Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

NetworkAnalyst for statistical, visual and network-based meta-analysis of gene expression data

Abstract

Meta-analysis of gene expression data sets is increasingly performed to help identify robust molecular signatures and to gain insights into underlying biological processes. The complicated nature of such analyses requires both advanced statistics and innovative visualization strategies to support efficient data comparison, interpretation and hypothesis generation. NetworkAnalyst (http://www.networkanalyst.ca) is a comprehensive web-based tool designed to allow bench researchers to perform various common and complex meta-analyses of gene expression data via an intuitive web interface. By coupling well-established statistical procedures with state-of-the-art data visualization techniques, NetworkAnalyst allows researchers to easily navigate large complex gene expression data sets to determine important features, patterns, functions and connections, thus leading to the generation of new biological hypotheses. This protocol provides a step-wise description of how to effectively use NetworkAnalyst to perform network analysis and visualization from gene lists; to perform meta-analysis on gene expression data while taking into account multiple metadata parameters; and, finally, to perform a meta-analysis of multiple gene expression data sets. NetworkAnalyst is designed to be accessible to biologists rather than to specialist bioinformaticians. The complete protocol can be executed in 1.5 h. Compared with other similar web-based tools, NetworkAnalyst offers a unique visual analytics experience that enables data analysis within the context of protein-protein interaction networks, heatmaps or chord diagrams. All of these analysis methods provide the user with supporting statistical and functional evidence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NetworkAnalyst analysis flowchart.
Figure 2: Navigations in NetworkAnalyst.
Figure 3: Organization of components in Network Viewer.
Figure 4: Network customization and module extraction.
Figure 5: Screenshot of the interface for differential expression analysis.
Figure 6: A chord diagram comparing six analysis results.
Figure 7: Visual analytics with heatmaps.
Figure 8: Upload and process multiple data sets for meta-analysis.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

Swiss-Prot

References

  1. Li, S. et al. Molecular signatures of antibody responses derived from a systems biology study of five human vaccines. Nat. Immunol. 15, 195–204 (2014).

    Article  Google Scholar 

  2. Pena, O.M. et al. An endotoxin tolerance signature predicts sepsis and organ dysfunction at initial clinical presentation. EBioMedicine 1, 64–71 (2014).

    Article  Google Scholar 

  3. Zhang, G. et al. Integration of metabolomics and transcriptomics revealed a fatty acid network exerting growth inhibitory effects in human pancreatic cancer. Clin. Cancer Res. 19, 4983–4993 (2013).

    Article  CAS  Google Scholar 

  4. Gieger, C. et al. Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum. PLoS Genet. 4, e1000282 (2008).

    Article  Google Scholar 

  5. Gomez-Cabrero, D. et al. Data integration in the era of omics: current and future challenges. BMC Syst. Biol. 8 (suppl. 2), I1 (2014).

    Article  Google Scholar 

  6. Tseng, G.C., Ghosh, D. & Feingold, E. Comprehensive literature review and statistical considerations for microarray meta-analysis. Nucleic Acids Res. 40, 3785–3799 (2012).

    Article  CAS  Google Scholar 

  7. O'Donoghue, S.I. et al. Visualizing biological data-now and in the future. Nat. Methods 7, S2–S4 (2010).

    Article  CAS  Google Scholar 

  8. Goble, C. & Stevens, R. State of the nation in data integration for bioinformatics. J. Biomed. Inform. 41, 687–693 (2008).

    Article  Google Scholar 

  9. Smith, B. et al. The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nat. Biotechnol. 25, 1251–1255 (2007).

    Article  CAS  Google Scholar 

  10. Wodke, J.A. et al. MyMpn: a database for the systems biology model organism Mycoplasma pneumoniae. Nucleic Acids Res. 43 (Database issue): D618–D623 (2014).

    PubMed  PubMed Central  Google Scholar 

  11. Breuer, K. et al. InnateDB: systems biology of innate immunity and beyond—recent updates and continuing curation. Nucleic Acids Res. 41, D1228–D1233 (2013).

