhang, M. et al. A genetically incorporated crosslinker reveals chaperone cooperation in acid resistance. Nat. Chem. Biol. 7, 671–677 (2011).

    Article  CAS  Google Scholar 

  20. Yanagisawa, T. et al. Wide-range protein photo-crosslinking achieved by a genetically encoded N(epsilon)-(benzyloxycarbonyl)lysine derivative with a diazirinyl moiety. Mol. BioSyst. 8, 1131–1135 (2012).

    Article  CAS  Google Scholar 

  21. Hino, N. et al. Protein photo-cross-linking in mammalian cells by site-specific incorporation of a photoreactive amino acid. Nat. Methods 2, 201–206 (2005).

    Article  CAS  Google Scholar 

  22. Freinkman, E., Chng, S.-S. & Kahne, D. The complex that inserts lipopolysaccharide into the bacterial outer membrane forms a two-protein plug-and-barrel. Proc. Natl. Acad. Sci. USA 108, 2486–2491 (2011).

    Article  CAS  Google Scholar 

  23. Hino, N. et al. Genetic incorporation of a photo-crosslinkable amino acid reveals novel protein complexes with GRB2 in mammalian cells. J. Mol. Biol. 406, 343–353 (2011).

    Article  CAS  Google Scholar 

  24. Coin, I. et al. Genetically encoded chemical probes in cells reveal the binding path of urocortin-I to CRF class B GPCR. Cell 155, 1258–1269 (2013).

    Article  CAS  Google Scholar 

  25. Farrell, I.S., Toroney, R., Hazen, J.L., Mehl, R.A. & Chin, J.W. Photo-cross-linking interacting proteins with a genetically encoded benzophenone. Nat. Methods 2, 377–384 (2005).

    Article  CAS  Google Scholar 

  26. Hino, N., Hayashi, A., Sakamoto, K. & Yokoyama, S. Site-specific incorporation of non-natural amino acids into proteins in mammalian cells with an expanded genetic code. Nat. Protoc. 1, 2957–2962 (2006).

    Article  CAS  Google Scholar 

  27. Lacey, V.K., Louie, G.V., Noel, J.P. & Wang, L. Expanding the library and substrate diversity of the pyrrolysyl-tRNA synthetase to incorporate unnatural amino acids containing conjugated rings. ChemBioChem 14, 2100–2105 (2013).

    Article  CAS  Google Scholar 

  28. Ai, X., Mu, J. & Xing, B. Recent advances of light-mediated theranostics. Theranostics 6, 2439–2457 (2016).

    Article  CAS  Google Scholar 

  29. Barber, D.M. et al. Optical control of neuronal activity using a light-operated GIRK channel opener (LOGO). Chem. Sci. 7, 2347–2352 (2016).

    Article  CAS  Google Scholar 

  30. Judkins, J.C. et al. A photocleavable masked nuclear-receptor ligand enables temporal control of C. elegans development. Angew. Chem. Int. Ed. 53, 2110–2113 (2014).

    Article  CAS  Google Scholar 

  31. Minden, J. Comparative proteomics and difference gel electrophoresis. BioTechniques 43, 739–745 (2007).

    Article  CAS  Google Scholar 

  32. Zhang, S. et al. Comparative proteomics reveal distinct chaperone-client interactions in supporting bacterial acid resistance. Proc. Natl. Acad. Sci. USA 113, 10872–10877 (2016).

    Article  CAS  Google Scholar 

  33. Lin, S. et al. Genetically encoded cleavable protein photo-cross-linker. J. Am. Chem. Soc. 136, 11860–11863 (2014).

    Article  CAS  Google Scholar 

  34. Yang, Y. et al. Genetically encoded protein photocrosslinker with a transferable mass spectrometry-identifiable label. Nat. Commun. 7, 12299 (2016).

    Article  CAS  Google Scholar 

  35. Shigdel, U.K., Zhang, J. & He, C. Diazirine-based DNA photo-cross-linking probes for the study of protein-DNA interactions. Angew. Chem. Int. Ed. 47, 90–93 (2008).

    Article  CAS  Google Scholar 

  36. Gajiwala, K.S. & Burley, S.K. HDEA, a periplasmic protein that supports acid resistance in pathogenic enteric bacteria. J. Mol. Biol. 295, 605–612 (2000).

    Article  CAS  Google Scholar 

  37. Hong, W. et al. Periplasmic protein HdeA exhibits chaperone-like activity exclusively within stomach ph range by transforming into disordered conformation. J. Biol. Chem. 280, 27029–27034 (2005).

    Article  CAS  Google Scholar 

  38. Tapley, T.L., Franzmann, T.M., Chakraborty, S., Jakob, U. & Bardwell, J.C. Protein refolding by pH-triggered chaperone binding and release. Proc. Natl. Acad. Sci. USA 107, 1071–1076 (2010).

    Article  CAS  Google Scholar 

  39. Krojer, T., Sawa, J., Huber, R. & Clausen, T. HtrA proteases have a conserved activation mechanism that can be triggered by distinct molecular cues. Nat. Struct. Mol. Biol. 17, 844–852 (2010).

    Article  CAS  Google Scholar 

  40. Dunham, W.H., Mullin, M. & Gingras, A.-C. Affinity-purification coupled to mass spectrometry: basic principles and strategies. Proteomics 12, 1576–1590 (2012).

    Article  CAS  Google Scholar 

  41. Sinz, A. Investigation of protein–protein interactions in living cells by chemical crosslinking and mass spectrometry. Anal. Bioanal. Chem. 397, 3433–3440 (2010).

    Article  CAS  Google Scholar 

  42. Rinner, O. et al. Identification of cross-linked peptides from large sequence databases. Nat. Methods 5, 315–318 (2008).

    Article  CAS  Google Scholar 

  43. Yang, B. et al. Identification of cross-linked peptides from complex samples. Nat. Methods 9, 904–906 (2012).

    Article  CAS  Google Scholar 

  44. Makowski, M.M., Willems, E., Jansen, P.W. & Vermeulen, M. Cross-linking immunoprecipitation-MS (xIP-MS): topological analysis of chromatin-associated protein complexes using single affinity purification. Mol. Cell Proteomics 15, 854–865 (2016).

    Article  CAS  Google Scholar 

  45. Shi, Y. et al. A strategy for dissecting the architectures of native macromolecular assemblies. Nat. Methods 12, 1135–1138 (2015).

    Article  CAS  Google Scholar 

  46. Dingar, D. et al. BioID identifies novel c-MYC interacting partners in cultured cells and xenograft tumors. J. Proteomics 118, 95–111 (2015).

    Article  CAS  Google Scholar 

  47. Loh, K.H. et al. Proteomic analysis of unbounded cellular compartments: synaptic clefts. Cell 166, 1295–1307 (2016).

    Article  CAS  Google Scholar 

  48. Rhee, H.W. et al. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339, 1328–1331 (2013).

    Article  CAS  Google Scholar 

  49. Roux, K.J., Kim, D.I., Raida, M. & Burke, B. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J. Cell Biol. 196, 801–810 (2012).

    Article  CAS  Google Scholar 

  50. Cravatt, B.F., Wright, A.T. & Kozarich, J.W. Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu. Rev. Biochem. 77, 383–414 (2008).

    Article  CAS  Google Scholar 

  51. Li, Z. et al. Design and synthesis of minimalist terminal alkyne-containing diazirine photo-crosslinkers and their incorporation into kinase inhibitors for cell- and tissue-based proteome profiling. Angew. Chem. Int. Ed. 52, 8551–8556 (2013).

    Article  CAS  Google Scholar 

  52. Peng, T. & Hang, H.C. Bifunctional fatty acid chemical reporter for analyzing S-palmitoylated membrane protein-protein interactions in mammalian cells. J. Am. Chem. Soc. 137, 556–559 (2015).

    Article  CAS  Google Scholar 

  53. Carey, M.F., Peterson, C.L. & Smale, S.T. PCR-mediated site-directed mutagenesis. Cold Spring Harb. Protoc. 2013, 738–742 (2013).

    PubMed  Google Scholar 

  54. Reid, T. et al. Rhotekin, a new putative target for Rho bearing homology to a serine/threonine kinase, PKN, and rhophilin in the Rho-binding domain. J. Biol. Chem. 271, 13556–13560 (1996).

    Article  CAS  Google Scholar 

  55. Fu, Q. et al. Molecular cloning, expression characterization, and mapping of a novel putative inhibitor of Rho GTPase activity, RTKN, to D2S145–D2S286. Genomics 66, 328–332 (2000).

    Article  CAS  Google Scholar 

  56. Thumkeo, D., Watanabe, S. & Narumiya, S. Physiological roles of Rho and Rho effectors in mammals. Eur. J. Cell Biol. 92, 303–315 (2013).

    Article  CAS  Google Scholar 

  57. Ihara, K. et al. Crystal structure of human RhoA in a dominantly active form complexed with a GTP analogue. J. Biol. Chem. 273, 9656–9666 (1998).

    Article  CAS  Google Scholar 

  58. Tannu, N.S. & Hemby, S.E. Two-dimensional fluorescence difference gel electrophoresis for comparative proteomics profiling. Nat. Protoc. 1, 1732–1742 (2006).

    Article  CAS  Google Scholar 

  59. Paulo, J.A. Sample preparation for proteomic analysis using a GeLC-MS/MS strategy. J. Biol. Methods 3, e45 (2016).

    Article  Google Scholar 

  60. Kern, R., Malki, A., Abdallah, J., Tagourti, J. & Richarme, G. Escherichia coli HdeB is an acid stress chaperone. J. Bacteriol. 189, 603–610 (2007).

    Article  CAS  Google Scholar 

  61. Dvorsky, R., Blumenstein, L., Vetter, I.R. & Ahmadian, M.R. Structural insights into the interaction of ROCKI with the switch regions of RhoA. J. Biol. Chem. 279, 7098–7104 (2004).

    Article  CAS  Google Scholar 

  62. Nikic, I., Kang, J.H., Girona, G.E., Aramburu, I.V. & Lemke, E.A. Labeling proteins on live mammalian cells using click chemistry. Nat. Protoc. 10, 780–791 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21521003 and 21432002) and the National Key Research and Development Program of China (2016YFA0501500).

Author information

Authors and Affiliations

Authors

Contributions

Y.Y. and H.S. performed the incorporation, photo-cross-linking and affinity purification experiments. Y.Y. performed the prey–bait separation experiment in the CAPP strategy. Y.Y., H.S. and P.R.C. wrote the paper. Y.Y., H.S., D.H., S.Z., S.D., X.X., S.L., Z.H., H.Z., and P.R.C. edited the paper.

Corresponding author

Correspondence to Peng R Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Song, H., He, D. et al. Genetically encoded releasable photo-cross-linking strategies for studying protein–protein interactions in living cells. Nat Protoc 12, 2147–2168 (2017). https://doi.org/10.1038/nprot.2017.090

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2017.090

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research