    Article  CAS  Google Scholar 

  12. Rhodes, D.R. et al. Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia 9, 166–180 (2007).

    Article  CAS  Google Scholar 

  13. Chelaru, F., Smith, L., Goldstein, N. & Bravo, H.C Epiviz: interactive visual analytics for functional genomics data. Nat. Methods 11, 938–940 (2014).

    Article  CAS  Google Scholar 

  14. Nekrutenko, A. & Taylor, J. Next-generation sequencing data interpretation: enhancing reproducibility and accessibility. Nat. Rev. Genet. 13, 667–672 (2012).

    Article  CAS  Google Scholar 

  15. Xia, J. et al. INMEX—a web-based tool for integrative meta-analysis of expression data. Nucleic Acids Res. 41, W63–W70 (2013).

    Article  Google Scholar 

  16. Xia, J., Lyle, N.H., Mayer, M.L., Pena, O.M. & Hancock, R.E.W. INVEX—a web-based tool for integrative visualization of expression data. Bioinformatics 29, 3232–3234 (2013).

    Article  CAS  Google Scholar 

  17. Xia, J., Benner, M.J. & Hancock, R.E.W. NetworkAnalyst—integrative approaches for protein-protein interaction network analysis and visual exploration. Nucleic Acids Res. 42, W167–W174 (2014).

    Article  CAS  Google Scholar 

  18. Tarraga, J. et al. GEPAS, a web-based tool for microarray data analysis and interpretation. Nucleic Acids Res. 36, W308–W314 (2008).

    Article  CAS  Google Scholar 

  19. Reich, M. et al. GenePattern 2.0. Nat. Genet. 38, 500–501 (2006).

    Article  CAS  Google Scholar 

  20. Xia, J., Mandal, R., Sinelnikov, I.V., Broadhurst, D. & Wishart, D.S. MetaboAnalyst 2.0—a comprehensive server for metabolomic data analysis. Nucleic Acids Res. 40, W127–W133 (2012).

    Article  CAS  Google Scholar 

  21. Xia, J. & Wishart, D.S. Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nat. Protoc. 6, 743–760 (2011).

    Article  CAS  Google Scholar 

  22. Saeed, A.I. et al. TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34, 374–378 (2003).

    Article  CAS  Google Scholar 

  23. Perez-Llamas, C. & Lopez-Bigas, N. Gitools: analysis and visualisation of genomic data using interactive heat-maps. PLoS ONE 6, e19541 (2011).

    Article  CAS  Google Scholar 

  24. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  Google Scholar 

  25. Huang, D.W. et al. DAVID bioinformatics resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 35, W169–W175 (2007).

    Article  Google Scholar 

  26. Reimand, J., Arak, T. & Vilo, J. g:Profiler—a web server for functional interpretation of gene lists (2011 update). Nucleic Acids Res. 39, W307–W315 (2011).

    Article  CAS  Google Scholar 

  27. Lynn, D.J. et al. InnateDB: facilitating systems-level analyses of the mammalian innate immune response. Mol. Syst. Biol. 4, 218 (2008).

    Article  Google Scholar 

  28. Saito, R. et al. A travel guide to Cytoscape plugins. Nat. Methods 9, 1069–1076 (2012).

    Article  CAS  Google Scholar 

  29. Smyth, G.K. Limma: linear models for microarray data. In Bioinformatics and Computational Biology Solutions Using R and Bioconductor (eds. Gentleman, R. et al. 397–420 (Springer, 2005).

  30. Law, C.W., Chen, Y., Shi, W. & Smyth, G.K. voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014).

    Article  Google Scholar 

  31. Orchard, S. et al. Protein interaction data curation: the International Molecular Exchange (IMEx) consortium. Nat. Methods 9, 345–350 (2012).

    Article  CAS  Google Scholar 

  32. Turinsky, A.L., Razick, S., Turner, B., Donaldson, I.M. & Wodak, S.J. Interaction databases on the same page. Nat. Biotechnol. 29, 391–393 (2011).

    Article  CAS  Google Scholar 

  33. Bader, G.D., Betel, D. & Hogue, C.W. BIND: the Biomolecular Interaction Network Database. Nucleic Acids Res. 31, 248–250 (2003).

    Article  CAS  Google Scholar 

  34. Stark, C. et al. BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 34, D535–D539 (2006).

    Article  CAS  Google Scholar 

  35. Licata, L. et al. MINT, the molecular interaction database: 2012 update. Nucleic Acids Res. 40, D857–D861 (2012).

    Article  CAS  Google Scholar 

  36. Hermjakob, H. et al. IntAct: an open source molecular interaction database. Nucleic Acids Res. 32, D452–D455 (2004).

    Article  CAS  Google Scholar 

  37. Rolland, T. et al. A proteome-scale map of the human interactome network. Cell 159, 1212–1226 (2014).

    Article  CAS  Google Scholar 

  38. Pena, O.M., Pistolic, J., Raj, D., Fjell, C.D. & Hancock, R.E.W. Endotoxin tolerance represents a distinctive state of alternative polarization (M2) in human mononuclear cells. J. Immunol. 186, 7243–7254 (2011).

    Article  CAS  Google Scholar 

  39. Ramasamy, A., Mondry, A., Holmes, C.C. & Altman, D.G. Key issues in conducting a meta-analysis of gene expression microarray datasets. PLoS Med. 5, e184 (2008).

    Article  Google Scholar 

  40. Mitra, K., Carvunis, A.R., Ramesh, S.K. & Ideker, T. Integrative approaches for finding modular structure in biological networks. Nat. Rev. Genet. 14, 719–732 (2013).

    Article  CAS  Google Scholar 

  41. Ideker, T., Ozier, O., Schwikowski, B. & Siegel, A.F. Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18 (suppl. 1), S233–S240 (2002).

    Article  Google Scholar 

  42. Beisser, D., Klau, G.W., Dandekar, T., Muller, T. & Dittrich, M.T. BioNet: an R package for the functional analysis of biological networks. Bioinformatics 26, 1129–1130 (2010).

    Article  CAS  Google Scholar 

  43. Vidal, M., Cusick, M.E. & Barabasi, A.L. Interactome networks and human disease. Cell 144, 986–998 (2011).

    Article  CAS  Google Scholar 

  44. Yu, H. et al. High-quality binary protein interaction map of the yeast interactome network. Science 322, 104–110 (2008).

    Article  CAS  Google Scholar 

  45. Schramm, S.J. et al. Disturbed protein-protein interaction networks in metastatic melanoma are associated with worse prognosis and increased functional mutation burden. Pigment Cell Melanoma Res. 26, 708–722 (2013).

    Article  CAS  Google Scholar 

  46. Liu, Y., Koyuturk, M., Barnholtz-Sloan, J.S. & Chance, M.R. Gene interaction enrichment and network analysis to identify dysregulated pathways and their interactions in complex diseases. BMC Syst. Biol. 6, 65 (2012).

    Article  CAS  Google Scholar 

  47. Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).

    Article  CAS  Google Scholar 

  48. Bastian, M., Heymann, S. & Jacomy, M. Gephi: an open source software for exploring and manipulating networks. in International AAAI Conference on Weblogs and Social Media http://www.aaai.org/ocs/index.php/ICWSM/09/paper/viewFile/154Forum/1009 (2009).

Download references

Acknowledgements

The authors thank the Canadian Institutes for Health Research (CIHR) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

J.X. developed NetworkAnalyst and prepared the protocol, E.E.G. tested the tool and the protocol and R.E.W.H. participated in all processes. All authors have read and approved the paper.

Corresponding authors

Correspondence to Jianguo Xia or Robert E W Hancock.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, J., Gill, E. & Hancock, R. NetworkAnalyst for statistical, visual and network-based meta-analysis of gene expression data. Nat Protoc 10, 823–844 (2015). https://doi.org/10.1038/nprot.2015.052

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2015.052

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing